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On complete flat Lorentzian 3-manifolds with free fundamental groups

Abstract

» We prove the topological tameness of a 3-manifold with a free fundamental group
admitting a complete flat Lorentzian metric; i.e., a Margulis space-time isomorphic
to the quotient of the complete flat Lorentzian space by the free and properly
discontinuous isometric action of the free group of rank > 2.

» We will use our particular point of view that a Margulis space-time is a real
projective manifold in an essential way.

» The basic tools are a by a closed RP2-surface with a free holonomy
group, the important work of Goldman, Labourie, and Margulis on geodesics in the
Margulis space-times and the 3-manifold topology.

» Finally, we show that Margulis space-times are geometrically finite under our
definition.

» The tameness and many other results are also obtained indepedently by Jeff
Danciger, Fanny Kassel and Frangois Guéritaud.
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On complete flat Lorentzian 3-manifolds with free fundamental groups
L Preliminary, History, Notations
L History

Tame manifolds

» An open n-manifold can sometimes be compactified to a compact n-manifold with

boundary. Then the open manifold is said to be tame.
» Brouwder, Levine, Livesay, and Sienbenmann [8] started this.

» For 3-manifolds, Tucker, Scott, and Meyers made progress.

» A nontame 3-manifold

essentially can be “simply” thought of as a union of an increasing sequence of
compression bodies M; so that each M; — M, ¢ is an imbedding by homotopy
equivalence not isotopic to a homeomorphism. (Ohshika’s observation.)

» Hyperbolic 3-manifolds with finitely generated fundamental groups are shown to
be tame by Bonahon, Agol and Calegari-Gabai. See Bowditch [7] for details.

» Earlier, geometrically finite hyperbolic 3-manifolds are shown to be tame by
Marden (and Thurston). This is relevant to us.
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On complete flat Lorentzian 3-manifolds with free fundamental groups
L Preliminary, History, Notations
L Notations

» Let V2! denote the vector space R3 with a Lorentzian norm of sign 1,1, —1, and

» the Lorentzian space-time E2'' can be thought of as the vector space with
translation by any vector allowed.

» We will concern ourselves with only the subgroup of
orientation-preserving isometries, isomorphic to R® x SO(2,1) or

1= R3 - Isom™ (E2") 5 50(2,1) — 1.

> is defined as the quotient space

V21 _ {0}/ ~ where v ~ wif and only if v = sw for s € R — {0}.

The sphere of directions S := S(V2) is defined as the quotient space
V21 _ {0}/ ~ where v ~ wif and only if v = sw for s > 0,

and equals the double cover RP2 of RP2.
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On complete flat Lorentzian 3-manifolds with free fundamental groups

LPreIiminary, History, Notations
- Notations

Our spherical view of E>' and homogeneous coordinates

>

The projective sphere S := S(R* — {O}) with coordinates t, x, y, z with projective
automorphism group Aut(S®) isomorphic to SL (4, R).

S8 double-covers the real projective space.

The upper hemisphere given by t > 0 is identical with [1, x, y, z] and is identified
with E2! with boundary S.

Isom*(E2") c Aut(S®).
Isom™(E?1) acts on S by sending it by £ to Aut(S).
We map E2 to a unit 3-ball in R3 by the map

(%,¥,2)

VIi+x@+y2 22

1,x,y,z2] —»

S goes to the unit sphere x2 + y2 + 22 = 1.
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Lorentzian 3-manifolds with free fundamental groups

Preliminary, History, Notations

L Notations

The Lorentzian structure divides S into three open domains S, Sy, S_ separated
by two conics bdS+ and bdS_.

Recall that S+ of the space of future time-like vectors is the Beltrami-Klein model
of the hyperbolic plane H? where SO(2, 1) acts as the orientation-preserving
isometry group. Here the metric geodesics are precisely the projective geodesics
and vice versa.

The geodesics in S are straight arcs and bdS.- forms the ideal boundary of S.

For a finitely generated discrete, non-elementary, subgroup I in SO(2,1), S+ /T
has a complete hyperbolic structure as well as a real projective structure with the
compatible geodesic structure.

Nonelementary I has no parabolics if and only if S1 /T is a geometrically finite
hyperbolic surface.
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LPreIiminary, History, Notations
- Notations

» Suppose that I is a finitely generated Lorentzian isometry group acting freely and
properly on E2!. We assume that I" is not amenable (i.e., not solvable). Then
E21/I is said to be a Margulis space-time.

» [ injects under £ to £(I') acting properly discontinuously and freely on S1. By
Mess [34], I’ must be a free group of rank > 2.

» Then S, /T is a complete genus § hyperbolic surface with b ideal boundary
components.

