The topological and geometrical finiteness of complete flat Lorentzian 3-manifolds with free fundamental groups (Preliminary)

Suhyoung Choi

Department of Mathematical Science KAIST, Daejeon, South Korea mathsci.kaist.ac.kr/~sschoi (Copies of my lectures are posted) email: schoi@math.kaist.ac.kr

Joint work with William Goldman: arXiv:1204.5308

Workshop: Higher Teichmüller-Thurston Theory," October 15-16, 2012

Centre de recherches mathématiques, Université de Montréal

Abstract

- We prove the topological tameness of a 3-manifold with a free fundamental group admitting a complete flat Lorentzian metric; i.e., a Margulis space-time isomorphic to the quotient of the complete flat Lorentzian space by the free and properly discontinuous isometric action of the free group of rank ≥ 2.
- We will use our particular point of view that a Margulis space-time is a real projective manifold in an essential way.
- The basic tools are a bordification by a closed RP²-surface with a free holonomy group, the important work of Goldman, Labourie, and Margulis on geodesics in the Margulis space-times and the 3-manifold topology.
- Finally, we show that Margulis space-times are geometrically finite under our definition.
- The tameness and many other results are also obtained indepedently by Jeff Danciger, Fanny Kassel and François Guéritaud.

Content

Preliminary, History, Notations

History

Notations

Main Results: Theorem A and Theorem B

Theorem A

Theorem B

Real projective surfaces: The prooof of Theorem A.

Convex decomposition of real projective surfaces

Proof of Theorem A

The work of Goldman, Labourie and Margulis

Diffused Margulis invariants and neutral sections

Proof of Theorem B

Proof of properness of the action on the bordification

Proof of Tameness

Geometrical finiteness

Tame manifolds

- An open *n*-manifold can sometimes be compactified to a compact *n*-manifold with boundary. Then the open manifold is said to be *tame*.
- Brouwder, Levine, Livesay, and Sienbenmann [8] started this.
- ► For 3-manifolds, Tucker, Scott, and Meyers made progress.

A nontame 3-manifold

essentially can be "simply" thought of as a union of an increasing sequence of compression bodies M_i so that each $M_i \rightarrow M_{i+1}$ is an imbedding by homotopy equivalence not isotopic to a homeomorphism. (Ohshika's observation.)

- Hyperbolic 3-manifolds with finitely generated fundamental groups are shown to be tame by Bonahon, Agol and Calegari-Gabai. See Bowditch [7] for details.
- Earlier, geometrically finite hyperbolic 3-manifolds are shown to be tame by Marden (and Thurston). This is relevant to us.

On complete flat Lorentzian 3-manifolds with free fundamental groups
Preliminary, History, Notations
Notations

- ▶ Let $V^{2,1}$ denote the vector space \mathbb{R}^3 with a Lorentzian norm of sign 1, 1, -1, and
- the Lorentzian space-time E^{2,1} can be thought of as the vector space with translation by any vector allowed.
- We will concern ourselves with only the subgroup Isom⁺(E^{2,1}) of orientation-preserving isometries, isomorphic to ℝ³ ⋊ SO(2, 1) or

 $1 \to \mathbb{R}^3 \to \text{Isom}^+(\text{E}^{2,1}) \stackrel{\mathcal{L}}{\to} \operatorname{SO}(2,1) \to 1.$

P(V^{2,1}) is defined as the quotient space

 $V^{2,1} - \{O\}/\sim \text{ where } v \sim w \text{ if and only if } v = sw \text{ for } s \in \mathbb{R} - \{0\}.$

The sphere of directions $\mathbb{S} := \mathbb{S}(\mathbb{V}^{2,1})$ is defined as the quotient space

 $V^{2,1} - \{O\}/\sim \text{ where } v \sim w \text{ if and only if } v = sw \text{ for } s > 0,$

and equals the double cover $\widehat{\mathbb{RP}^2}$ of \mathbb{RP}^2 .

►

- Notations

►

Our spherical view of E^{2,1} and homogeneous coordinates

- The projective sphere S³ := S(ℝ⁴ − {O}) with coordinates *t*, *x*, *y*, *z* with projective automorphism group Aut(S³) isomorphic to SL_±(4, ℝ).
- ▶ **S**³ double-covers the real projective space.
- The upper hemisphere given by t > 0 is identical with [1, x, y, z] and is identified with E^{2,1} with boundary S.

$$\text{Isom}^+(\text{E}^{2,1})\subset \text{Aut}(\textbf{S}^3).$$

- Isom⁺($E^{2,1}$) acts on S by sending it by \mathcal{L} to Aut(S).
- \blacktriangleright We map $\mathsf{E}^{2,1}$ to a unit 3-ball in \mathbb{R}^3 by the map

$$[1, x, y, z] \rightarrow \frac{(x, y, z)}{\sqrt{1 + x^2 + y^2 + z^2}}.$$

S goes to the unit sphere
$$x^2 + y^2 + z^2 = 1$$
.

