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Background

Evolution of cooperation

Nature

Examples:
– Lions hunting,
– meerkat sentry,
– ant societies.

Theory

Perspective:
Evolutionary game theory

Well-mixed populations:
– Tractable but unrealistic,
– (may) predict defection.

LINK?
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Main results

Model
Ohtsuki, Hauert, Lieberman, and Nowak [Nature 441 (2006)].
Finite structured populations.
Simple rules discovered by non-rigorous methods.

Main result

Rigorous proof (very different argument, stronger conclusion).

Point of view (Voter model perturbations)

Cox, Durrett, and Perkins [Astérisque 349 (2013)] (on Zd for d ≥ 3).

Key Observation: The models by Ohtsuki et al. are voter model
perturbations.

Machinery: for voter model perturbations on finite graphs.
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Setup

Cooperators (C),
defectors (D).
Benefit (b),
cost (c).
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Setup

Cooperators (C),
defectors (D).
Benefit (b),
cost (c).
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Setup

Cooperators (C),
defectors (D).
Benefit (b),
cost (c).

D D

C C

C

C2bb

b − 3c 2b − 3c

2b − 2c

b − c

fitness = (1− w)× 1 + w×payoff

w : intensity of selection (small).
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Death-birth updating

Players
interact

A random
individual

dies

Neighbours
compete

C born at the
vacant site

D born at the
vacant site

probability= pw
Dprobability= pw

C

D

D

C

C
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Death-birth updating

Players
interact

A random
individual

dies.

Neighbours
compete

C born at the
vacant site

D born at the
vacant site

probability= pw
Dprobability= pw

C

Observation:
Fixation in finite
connected networks.

Measurement:
Fixation probabilities.
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The (b, c, k)-rule

Discovery (Ohtsuki et al. (2006))
Let N =population size, and k =average degree.

If b/c > k, then selection favors cooperation when N � k
and w � 1:

Pw (1 random C fixates) > P0(1 random C fixates).

If b/c < k, then selection opposes cooperation when
N � k and w � 1:

Pw (1 random C fixates) < P0(1 random C fixates).

Original non-rigorous proof:
1 A variety of finite graphs.
2 Pair approximation, diffusion approximation.
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Motivating methods

1 Ohtsuki and Nowak (2006) Finite cycles, Taylor’s expansion.
2 Cox, Durrett, and Perkins (2013) VMP on Zd (d ≥ 3):

pw (x , η) = p0(x , η)︸ ︷︷ ︸
voter model

+wh1−η(x)(x , η) + w2gw (x , η).

(a) Condition for nontrivial “equilibria”: ∂u
∂t = σ2∆

2 u + f (u).
(b) Reaction function f (u) involves

D(x , η) =
{

h1(x , η), η(x) = 0,
−h0(x , η), η(x) = 1.

Here, “1” stands for C, and “0” for D.
3 Mayer and Montroll (1941) Expansion of Boltzmann factors:∏

i

e−βui = 1 +
∑

i

(
e−βui − 1

)
+ higher order terms

by e−βui = 1 + (e−βui − 1) = neutral model + perturbation.
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Main result – voter model perturbations
For VMP’s on finite graphs with flip rates:

pw (x , η) = p0(x , η) + wh1−η(x)(x , η) + w2gw (x , η)

and absorbing states {all C} and {all D} (subject to mild conditions),
we have

Pw (C’s fixate) =P0(C’s fixate)

+ w EP0
∫ ∞

0
D(ξs)ds +O(w2), as w −→ 0 + .

Here, Pw and P0 are subject to the same initial condition.

Starting point for proof:

(a) Pw = P0 + K w = voter model + perturbation.

(b) Apply “Meyer’s expansion” to n-step transition probabilities:

Pw (η0, η1) · · ·Pw (ηn−1, ηn) =(P0 + K w )(η0, η1) · · · (P0 + K w )(ηn−1, ηn)

=voter model + 1st order + higher order.
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Main result – voter model perturbations
For VMP’s on finite graphs with flip rates:

pw (x , η) = p0(x , η) + wh1−η(x)(x , η) + w2gw (x , η)

and absorbing states {all C} and {all D} (subject to mild conditions),
we have

Pw (C’s fixate) =P0(C’s fixate)

+ w EP0
∫ ∞

0
D(ξs)ds +O(w2), as w −→ 0 + .

Here, Pw and P0 are subject to the same initial condition.

How to compute coefficients:

(a) Fixation probabilities under voter model: exact solutions.

(b) Potential term: (usually) linear combinations of coalescing times
for RW’s by duality.
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Duality (randomness-tranferring)

Theorem (Continuous-time setting)
1 (ξt) is a voter model with initial configuration ξ.
2 (Bx1 , · · · ,Bxm) is a system of coalescing random walks

with Bxi started at site xi .

Then E [ξt(x1) · · · ξt(xm)] = E
[
ξ(Bx1

t ) · · · ξ(Bxm
t )
]
.

t ≤ Tmeet

Bx1 and Bx2

independent

t > Tmeet

Bx1 and Bx2

move together
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Main result – death-birth updating

Theorem

Pw (n random C’s fixate) =P0(n random C’s fixate)

+ w
[

kn(N − n)
2N(N − 1)

]
×
[(

b
k
− c
)
(N − 2) + b

(
2
k
− 2
)]

+O(w2),

as w −→ 0+, whenever the graph is k-regular.
(N is the population size.)

Stronger conclusion

Fix degree k and (b, c). Then

the (b, c, k)-rule holds for n random C’s

on any large k -regular graph and n ∈ {1, · · · ,N − 1}, if w � 1.
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THANK YOU!
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