/49



On complete flat Lorentzian 3-manifolds with free fundamental groups
LMain Results: Theorem A and Theorem B
LTheorem A

Theorem A (Bordification by an
RP2-surface)

LetT c lsom.(E?") be a fg. free group of
rank g > 2 acting on the hyperbolic
2-space H? properly discontinuously and
freely without any parabolic holonomy.
Then there exists a I -invariant open
domain D C S(V2') such that D/T is a
closed surface X with a real projective
structure induced from S unique up to the

antipodal map A. (The genus equals g.)

Figure: The domain D covering X.
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L Main Results: Theorem A and Theorem B
L Theorem A

» These surfaces correspond to real projective structures on closed surfaces of
genus g, g > 2, discovered by Goldman [26] in the late 1970s.

» The surface is a quotient of a domain in S by a group of projective automorphisms.

» This is an RP2-analog of the standard Schottky uniformization of a Riemann
surface as a CP'-manifold as observed by Goldman. There is an equivariant map
shrinking all complementary intervals to points.
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LMain Results: Theorem A and Theorem B
LTheorem B

We obtain a handlebody is a 3-dimensional manifold from a 3-ball B® by attaching
1-handles.

Theorem B (Compactification)

Let M be a Margulis space-time E>'/T" and L(T') has no parabolic element. Then M is
homeomorphic to the interior of a solid handlebody of genus equal to the rank of T.
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On complete flat Lorentzian 3-manifolds with free fundamental groups
Real projective surfaces: The prooof of Theorem A.

- Convex decomposition of real projective surfaces

Convex decomposition of real projective surfaces

> A domain in RP? is a bounded convex domain of an affine subspace in RP2.
A real projective surface is if it is a quotient of a properly convex domain in
RP? by a properly disc. and free action of a subgroup of PGL(3, R).

» A disjoint collection of simple closed geodesics ¢, . . . , cm decomposes a real projective
surface S into subsurfaces Sy, .., S, if each S; is the closure of a component of

S — Ui:1 m Cj. We do not allow a curve ¢; to have two one-sided neighborhoods in only one S,v for some i.

Theorem 3.1 ([13])

Let Y. be a closed orientable real projective surface with principal geodesic or empty
boundary and x(x) < 0.

Then X has a collection of disjoint simple closed principal geodesics decomposing X
into properly convex real projective surfaces with principal geodesic boundary and of
negative Euler characteristic and/or w-annuli with principal geodesic boundary.

12/42
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LReaI projective surfaces: The prooof of Theorem A.

L Convex decomposition of real projective surfaces

Null half-planes

>

>

Let \/ denote the nullcone in V31,

If ve N'— {O}, then its orthogonal complement v-- is a null plane which contains
Rv, which separates v into two half-planes.

Since v € N, its direction lies in either bdS. or bdS_. Choose an arbitrary element u
of S} or S_ respectively, so that the directions of v and u both lie in the same CI(S;.) or
CI(S—) respectively.

Define the null half-plane % (v) (or the wing) associated to v as:
#(v) = {w € v | Det(v,w,u) > 0}.

We will now let =([v]) := [#/(v)] for convenience.

The map [v] — ¢(v) is an SO(2, 1)-equivariant map
de+ — S

for the space S of half-arcs of form e(v) for v € bdS.
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On complete flat Lorentzian 3-manifolds with free fundamental groups
L Real projective surfaces: The prooof of Theorem A.

L Convex decomposition of real projective surfaces

> The arcs £([v]) for
v € bdS foliate Sy. Let
us call the foliation F.

» Hence Sp has a
SO(2, 1)-equivariant
quotient map

n:sy — PW—-{0}) =S’

—n-1
where e([v]) = N~"([V]) Figure: The tangent geodesics to disks S, and S_ in the unit
foreachv e N — {O}. sphere S imbedded in R®.
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LReaI projective surfaces: The prooof of Theorem A.
- Proof of Theorem A

» S; /T is an open hyperboic surface, compactified to ¥’ by adding number of ideal
boundary components.

» Y’ is covered by S; U [J;c 7 b; where b; are ideal open arcs in bdS..

> Lets; =e(p;) and t; = ¢(q;). Thenl;, s;, t;,1; _ bound a strip invariant under (g;).
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LReaI projective surfaces: The prooof of Theorem A.
- Proof of Theorem A

Proof of Theorem A

» We define A; = R; NSy for i € J, which equals UXEb; e(x).
» We note that A; C R, foreachi e J.

> We finally define

¥ = SLuJ[RiuEL
ieg
= i; U H AU iL
ieJ
= u][rRiva- (1)
ieJ
= s-Ja(x)). )
XEN

an open domain in S where A is the limit set.