- ► The Lorentzian structure divides S into three open domains S₊, S₀, S₋ separated by two conics bdS₊ and bdS₋.
- ► Recall that S₊ of the space of future time-like vectors is the Beltrami-Klein model of the hyperbolic plane H² where SO(2, 1) acts as the orientation-preserving isometry group. Here the metric geodesics are precisely the projective geodesics and vice versa.
- ▶ The geodesics in S_+ are straight arcs and bdS_+ forms the ideal boundary of S_+ .
- For a finitely generated discrete, non-elementary, subgroup Γ in SO(2, 1), S₊/Γ has a complete hyperbolic structure as well as a real projective structure with the compatible geodesic structure.
- Nonelementary Γ has no parabolics if and only if S₊/Γ is a geometrically finite hyperbolic surface.

Preliminary, History, Notations

- Notations

- Suppose that Γ is a finitely generated Lorentzian isometry group acting freely and properly on E^{2,1}. We assume that Γ is not amenable (i.e., not solvable). Then E^{2,1}/Γ is said to be a *Margulis space-time*.
- F injects under L to L(Γ) acting properly discontinuously and freely on S₊. By Mess [34], Γ must be a free group of rank ≥ 2.
- ► Then S₊/Γ is a complete genus ğ hyperbolic surface with b ideal boundary components.

- Main Results: Theorem A and Theorem B

- Theorem A

Theorem A (Bordification by an $\mathbb{R}P^2$ -surface)

Let $\Gamma \subset \text{Isom}_+(E^{2,1})$ be a fg. free group of rank $g \ge 2$ acting on the hyperbolic 2-space \mathbb{H}^2 properly discontinuously and freely without any parabolic holonomy. Then there exists a Γ -invariant open domain $\mathcal{D} \subset \mathbb{S}(V^{2,1})$ such that \mathcal{D}/Γ is a closed surface Σ with a real projective structure induced from \mathbb{S} unique up to the antipodal map \mathcal{A} . (The genus equals g.)

- Main Results: Theorem A and Theorem B

- Theorem A

- ► These surfaces correspond to real projective structures on closed surfaces of genus g, g ≥ 2, discovered by Goldman [26] in the late 1970s.
- ► The surface is a quotient of a domain in S by a group of projective automorphisms.
- This is an RP²-analog of the standard Schottky uniformization of a Riemann surface as a CP¹-manifold as observed by Goldman. There is an equivariant map shrinking all complementary intervals to points.

- Main Results: Theorem A and Theorem B

- Theorem B

We obtain a *handlebody* is a 3-dimensional manifold from a 3-ball B^3 by attaching 1-handles.

Theorem B (Compactification)

Let M be a Margulis space-time $E^{2,1}/\Gamma$ and $\mathcal{L}(\Gamma)$ has no parabolic element. Then M is homeomorphic to the interior of a solid handlebody of genus equal to the rank of Γ .

- Real projective surfaces: The prooof of Theorem A.

Convex decomposition of real projective surfaces

Convex decomposition of real projective surfaces

- A properly convex domain in RP² is a bounded convex domain of an affine subspace in RP². A real projective surface is properly convex if it is a quotient of a properly convex domain in RP² by a properly disc. and free action of a subgroup of PGL(3, R).
- A disjoint collection of simple closed geodesics c_1, \ldots, c_m decomposes a real projective surface S into subsurfaces S_1, \ldots, S_n if each S_i is the closure of a component of $S \bigcup_{i=1,\ldots,m} c_i$. We do not allow a curve c_i to have two one-sided neighborhoods in only one S_i for some *i*.

Theorem 3.1 ([13])

Let Σ be a closed orientable real projective surface with principal geodesic or empty boundary and $\chi(\Sigma) < 0$.

Then Σ has a collection of disjoint simple closed principal geodesics decomposing Σ into properly convex real projective surfaces with principal geodesic boundary and of negative Euler characteristic and/or π -annuli with principal geodesic boundary.

- Real projective surfaces: The prooof of Theorem A.

