SCHOLAR

Une célébration scientifique soulignant les lignes ouvertes de la recherche mathématique en l'honneur de l'héritage mathématique du P^R M. Ram Murty à l'occasion de son 60^e anniversaire 15 au 17 octobre 2013

SCHOLAR

A Scientific Celebration Highlighting Open Lines of Arithmetic Research in Honour of Professor M. Ram Murty's Mathematical Legacy on His 60th Birthday October 15–17, 2013

On the hyperbolic lattice point problem

Yiannis Petridis

petridis@math.ucl.ac.uk
WEB:www.ucl.ac.uk/~ucahipe/

The general problem is to estimate the number of points of the orbit Γz inside a disc of increasing radius, where Γ acts discontinuously on a metric space X. For the Euclidean disc this relates to representations as sum of two squares. There is a long history for this problem and a well-studied conjecture of Hardy for the error term. For hyperbolic space and cofinite groups e.g. SL(2, Z) Selberg proved an error term $O(X^{2/3})$ (unpublished), which has never been improved for a single group. Various other mathematicians worked on this: Huber, Patterson, and Phillips-Rudnick, who first showed a lower bound for the error term. All results lead to conjecture an error of order $O(X^{1/2+\varepsilon})$. I will explore various averages and lower bounds in this problem for SL(2, Z), using results that depend strongly on arithmeticity, via the study of Maass cusp forms.

I will report also on another variation of this problem, due to Huber, where the new estimates on the error term use the large sieve for Γ *H*, first studied by Chamizo.

^{*}Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UNITED KINGDOM