» Since the collection whose elements are of form R; mapped to itself by I', we
showed that I acts on this open domain.
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L Real projective surfaces: The prooof of Theorem A.
[ Proof of Theorem A
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On complete flat Lorentzian 3-manifolds with free fundamental groups
LThe work of Goldman, Labourie and Margulis

- Diffused Margulis invariants and neutral sections

Margulis invariants

» Given an element g € I' — {1}, let us denote by v, (g9), vo(g), and v_(g) the
eigenvectors of the linear part £(g) of g corresponding to eigenvalues > 1, = 1,
and < 1 respectively.

> v4(9) and v_(g) are null vectors and vo(g) is space-like and of unit norm. We
choose so that v_(g) x v (g) = vo(9)-

» We recall the Margulis invariant o : ' — {I} -+ R
a(g) := B(gx — x,vo(g)) forg € T — {1}, x € E*',

which is independent of the choice of x in E2:1. (See [20] for details.)

» If I' acts freely on E21, then Margulis invariants of nonidentity elements are all
positive or all negative by the Opposite sign-lemma of Margulis.
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On complete flat Lorentzian 3-manifolds with free fundamental groups
LThe work of Goldman, Labourie and Margulis

- Diffused Margulis invariants and neutral sections

Diffused Margulis invariants of Labourie

v

By following the geodesics in X, we obtain a so-called geodesic flow
®: UL, xR— UL,.

A geodesic current is a Borel probability measure on U(S4+ /') invariant under the

geodesic flow, supported on a union of weakly recurrent geodesics.

v

Let [u] denote the element of H' (g, V') given by I for the linear part g of I".

v

We extend the function

o(v)
k(1)

Cpee(T4) = R by iy 1

to the diffused one @) : C(S4/T) — Rxo.

v

I = Ig,[y acts properly if and only if & (1) > 0 for all 4 € C(X) — {O} (or
®py(n) < 0)[30]
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On complete flat Lorentzian 3-manifolds with free fundamental groups
LThe work of Goldman, Labourie and Margulis

- Diffused Margulis invariants and neutral sections

Neutralized sections

» They in [30] ( following Fried ) constructed a flat affine bundle E over the unit tangent
bundle UX ;. of ¥4 by forming E! x US. and taking the quotient by the diagonal
action vy(x, v) = (h(~)(x),v(v)) for a deck transformation ~ of the cover US.. of
UX where

h:T — Isom*(E%") c Aut(S®%)
is the inclusion map.

» The cover of E is denoted by E and is identical with E21 x US, . We denote by
TE2,1 - E = E2’1 X US+ — E2’1

the projection.

» We define V as the quotient of V21 x US, by the linear action of I' and the action
of US+
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LThe work of Goldman, Labourie and Margulis

- Diffused Margulis invariants and neutral sections

Neutralized sections

» A neutral section of V is an SO(2, 1)-invariant section which is parallel along
geodesic flow of UX .

» A neutral section v : UX; — V arises from a graph of the SO(2, 1)-invariant map
P USy — V3!

with the image in the space of unit space-like vectors in V2:1;

» i is defined by sending a unit vector u in US4 to the normalization of p(u) x a(u)
of the null vectors p(u) and «(u) with directions the the start point and the end
point in bdS+ of the geodesic tangentto uin S
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LThe work of Goldman, Labourie and Margulis

- Diffused Margulis invariants and neutral sections

Let U...> . < U>, denote the unit vectors tangent to weakly recurrent geodesics of ¥.

Lemma 4.1 ([30])

LetY ; be as above. Then

» UecX 4+ C UX, is a connected compact geodesic flow invariant set and is a
subset of the compact set UY"/ .

> The inverse image UrecS+ of Urec X+ in UrecS+ is precisely the set of unit vectors
tangent to geodesics with both endpoints in A.
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On complete flat Lorentzian 3-manifolds with free fundamental groups
LThe work of Goldman, Labourie and Margulis

L Diffused Margulis invariants and neutral sections

» The above conjugates the geodesic flow ¢; on X with one ®; in E>" where each
geodesic with direction & at p goes to a geodesic in the direction of v(1).

» We find the section AV : UrecS+ — E lifting A satisfying
Nogr=dbpoNandNoy=yoN 3)
for each deck transformation v of US; — UXx .