Convex decomposition of real projective surfaces

Null half-planes

- Let \mathcal{N} denote the *nullcone* in V^{2,1}.
- If v ∈ N − {O}, then its orthogonal complement v[⊥] is a *null plane* which contains Rv, which separates v[⊥] into two half-planes.
- Since v ∈ N, its direction lies in either bdS₊ or bdS₋. Choose an arbitrary element u of S₊ or S₋ respectively, so that the directions of v and u both lie in the same Cl(S₊) or Cl(S₋) respectively.
- Define the *null half-plane* $\mathcal{W}(v)$ (or the *wing*) associated to v as:

 $\mathscr{W}(v) := \{ w \in v^{\perp} \mid \mathsf{Det}(v, w, u) > 0 \}.$

We will now let $\varepsilon([v]) := [\mathscr{W}(v)]$ for convenience.

• The map $[v] \mapsto \varepsilon(v)$ is an SO(2, 1)-equivariant map

 $bd\mathbb{S}_+\to \mathcal{S}$

for the space S of half-arcs of form $\varepsilon(v)$ for $v \in bd\mathbb{S}_+$.

- Real projective surfaces: The prooof of Theorem A.

Convex decomposition of real projective surfaces

► The arcs $\varepsilon([v])$ for

 $v\in \mathrm{bd}\mathbb{S}_+ \text{ foliate }\mathbb{S}_0. \text{ Let}$ us call the foliation $\mathcal{F}.$

► Hence S₀ has a SO(2, 1)-equivariant quotient map

 $\Pi: \mathbb{S}_0 \to \mathsf{P}(\mathcal{N}{-}\{O\}) \cong \mathbf{S}^1$

where $\varepsilon([v]) = \Pi^{-1}([v])$ for each $v \in \mathcal{N} - \{O\}$.

Figure: The tangent geodesics to disks S_+ and S_- in the unit sphere S imbedded in \mathbb{R}^3 .

On complete flat Lorentzian 3-manifolds with free fundamental groups
Real projective surfaces: The prooof of Theorem A.
Proof of Theorem A

- S₊/Γ is an open hyperboic surface, compactified to Σ' by adding number of ideal boundary components.
- Σ' is covered by S₊ ∪ ⋃_{i∈,𝒯} b_i where b_i are ideal open arcs in bdS₊.
- ► Let $s_i = \varepsilon(p_i)$ and $t_i = \varepsilon(q_i)$. Then $\mathbf{I}_i, s_i, t_i, \mathbf{I}_{i,-}$ bound a *strip* invariant under $\langle \mathbf{g}_i \rangle$. We denote by \mathcal{R}_i the open strip union with \mathbf{I}_i and $\mathbf{I}_{i,-}$.

- Real projective surfaces: The prooof of Theorem A.

Proof of Theorem A

Proof of Theorem A

- We define $\mathcal{A}_i = \mathcal{R}_i \cap \mathbb{S}_0$ for $i \in \mathcal{J}$, which equals $\bigcup_{x \in \mathbf{b}_i} \varepsilon(x)$.
- We note that $A_i \subset \mathcal{R}_i$ for each $i \in \mathcal{J}$.
- We finally define

$$\begin{split} \tilde{\Sigma} &= \tilde{\Sigma}'_{+} \cup \coprod_{i \in \mathcal{J}} \mathcal{R}_{i} \cup \tilde{\Sigma}'_{-} \\ &= \tilde{\Sigma}'_{+} \cup \coprod_{i \in \mathcal{J}} \mathcal{A}_{i} \cup \tilde{\Sigma}'_{-} \\ &= \Omega_{+} \cup \coprod_{i \in \mathcal{J}} \mathcal{R}_{i} \cup \Omega_{-} \\ &= \mathbb{S} - \bigcup_{x \in \Lambda} \operatorname{Cl}(\varepsilon(x)). \end{split}$$
(2)

an open domain in $\mathbb S$ where Λ is the limit set.

Since the collection whose elements are of form *R_i* mapped to itself by Γ, we showed that Γ acts on this open domain.

- Real projective surfaces: The prooof of Theorem A.

Proof of Theorem A

- The work of Goldman, Labourie and Margulis
 - Diffused Margulis invariants and neutral sections

Margulis invariants

- Given an element g ∈ Γ − {I}, let us denote by v₊(g), v₀(g), and v₋(g) the eigenvectors of the linear part L(g) of g corresponding to eigenvalues > 1, = 1, and < 1 respectively.</p>
- v₊(g) and v_−(g) are null vectors and v₀(g) is space-like and of unit norm. We choose so that v_−(g) × v₊(g) = v₀(g).
- We recall the Margulis invariant $\alpha : \Gamma \{I\} \rightarrow \mathbb{R}$

 $\alpha(g) := \mathbf{B}(gx - x, \mathsf{v}_0(g)) \text{ for } g \in \Gamma - \{I\}, x \in \mathsf{E}^{2,1},$

which is independent of the choice of x in $E^{2,1}$. (See [20] for details.)

