Sharp Benefit-to-Cost Rules for the Evolution of Cooperation on Regular Graphs

Yu-Ting Chen

Centre de Recherches Mathématiques November, 2013

Background

Evolution of cooperation

Examples:

- Lions hunting,
- meerkat sentry,
- ant societies.

References.

[1] Nowak, M. A. (2006). Evolutionary dynamics. Harvard University Press.
[2] Nowak, M. A., Tarnita, C. E., and Antal, T. (2010). Evolutionary dynamics in structured populations. Phil. Trans. R. Soc. B

Main results

Model

- Ohtsuki, Hauert, Lieberman, and Nowak [Nature 441 (2006)].
- Finite structured populations.
- Simple rules discovered by non-rigorous methods.

Main result

Rigorous proof (very different argument, stronger conclusion).

Main results

Model

- Ohtsuki, Hauert, Lieberman, and Nowak [Nature 441 (2006)].
- Finite structured populations.
- Simple rules discovered by non-rigorous methods.

Main result

Rigorous proof (very different argument, stronger conclusion).

Point of view (Voter model perturbations)

Cox, Durrett, and Perkins [Astérisque 349 (2013)] (on \mathbb{Z}^{d} for $d \geq 3$).
Key Observation: The models by Ohtsuki et al. are voter model perturbations.

Machinery: for voter model perturbations on finite graphs.

Setup

- Cooperators (C), defectors (D).

- Benefit (b), cost (c).

Setup

- Cooperators (C), defectors (D).
- Benefit (b), cost (c).

- Cooperators (C), defectors (D).
- Benefit (b), cost (c).

fitness $=(1-w) \times 1+w \times$ payoff

w : intensity of selection (small).

Death-birth updating

Death-birth updating

Death-birth updating

Death-birth updating

Death-birth updating

Death-birth updating

The (b, c, k)-rule
Discovery (Ohtsuki et al. (2006))
Let $N=$ population size, and $k=$ average degree.

The (b, c, k)-rule

Discovery (Ohtsuki et al. (2006))

Let $N=$ population size, and $k=$ average degree.

- If $b / c>k$, then selection favors cooperation when $N \gg k$ and $w \ll 1$:
$\mathbb{P}^{W}(1$ random C fixates $)>\mathbb{P}^{0}(1$ random C fixates $)$.

The (b, c, k)-rule

Discovery (Ohtsuki et al. (2006))

Let $N=$ population size, and $k=$ average degree.

- If $b / c>k$, then selection favors cooperation when $N \gg k$ and $w \ll 1$:
$\mathbb{P}^{w}(1$ random C fixates $)>\mathbb{P}^{0}(1$ random C fixates $)$.
- If $b / c<k$, then selection opposes cooperation when $N \gg k$ and $w \ll 1$:

$$
\mathbb{P}^{w}(1 \text { random } C \text { fixates })<\mathbb{P}^{0}(1 \text { random } C \text { fixates }) .
$$

The (b, c, k)-rule

Discovery (Ohtsuki et al. (2006))

Let $N=$ population size, and $k=$ average degree.

- If $b / c>k$, then selection favors cooperation when $N \gg k$ and $w \ll 1$:
$\mathbb{P}^{w}(1$ random C fixates $)>\mathbb{P}^{0}(1$ random C fixates $)$.
- If $b / c<k$, then selection opposes cooperation when $N \gg k$ and $w \ll 1$:

$$
\mathbb{P}^{W}(1 \text { random } C \text { fixates })<\mathbb{P}^{0}(1 \text { random } C \text { fixates }) .
$$

Original non-rigorous proof:
(1) A variety of finite graphs.
(2) Pair approximation, diffusion approximation.

Motivating methods

Motivating methods

(1) Ohtsuki and Nowak (2006) Finite cycles, Taylor's expansion.

Motivating methods

(1) Ohtsuki and Nowak (2006) Finite cycles, Taylor's expansion.
(2) Cox, Durrett, and Perkins (2013) VMP on $\mathbb{Z}^{d}(d \geq 3)$:

$$
p^{w}(x, \eta)=\underbrace{p^{0}(x, \eta)}_{\text {voter model }}+w h_{1-\eta(x)}(x, \eta)+w^{2} g_{w}(x, \eta) \text {. }
$$

(a) Condition for nontrivial "equilibria": $\frac{\partial u}{\partial t}=\frac{\sigma^{2} \Delta}{2} u+f(u)$.
(b) Reaction function $f(u)$ involves

$$
D(x, \eta)= \begin{cases}h_{1}(x, \eta), & \eta(x)=0 \\ -h_{0}(x, \eta), & \eta(x)=1\end{cases}
$$

Here, " 1 " stands for C, and " 0 " for D.

Motivating methods

(1) Ohtsuki and Nowak (2006) Finite cycles, Taylor's expansion.
(2) Cox, Durrett, and Perkins (2013) VMP on $\mathbb{Z}^{d}(d \geq 3)$:

$$
p^{w}(x, \eta)=\underbrace{p^{0}(x, \eta)}_{\text {voter model }}+w h_{1-\eta(x)}(x, \eta)+w^{2} g_{w}(x, \eta) \text {. }
$$

(a) Condition for nontrivial "equilibria": $\frac{\partial u}{\partial t}=\frac{\sigma^{2} \Delta}{2} u+f(u)$.
(b) Reaction function $f(u)$ involves

$$
D(x, \eta)= \begin{cases}h_{1}(x, \eta), & \eta(x)=0 \\ -h_{0}(x, \eta), & \eta(x)=1\end{cases}
$$

Here, " 1 " stands for C, and " 0 " for D.
(3) Mayer and Montroll (1941) Expansion of Boltzmann factors:

$$
\prod_{i} e^{-\beta u_{i}}=1+\sum_{i}\left(e^{-\beta u_{i}}-1\right)+\text { higher order terms }
$$

by $e^{-\beta u_{i}}=1+\left(e^{-\beta u_{i}}-1\right)=$ neutral model + perturbation.