» Proposition 4.2

The lift of the neutralized section N induces a continuous function
N 2 GrecSy — GrecE?! where
> if the oriented geodesic | in S, is g-invariant for g € T, then g acts on the space-like
geodesic Ly the image under 4" as a translation.
> the convergent set of elements of GrecS;+ maps to a convergent set in GrecE?.
> Finally, the map is surjective.
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L Proof of Theorem B

- Proof of properness of the action on the bordification

Repeat: Our view of E2' and coordinates

» The projective sphere S® = S(R* — {O}) with coordinates t, x, y, z with projective
automorphism group Aut(S®) isomorphic to SL (4, R).

» The upper hemisphere given by t > 0 is identical with [1, x, y, z] and is identified
with E2! with boundary S.

> Isom*(E?") C Aut(S®).
» Isom™(E?") acts on S by sending it by £ to Aut(S).
» We map E2 to a unit 3-ball by the map

(x,y,2)

VItxBty2+ 2

[1,x,y,2] =
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L Proof of Theorem B

- Proof of properness of the action on the bordification

A Lemma on projective automorphisms

Lemma 5.1

Letv/,: forj =1,2,3,4 be four sequences points of S3. Suppose thatv’,: — V{X, for each
j and mutually distinct independent points v, ..., v4,. Then we can choose a
sequence h; of elements of Aut(S®) so that

> hi(v) =ej,
> hj is represented by uniformly convergent matrices and

> h; — heo uniformly for hoo € Aut(S®) under C3-topology for every s > 0.
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[ Proof of Theorem B

- Proof of properness of the action on the bordification

Projective boost automorphism

» A projective automorphism g that is of form

A>1,k#0 4)

o O » O
o o o

0
0
1
0

o X O© =

>l=

under a homogeneous coordinate system of S2 is said to be a projective boost
automorphism.

» In affine coordinates,

(,9:2) = (Woy + K, 1 2), 0,2 €R
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L Proof of Theorem B

- Proof of properness of the action on the bordification

The action of a Lorentzian isometry g
on the hemisphere .5# where the
boundary sphere S is the unit sphere

with center (0, 0, 0) here.

» The arc on S given by y = 0 is the
invariant geodesic in S, and with

end points the fixed points of g.

» Thearcgivenby x =0andz=10
is a line where § acts as a
translation in the positive y-axis

direction for § # 1.
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[ Proof of Theorem B

- Proof of properness of the action on the bordification

> The plane z — 0 is where g acts
as an expansion-translation
(stable disk),

> the plane x = 0 is where § acts
as a contraction-translation
(unstable disk).

» The semicircle defined by y > 0
and z = 0is ™, “the attracting
arc”.

» The semicircle defined by x = 0
andy <0isn

arc”.

, “the repelling

28149
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L Proof of Theorem B

L Proof of properness of the action on the bordification

Lemma 5.2 (Central)

Let g x denote the automorphism on S8 defined by the equation 4 for a homogeneous
coordinate system with functions t, x, y, z in the given order and letS given by t = 0,
sg given by x = 0, and % given by t > 0. We assume thatk > 0, A > 0.

Then as \, k — +oo where k/X — 0, we obtain

> g k|S® — Sg converges to a rational map TNy given by sending [t, x, y, Z] to
[0, £1, 0, 0] where the sign depends on the sign of x/t if t # 0 and the sign of x if t = 0.

> O k\(Sg N #") — n_ converges in the compact open topology to a rational map
Iy given by sending [t,0, y, z] to [0,0, 1, 0].

» For a properly convex compact set K in # — n_, the geometric limit of a
subsequence of {gy x(K)} as A, k — oo, is either
apoint[0,1,0,0] or [0,—1,0,0] or the segment n..
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L Proof of Theorem B
- Proof of properness of the action on the bordification

Proposition 5.3 (Properness of the action on the bordification)

LetT be a discrete group of orientation-preserving fg. Lorentzian isometries acting freely and
properly discontinuously on E>! isomorphic to a free group of finite rank > 2 with % as determined
above. Assuming the positive diffused Margulis invariants:

Then T acts freely and properly discontinuously on E2! U'S" as a group of projective
automorphisms of S8.

» Proof: Suppose that there exists a sequence {g;} of elements of I and a compact
subset K of E2! U ¥ so that

gi(K)N K # O forall i. (5)

» Recall that the Fuchsian '-action on the boundary bdS of the standard disk S in
S forms a discrete convergence group:
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L Proof of Theorem B

- Proof of properness of the action on the bordification

Choosing the coordinatization of each g;.

>

For every sequence g; in T, there is a subsequence gj, and two (not necessarily distinct)
points a, b in the circle bdS,. such that
> the sequences gj, (x) — alocally uniformly in bdS, — {b}.
> g/.;1(y) — b locally uniformly on bdS; — {a} respectively as k — oo. (See [1] for
details.) We may assume a # b.