If Γ acts freely on E^{2,1}, then Margulis invariants of nonidentity elements are all positive or all negative by the Opposite sign-lemma of Margulis.

- The work of Goldman, Labourie and Margulis
 - Diffused Margulis invariants and neutral sections

Diffused Margulis invariants of Labourie

 \blacktriangleright By following the geodesics in $\Sigma_+,$ we obtain a so-called geodesic flow

$$\Phi: \mathbb{U}\Sigma_+ \times \mathbb{R} \to \mathbb{U}\Sigma_+.$$

A geodesic current is a Borel probability measure on $\mathbb{U}(\mathbb{S}_+/\Gamma)$ invariant under the geodesic flow, supported on a union of weakly recurrent geodesics.

- Let [u] denote the element of $H^1(\Gamma_0, V^{2,1})$ given by Γ for the linear part Γ_0 of Γ .
- We extend the function

$$\mathcal{C}_{\mathrm{per}}(\Sigma_+) \to \mathbb{R} \text{ by } \mu_{\gamma} \mapsto \frac{\alpha(\gamma)}{l_{\mathbb{S}_+}(\gamma)}.$$

to the diffused one $\Phi_{[u]} : \mathcal{C}(\mathbb{S}_+/\Gamma) \to \mathbb{R}_{\geq 0}.$

► $\Gamma = \Gamma_{0,[u]}$ acts properly if and only if $\Phi_{[u]}(\mu) > 0$ for all $\mu \in C(\Sigma) - \{O\}$ (or $\Phi_{[u]}(\mu) < 0$) [30]

The work of Goldman, Labourie and Margulis

Diffused Margulis invariants and neutral sections

Neutralized sections

They in [30] (following Fried) constructed a flat affine bundle E over the unit tangent bundle UΣ₊ of Σ₊ by forming E^{2,1} × US₊ and taking the quotient by the diagonal action γ(x, v) = (h(γ)(x), γ(v)) for a deck transformation γ of the cover US₊ of UΣ₊ where

$$h: \Gamma \rightarrow \text{Isom}^+(\mathsf{E}^{2,1}) \subset \text{Aut}(\mathbf{S}^3)$$

is the inclusion map.

▶ The cover of **E** is denoted by $\hat{\mathbf{E}}$ and is identical with $E^{2,1} \times \mathbb{US}_+$. We denote by

$$\pi_{\mathsf{E}^{2,1}}: \hat{\mathbf{E}} = \mathsf{E}^{2,1} \times \mathbb{US}_+ \to \mathsf{E}^{2,1}$$

the projection.

• We define V as the quotient of $V^{2,1} \times \mathbb{US}_+$ by the linear action of Γ and the action of \mathbb{US}_+ .

- The work of Goldman, Labourie and Margulis
 - Diffused Margulis invariants and neutral sections

Neutralized sections

- A neutral section of V is an SO(2, 1)-invariant section which is parallel along geodesic flow of UΣ₊.
- ► A neutral section $\nu : \mathbb{U}\Sigma_+ \rightarrow V$ arises from a graph of the SO(2, 1)-invariant map

$$\tilde{\boldsymbol{\nu}}:\mathbb{US}_+\to V^{2,1}$$

with the image in the space of unit space-like vectors in $V^{2,1}$:

▶ $\tilde{\nu}$ is defined by sending a unit vector u in US₊ to the normalization of $\rho(u) \times \alpha(u)$ of the null vectors $\rho(u)$ and $\alpha(u)$ with directions the the start point and the end point in bdS₊ of the geodesic tangent to u in S₊.

- The work of Goldman, Labourie and Margulis

Diffused Margulis invariants and neutral sections

Let $\mathbb{U}_{rec}\Sigma_+ \subset \mathbb{U}\Sigma_+$ denote the unit vectors tangent to weakly recurrent geodesics of Σ .

Lemma 4.1 ([30])

Let Σ_+ be as above. Then

- U_{rec}Σ₊ ⊂ UΣ₊ is a connected compact geodesic flow invariant set and is a subset of the compact set UΣ''₊.
- The inverse image U_{rec}S₊ of U_{rec}Σ₊ in U_{rec}S₊ is precisely the set of unit vectors tangent to geodesics with both endpoints in Λ.

