SCHOLAR
Une CÉLÉbration SCIENTIFIQUE SOULIGNANT LES LIGNES OUVERTES DE LA RECHERCHE MATHÉMATIQUE EN L'Honneur de l'héritage mathématique du ${ }^{R}$ M. Ram Murty ì l'occasion de son 60^{E} anniversaire 15 AU 17 OCTOBRE 2013

SCHOLAR

On the hyperbolic lattice point problem

Yiannis Petridis ${ }^{*}$
petridis@math.ucl.ac.uk
WEB: www.ucl.ac.uk/~ucahipe/

The general problem is to estimate the number of points of the orbit Γz inside a disc of increasing radius, where Γ acts discontinuously on a metric space X. For the Euclidean disc this relates to representations as sum of two squares. There is a long history for this problem and a well-studied conjecture of Hardy for the error term. For hyperbolic space and cofinite groups e.g. SL(2, Z) Selberg proved an error term $O\left(X^{2 / 3}\right)$ (unpublished), which has never been improved for a single group. Various other mathematicians worked on this: Huber, Patterson, and Phillips-Rudnick, who first showed a lower bound for the error term. All results lead to conjecture an error of order $O\left(X^{1 / 2+\varepsilon}\right)$. I will explore various averages and lower bounds in this problem for SL($2, \mathrm{Z}$), using results that depend strongly on arithmeticity, via the study of Maass cusp forms.

I will report also on another variation of this problem, due to Huber, where the new estimates on the error term use the large sieve for Γ H, first studied by Chamizo.

[^0]
[^0]: "Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UNITED KINGDOM