Main result - voter model perturbations

For VMP's on finite graphs with flip rates:

$$
p^{w}(x, \eta)=p^{0}(x, \eta)+w h_{1-\eta(x)}(x, \eta)+w^{2} g_{w}(x, \eta)
$$

and absorbing states $\{$ all $C\}$ and $\{$ all $D\}$ (subject to mild conditions), we have

$$
\begin{aligned}
\mathbb{P}^{w}(\text { C's fixate }) & =\mathbb{P}^{0}(\text { C's fixate }) \\
& +w \mathbb{E}^{\mathbb{P}^{0}} \int_{0}^{\infty} \bar{D}\left(\xi_{s}\right) d s+\mathcal{O}\left(w^{2}\right), \quad \text { as } w \longrightarrow 0+
\end{aligned}
$$

Here, \mathbb{P}^{w} and \mathbb{P}^{0} are subject to the same initial condition.

Starting point for proof:

(a) $P^{w}=P^{0}+K^{w}=$ voter model + perturbation.
(b) Apply "Meyer's expansion" to n-step transition probabilities:

$$
\begin{aligned}
P^{w}\left(\eta_{0}, \eta_{1}\right) \cdots P^{w}\left(\eta_{n-1}, \eta_{n}\right) & =\left(P^{0}+K^{w}\right)\left(\eta_{0}, \eta_{1}\right) \cdots\left(P^{0}+K^{w}\right)\left(\eta_{n-1}, \eta_{n}\right) \\
& =\text { voter model }+1 \text { st order }+ \text { higher order } .
\end{aligned}
$$

Main result - voter model perturbations

For VMP's on finite graphs with flip rates:

$$
p^{w}(x, \eta)=p^{0}(x, \eta)+w h_{1-\eta(x)}(x, \eta)+w^{2} g_{w}(x, \eta)
$$

and absorbing states $\{$ all $C\}$ and $\{$ all $D\}$ (subject to mild conditions), we have

$$
\begin{aligned}
\mathbb{P}^{w}(\text { C's fixate }) & =\mathbb{P}^{0}(\text { C's fixate }) \\
& +w \mathbb{E}^{\mathbb{P}^{0}} \int_{0}^{\infty} \bar{D}\left(\xi_{s}\right) d s+\mathcal{O}\left(w^{2}\right), \quad \text { as } w \longrightarrow 0+
\end{aligned}
$$

Here, \mathbb{P}^{w} and \mathbb{P}^{0} are subject to the same initial condition.

How to compute coefficients:

(a) Fixation probabilities under voter model: exact solutions.
(b) Potential term: (usually) linear combinations of coalescing times for RW's by duality.

Duality (randomness-tranferring)

Theorem (Continuous-time setting)

(1) $\left(\xi_{t}\right)$ is a voter model with initial configuration ξ.
(2) $\left(B^{X_{1}}, \cdots, B^{X_{m}}\right)$ is a system of coalescing random walks with $B^{x_{i}}$ started at site x_{i}.

Then $\mathbb{E}\left[\xi_{t}\left(x_{1}\right) \cdots \xi_{t}\left(x_{m}\right)\right]=\mathbb{E}\left[\xi\left(B_{t}^{x_{1}}\right) \cdots \xi\left(B_{t}^{x_{m}}\right)\right]$.

$B^{x_{1}}$ and $B^{x_{2}}$
independent

$B^{x_{1}}$ and $B^{x_{2}}$
move together

Main result - death-birth updating

Theorem

$$
\mathbb{P}^{W}(n \text { random C's fixate })=\mathbb{P}^{0}(n \text { random C's fixate })
$$

$$
\begin{aligned}
& +w\left[\frac{k n(N-n)}{2 N(N-1)}\right] \\
& \times\left[\left(\frac{b}{k}-c\right)(N-2)+b\left(\frac{2}{k}-2\right)\right]+\mathcal{O}\left(w^{2}\right),
\end{aligned}
$$

as $w \longrightarrow 0+$, whenever the graph is k-regular.
(N is the population size.)

Main result - death-birth updating

Theorem

$$
\mathbb{P}^{w}(n \text { random C's fixate })=\mathbb{P}^{0}(n \text { random C's fixate })
$$

$$
\begin{aligned}
& +w\left[\frac{k n(N-n)}{2 N(N-1)}\right] \\
& \times\left[\left(\frac{b}{k}-c\right)(N-2)+b\left(\frac{2}{k}-2\right)\right]+\mathcal{O}\left(w^{2}\right),
\end{aligned}
$$

as $w \longrightarrow 0+$, whenever the graph is k-regular.
(N is the population size.)

Stronger conclusion

Fix degree k and (b, c). Then

the (b, c, k)-rule holds for n random C's

 on any large k-regular graph and $n \in\{1, \cdots, N-1\}$, if $w \ll 1$.
THANK YOU!