The work of Goldman, Labourie and Margulis

Diffused Margulis invariants and neutral sections

- The above conjugates the geodesic flow φ_t on Σ₊ with one Φ_t in E^{2,1} where each geodesic with direction *u* at *p* goes to a geodesic in the direction of ν(*u*).
- $\blacktriangleright \ \ We \ \ find \ the \ \ section \ \ \tilde{\mathcal{N}}: \mathbb{U}_{rec}\mathbb{S}_+ \to \hat{\textbf{E}} \ \ lifting \ \ \mathcal{N} \ satisfying$

$$\tilde{\mathcal{N}} \circ \phi_t = \Phi_{t'} \circ \tilde{\mathcal{N}} \text{ and } \tilde{\mathcal{N}} \circ \gamma = \gamma \circ \tilde{\mathcal{N}}$$
 (3)

for each deck transformation γ of $\mathbb{US}_+ \to \mathbb{U\Sigma}_+$.

Proposition 4.2

The lift of the neutralized section $\tilde{\mathcal{N}}$ induces a continuous function

 $\mathscr{N}:\mathcal{G}_{\textit{rec}}\mathbb{S}_+\to \mathcal{G}_{\textit{rec}}\mathsf{E}^{2,1}$ where

- if the oriented geodesic *l* in S₊ is g-invariant for g ∈ Γ, then g acts on the space-like geodesic L_g the image under *N* as a translation.
- ► the convergent set of elements of G_{rec}S₊ maps to a convergent set in G_{rec}E^{2,1}.
- Finally, the map is surjective.

- Proof of Theorem B

Proof of properness of the action on the bordification

Repeat: Our view of $E^{2,1}$ and coordinates

- ► The projective sphere S³ = S(ℝ⁴ {*O*}) with coordinates *t*, *x*, *y*, *z* with projective automorphism group Aut(S³) isomorphic to SL_±(4, ℝ).
- The upper hemisphere given by t > 0 is identical with [1, x, y, z] and is identified with E^{2,1} with boundary S.
- ▶ Isom⁺($E^{2,1}$) ⊂ Aut(S^3).
- ▶ Isom⁺($E^{2,1}$) acts on S by sending it by \mathcal{L} to Aut(S).
- We map E^{2,1} to a unit 3-ball by the map

$$[1, x, y, z] \rightarrow \frac{(x, y, z)}{\sqrt{1 + x^2 + y^2 + z^2}}.$$

Proof of Theorem B

Proof of properness of the action on the bordification

A Lemma on projective automorphisms

Lemma 5.1

Let v_i^j for j = 1, 2, 3, 4 be four sequences points of S^3 . Suppose that $v_i^j \rightarrow v_{\infty}^j$ for each j and mutually distinct independent points $v_{\infty}^1, \ldots, v_{\infty}^4$. Then we can choose a sequence h_i of elements of Aut(S^3) so that

- ► $h_i(\mathbf{v}_i^j) = \mathbf{e}_j$,
- h_i is represented by uniformly convergent matrices and
- ▶ $h_i \rightarrow h_\infty$ uniformly for $h_\infty \in Aut(\mathbf{S}^3)$ under C^s -topology for every $s \ge 0$.

Proof of Theorem B

Proof of properness of the action on the bordification

Projective boost automorphism

• A projective automorphism *g* that is of form

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ k & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{\lambda} \end{bmatrix} \lambda > 1, k \neq 0$$
(4)

under a homogeneous coordinate system of S^3 is said to be a *projective boost* automorphism.

In affine coordinates,

$$(x, y, z) \mapsto (\lambda x, y + k, \frac{1}{\lambda}z), x, y, z \in \mathbb{R}$$

Proof of Theorem B

Proof of properness of the action on the bordification

The action of a Lorentzian isometry \hat{g} on the hemisphere \mathscr{H} where the boundary sphere \mathbb{S} is the unit sphere with center (0, 0, 0) here.

- The arc on S given by y = 0 is the invariant geodesic in S₊ and with end points the fixed points of ĝ.
- The arc given by x = 0 and z = 0 is a line where ĝ acts as a translation in the positive y-axis direction for ĝ ≠ I.

- Proof of Theorem B

Proof of properness of the action on the bordification

- The plane z = 0 is where ĝ acts as an expansion-translation (stable disk),
- the plane x = 0 is where ĝ acts as a contraction-translation (unstable disk).
- The semicircle defined by y ≥ 0 and z = 0 is η⁺, "the attracting arc".
- The semicircle defined by x = 0 and y ≤ 0 is η[−], "the repelling arc".