We compute
pPi X
Vii=
[pi x ailll
Since we have {a;} — a, we obtain that the sequence a;[v]a;, — = Cl(=(a;)) converges to a
segment a[v]a_ = Cl(e(a)) where [v] is the direction of
B X«
V=
118 x all|

for nonzero vectors « and 3 corresponding to a and b respectively.

Since the geodesics with end points a;, r; pass the bounded part of the unit tangent bundle of
S, it follows that L, are convergent as well by Proposition 4.2.

Each L, pass a point p;, and {p;} forms a convergent sequence in E>'. By
choosing a subsequence, we assume wlg p; — p.. for peo € E21.
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L Proof of Theorem B

- Proof of properness of the action on the bordification

The coordinate changes so that g; becomes one of form in equation 4 from a converging subsequence

» We now introduce h; € Aut(S®) coodinatizing S® for each i. We choose h; so that

hi(pi) =11,0,0,0], hi(a;) = [0,1,0,0], )
hi(bi) - [0707071]7 and hl([VI]):[O707170]
» It follows that {h;} can be chosen so that {h;} converges to h € Aut(S®), a
quasi-isometry h, uniformly in CS-sense for any integer s > 0 by Lemma 5.1.
Hence the sequence {h;} is uniformly quasi-isometric in dgs;

» Lemma 5.4

By conjugating g; by h; as defined above, we have

k(gi) _, 0 @

A(gi) = +oo, k(g;) — +oo, and .
(9i) o0, k(9i) o0 g
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L Proof of Theorem B

L Proof of properness of the action on the bordification

The conclusion of the proof of Proposition 5.3.

> Let S? denote the sphere containing the weak stable plane of g;, and Sfr the
sphere containing the stable plane of g;. The sequences of these both
geometrically converge.

» Fix sufficiently small e > 0 and sufficiently large i > Iy, so that these objects are e
close to their limits (spherical metric)

» For the compact set K, we cover it by convex open balls B;, j = 1, ..., K, of two
types: Ones that are at least ¢ away from S? for i > Iy and ones that are dumbel
types with the two parts at least /2 away from SO for i > I.

» Then under g;, the sequences of images of balls will converge to a or a_ and the
sequences of images of the dumbels will converge to a[v]a—.

» The coordinate change by h; will verify this.

» Thus, for every small compact ball B;, we have g;(B;) N Bx = @ for i > Jik,
k, we have gi(K)Nn K =0 fori > J.
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L Proof of Theorem B

L Proof of Tameness

The proof of Tameness

» Thus, /I is a closed surface of genus g and the boundary of the 3-manifold
M := (E21 U ) /T by Proposition 5.3. We now show that M is compact.
» Proposition 5.5

Each simple closed curve ~ in 3 bounds a simple disk in E21 U . Let ¢ be a simple
closed curve in ¥ that is homotopically trivial in M. Then ¢ bounds an imbedded disk in
M.

Proof.

This is just Dehn’s lemma. O

24/49



On complete flat Lorentzian 3-manifolds with free fundamental groups
L Proof of Theorem B

- Proof of Tameness

A system of circles

» We can find a collection of disjoint simple curves ~;, i € .7, on ¥ for an index set
J so that the following hold:

> Ujes 7ils invariant under I'.

> U,EJ ~; cuts X into a union of open pair-of-pants Px, k € K, for an index set K. The
closure of each P is a closed pair-of-pants.

> {Px}kek is a l-invariant set.

> Under the covering map = : & — ¥ /T, each ~; for i € / maps to a simple closed curve
in a one-to-one manner and each Py for kK € K maps to an open pair-of-pants as a
homeomorphism.
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[ Proof of Theorem B

[ Proof of Tameness

Figure: The arcs in S} and an example of 4; in the bold arcs.
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- Geometrical finiteness

Corollary 6.1

In E21, there exists a I -invariant nonempty convex open domain D whose boundary in
E?' is asymptopic to bdD(A), homeomorphic to a circle. (D(A) is the properly convex
invariant set in S containing A. ) There exists another T -invariant convex open domain D’
whose boundary in E? is asymptotic to </ (bdD(A)) so that the closures of D and D’
are disjoint. Moreover, every weakly recurrent space-like geodesic is contained in a
manifold

(E2' —D —D)/r

with concave boundary.

Remark: Mess first obtained these invariant domains (see also Barbot [3] for proof).

Theorem 6.2

There exists a compact core in a Margulis space-time containing all weakly recurrent
space-like geodesics.
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|—Geometriv:al finiteness
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Charles Frances, David Fried, et Frangois Labourie de toute vos
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