Proof of Theorem B

Proof of properness of the action on the bordification

Lemma 5.2 (Central)

Let $g_{\lambda,k}$ denote the automorphism on \mathbf{S}^3 defined by the equation 4 for a homogeneous coordinate system with functions t, x, y, z in the given order and let \mathbb{S} given by t = 0, \mathbf{S}_0^2 given by x = 0, and \mathscr{H} given by t > 0. We assume that $k \ge 0, \lambda > 0$. Then as $\lambda, k \to +\infty$ where $k/\lambda \to 0$, we obtain

- ► $g_{\lambda,k}|\mathbf{S}^3 \mathbf{S}_0^2$ converges to a rational map Π_0 given by sending [t, x, y, z] to $[0, \pm 1, 0, 0]$ where the sign depends on the sign of x/t if $t \neq 0$ and the sign of x if t = 0.
- ► $g_{\lambda,k}|(\mathbf{S}_0^2 \cap \mathscr{H}) \eta_-$ converges in the compact open topology to a rational map Π_1 given by sending [t, 0, y, z] to [0, 0, 1, 0].
- For a properly convex compact set K in ℋ − η_−, the geometric limit of a subsequence of {g_{λ,k}(K)} as λ, k → ∞, is either a point [0, 1, 0, 0] or [0, −1, 0, 0] or the segment η₊.

Proof of Theorem B

Proof of properness of the action on the bordification

Proposition 5.3 (Properness of the action on the bordification)

Let Γ be a discrete group of orientation-preserving fg. Lorentzian isometries acting freely and properly discontinuously on $E^{2,1}$ isomorphic to a free group of finite rank ≥ 2 with $\tilde{\Sigma}$ as determined above. Assuming the positive diffused Margulis invariants: Then Γ acts freely and properly discontinuously on $E^{2,1} \cup \tilde{\Sigma}$ as a group of projective automorphisms of S^3 .

Proof: Suppose that there exists a sequence {g_i} of elements of Γ and a compact subset K of E^{2,1} ∪ Σ so that

$$g_i(K) \cap K \neq \emptyset$$
 for all *i*. (5)

► Recall that the Fuchsian Γ-action on the boundary bdS₊ of the standard disk S₊ in S forms a discrete convergence group: - Proof of Theorem B

Proof of properness of the action on the bordification

Choosing the coordinatization of each g_i .

- For every sequence g_j in Γ, there is a subsequence g_{jk} and two (not necessarily distinct) points a, b in the circle bdS₊ such that
 - the sequences $g_{j_k}(x) \to a$ locally uniformly in $bdS_+ \{b\}$.
 - ▶ $g_{j_k}^{-1}(y) \rightarrow b$ locally uniformly on $bdS_+ \{a\}$ respectively as $k \rightarrow \infty$. (See [1] for details.) We may assume $a \neq b$.
- We compute

$$\nu_i := \frac{\rho_i \times \alpha_i}{|||\rho_i \times \alpha_i|||}$$

Since we have $\{a_i\} \to a$, we obtain that the sequence $\overline{a_i[\nu_i]a_{i,-}} = \operatorname{Cl}(\varepsilon(a_i))$ converges to a segment $\overline{a[\nu]a_-} = \operatorname{Cl}(\varepsilon(a))$ where $[\nu]$ is the direction of

$$\nu := \frac{\beta \times \alpha}{|||\beta \times \alpha|||}$$

for nonzero vectors α and β corresponding to *a* and *b* respectively.

- Since the geodesics with end points a_i , r_i pass the bounded part of the unit tangent bundle of S_+ , it follows that L_{g_i} are convergent as well by Proposition 4.2.
- ► Each L_{gi} pass a point p_i, and {p_i} forms a convergent sequence in E^{2,1}. By choosing a subsequence, we assume wlg p_i → p_∞ for p_∞ ∈ E^{2,1}.

Proof of Theorem B

Proof of properness of the action on the bordification

The coordinate changes so that g_i becomes one of form in equation 4 from a converging subsequence

▶ We now introduce $h_i \in Aut(S^3)$ coordinatizing S^3 for each *i*. We choose h_i so that

$$\begin{aligned} h_i(p_i) &= [1,0,0,0], h_i(a_i) = [0,1,0,0], \\ h_i(b_i) &= [0,0,0,1], \text{ and } h_i([\nu_i]) = [0,0,1,0]. \end{aligned}$$

It follows that {*h_i*} can be chosen so that {*h_i*} converges to *h* ∈ Aut(S³), a quasi-isometry *h*, uniformly in C^s-sense for any integer s ≥ 0 by Lemma 5.1. Hence the sequence {*h_i*} is *uniformly quasi-isometric* in d_{S³};

Lemma 5.4

By conjugating g_i by h_i as defined above, we have

$$\lambda(g_i) \to +\infty, \, k(g_i) \to +\infty, \text{ and } \frac{k(g_i)}{\lambda(g_i)} \to 0.$$
 (7)

- Proof of Theorem B

Proof of properness of the action on the bordification

The conclusion of the proof of Proposition 5.3.

- ▶ Let S_i^0 denote the sphere containing the weak stable plane of g_i , and S_i^+ the sphere containing the stable plane of g_i . The sequences of these both geometrically converge.
- ► Fix sufficiently small ε > 0 and sufficiently large i > l₀, so that these objects are ε close to their limits (spherical metric)
- For the compact set K, we cover it by convex open balls B_j, j = 1,..., K, of two types: Ones that are at least ε away from S⁰_i for i > I₀ and ones that are dumbel types with the two parts at least ε/2 away from S⁰ for i > I₀.
- ► Then under g_i, the sequences of images of balls will converge to a or a₋ and the sequences of images of the dumbels will converge to a[v]a₋.
- The coordinate change by h_i will verify this.
- ► Thus, for every small compact ball B_j , we have $g_i(B_j) \cap B_k = \emptyset$ for $i > J^{j,k}$. For $J = \max\{J^{j,k}\}_{j=1,...,K,k=1,...,K}$, we have $g_i(K) \cap K = \emptyset$ for i > J.

Proof of Theorem B

Proof of Tameness

The proof of Tameness

Thus, Σ̃/Γ is a closed surface of genus g and the boundary of the 3-manifold M := (E^{2,1} ∪ Σ̃)/Γ by Proposition 5.3. We now show that M is compact.

Proposition 5.5

Each simple closed curve γ in $\tilde{\Sigma}$ bounds a simple disk in $E^{2,1} \cup \tilde{\Sigma}$. Let c be a simple closed curve in Σ that is homotopically trivial in M. Then c bounds an imbedded disk in M.

Proof.

This is just Dehn's lemma.

- Proof of Theorem B

Proof of Tameness

A system of circles

- We can find a collection of disjoint simple curves γ_i , $i \in \mathcal{J}$, on $\tilde{\Sigma}$ for an index set \mathcal{J} so that the following hold:
 - ▶ $\bigcup_{i \in .T} \gamma_i$ is invariant under Γ.
 - ► $\bigcup_{i \in J} \gamma_i$ cuts Σ into a union of open pair-of-pants P_k , $k \in K$, for an index set K. The closure of each P_k is a closed pair-of-pants.
 - $\{P_k\}_{k \in K}$ is a Γ -invariant set.
 - Under the covering map π : Σ̃ → Σ̃/Γ, each γ_i for i ∈ I maps to a simple closed curve in a one-to-one manner and each P_k for k ∈ K maps to an open pair-of-pants as a homeomorphism.

- Proof of Theorem B

Proof of Tameness

Figure: The arcs in \mathbb{S}_+ and an example of $\hat{\gamma}_i$ in the bold arcs.

Corollary 6.1

In E^{2,1}, there exists a Γ -invariant nonempty convex open domain \mathcal{D} whose boundary in E^{2,1} is asymptopic to $\mathrm{bd}D(\Lambda)$, homeomorphic to a circle. ($D(\Lambda)$ is the properly convex invariant set in \mathbb{S} containing Λ .) There exists another Γ -invariant convex open domain \mathcal{D}' whose boundary in E^{2,1} is asymptotic to $\mathscr{A}(\mathrm{bd}D(\Lambda))$ so that the closures of \mathcal{D} and \mathcal{D}' are disjoint. Moreover, every weakly recurrent space-like geodesic is contained in a manifold

$$(\mathsf{E}^{2,1} - \mathcal{D} - \mathcal{D}')/\Gamma$$

with concave boundary.

Remark: Mess first obtained these invariant domains (see also Barbot [3] for proof).

Theorem 6.2

There exists a compact core in a Margulis space-time containing all weakly recurrent space-like geodesics.

- Geometrical finiteness

Je vous remercie de vos attentions! Nous remercions Virginie Charette, Yves Coudene, Todd Drumm, Charles Frances, David Fried, et François Labourie de toute vos aides.

- References

References I

	Anderson, J., Bonfert-Taylor, P., Taylor, E.: Convergence groups, Hausdorff dimension, and a theorem of Sullivan and Tukia.
_	Geom. Dedicata 103, 51–67 (2004)
	Abels, H., Margulis, G.A., Soifer, G.A.: Properly discontinuous groups of affine transformations with orthogonal linear part. C. R.
	Acad. Sci. Paris Sér. I Math. 324(3), 253–258 (1997)
	Barbot, T.: Globally hyperbolic flat space-times. J. Geom. Phys. 53 (2005), no. 2, 123-165.
	Beardon, A.: Geometry of discrete groups. Graduate Text in Mathematics Vol. 91, Springer New York, 1995
	Benoist, Y., Convexes divisibles I. in: Dani, S.G., Prasad, G. (eds.) Algebraic groups and arithmetic, Tata Inst. Fund. Res. Stud.
	Math. 17, pp. 339–374 Tata Institute of Fund. Research (2004)
	Bonsante, F.: Flat spacetimes with compact hyperbolic Cauchy surfaces. J. Differential Geom. 69 (2005), no. 3, 441–521.
	Bowditch, B., Notes on tameness. Enseign. Math. (2) 56(3-4), 229–285 (2010)
	Browder, W., Levine, J., Livesay, G.R.: Finding a boundary for an open manifold. Amer. J. Math. 87, 1017–1028 (1965)
	Charette, V., Drumm, T., Goldman, W.: Affine deformations of the three-holed sphere. Geometry & Topology 14, 1355–1382 (2010)
	Charette, V., Goldman, W., Jones, C.: Recurrent geodesics in flat Lorentzian manifolds. Canadian Math. Bull. 47(3), 332–342
_	(2004)
	Choi, S., The Margulis Lemma and the thick and thin decomposition for convex real projective surfaces. Advances in mathematics 122, 150–191 (1996)

References

References II Choi, S., Convex decompositions of real projective surfaces, Ι; π-annuli and convexity, J. Differential Geom, 40(1), 165–208 (1994) Choi, S., Convex decompositions of real projective surfaces, II: Admissible decompositions, J. Differential Geom. 40(2), 239-283 (1994)Choi, S., Goldman, W., The classification of real projective structures on compact surfaces, Bull, Amer. Math. Soc. (N.S.) 34(2). 161-171 (1997) Cooper, D., Long, D., Thistlethwaite, M.: Computing varieties of representations of hyperbolic 3-manifolds into SL(4, R). Experiment. Math. 15, 291-305 (2006) ī. Cooper, D., Long, D., Thistlethwaite, M.: Flexing closed hyperbolic manifolds. Geom. Topol. 11, 2413-2440 (2007) Drumm, T., Fundamental polyhedra for Margulis space-times. Doctoral dissertation, Unversity of Maryland (1990); Topology 31(4), 677-683 (1992) ī. Drumm, T., Linear holonomy of Margulis space-times. J. Differential Geometry 38, 679-691 (1993) Drumm, T., Goldman, W.: The Geometry of Crooked Planes. Topology 38(2), 323-351 (1999) Drumm, T., Goldman, W.: The isospectrality of flat Lorentz 3-manifolds, J. Differential Geometry 58, 457-465 (2001) Eberlein, P.; Geodesic flows on negatively curved manifolds; I. Annals of Mathematics, 2nd Ser, 95, 492-510 (1972) Francis, C: The conformal boundary of Margulis space-times, C.R. Acad, Sci. Paris, Ser, 1336, 751-756 (2003)

References III

II. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134, 190–205 (1984)

- References

References IV

Meyers, R.: End reductions, fundamental groups, and covering spaces of irreducible open 3-manifolds. Geometry & Topology 9, 971–990 (2005)

Nagano, T., Yagi, K.: The affine structures on the real two-torus: I. Osaka J. of Math. 11, 181-210 (1974)

Scott, P.: Compact submanifolds of 3-manifolds. J. London Math. Soc. (2) 7, 246-250 (1973)

Mess, G.: Lorentz space-times of constant curvature, Geom, Dedicata 126, 3-45 (2007)

Siebenmann, L.C.: The obstruction to finding a boundary for an open manifold of dimension greater than five. Ph.D. thesis, Princeton University (1965)

Thurston, W.: Geometry and topology of 3-manifolds. Lecture notes. Princeton University http://www.msri.org/publications/books/gt3m/ (1979)

Scott, P., Tucker, T.: Some examples of exotic noncompact 3-manifolds. Quart. J. Math. Oxford Ser. (2) 40(160), 481-499 (1989)

Tucker, T.: Non-compact 3-manifolds and the missing-boundary problem. Topology 13, 267-273 (1974)