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Aim of the work

Problems

Stability of the Solar System (secular dynamics).
Secular dynamics of exoplanetary system.
Long-time stability around a Cassini state.

Models considered

Sun-Jupiter-Saturn-Uranus (plane).
Systems with two coplanar planets.
Spin-orbit problem: Saturn-Titan.
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A common point

The analytical form of the Hamiltonian is similar to that of a Hamiltonian
in the neighbourhood of an elliptic equilibrium, namely

H(x, y) =
1

2

∑
l

ωl(x
2
l + y2

l ) +H1(x, y) +H2(x, y) + . . . ,

where Hs is a homogeneous polynomial of degree s+ 2.

This is a perturbed system of harmonic oscillators.



Birkhoff normal form

We look for a near the identity canonical change of coordinates such that
the Hamiltonian is in Birkhoff normal form up to order r, namely

H(r)(x, y) = H0(I) + Z1(I) + . . . Zr(I) +R(r)
r+1(x, y) + . . . ,

where Il = 1
2 (x2

l + y2
l ) are the actions of the system, Zs is a

homogeneous polynomial of degree (s+ 2)/2 in I and the terms

R(r)
s (x, y) are homogeneous polynomial of degree s+ 2 in (x, y).

At each step one has to solve the equation

{χ(r+1), ω · I}+R(r)
r+1(x, y) = Zr+1(I) ,

provided the non-resonance condition

k · ω 6= 0 for 0 < |k| ≤ r + 3 .

Thus we can write the new Hamiltonian as H(r+1) = expLχ(r+1) H(r).
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Effective stability time

The Hamiltonian H(r) admits approximated first integrals of the form

Il =
1

2
(x2
l + y2

l ) ,

indeed
İl = {Il, H(r)} = {Il,R(r)} ∼ 2{Il,R(r)

r+1} .

Consider a polydisk

∆ρR =
{

(x, y) : x2
l + y2

l ≤ ρ2R2
l

}
.

Let ρ0 = ρ/2 and (x(0), y(0)) ∈ ∆ρ0R, then

I(0) =
x2
j + y2

j

2
≤
ρ2

0R
2
j

2
.

Thus, there is T (ρ0) > 0 such that for |t| ≤ T (ρ0) we have

I(t) ≤
ρ2R2

j

2
so that (x(t), y(t)) ∈ ∆ρR .



Effective stability time

The Hamiltonian H(r) admits approximated first integrals of the form

Il =
1

2
(x2
l + y2

l ) ,

indeed
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Effective stability

Given a homogeneous polynomial f(x, y) of degree s as

f(x, y) =
∑

|j|+|k|=s

fj,kx
jyk ,

we define the quantity |f |R as

|f |R =
∑

|j|+|k|=s

|fj,k|Rj+kΘj,k , Θj,k =

√
jjkk

(j + k)j+k
.

Thus, for ρ > 0, we have

sup
(x,y)∈∆ρR

∣∣f(x, y)
∣∣ < ρs|f |R .



Effective stability

We can now estimate

sup
(x,y)∈∆ρR

∣∣İj(x, y)
∣∣ ≤ 2ρr+3

∣∣{Ij ,R(r)
r+1}

∣∣
R
,

and get a lower bound for the time stability T (ρ0) as

τ(ρ0, r) = min
j

(
1− 1

2r+1

)
R2
j

2(r + 1)|{Ij ,R(r)
r+1}|R ρ

r+1
0

.

Finally we can set
T (ρ0) = max

r
τ(ρ0, r) .



Stability of the secular problem for the

planar Sun – Jupiter – Saturn – Uranus system



The Solar system. . .

Questions
Is the Solar System stable?
Can we apply the Kolmogorov and Nekhoroshev theorems to realistic
models of planetary systems?

Models considered

The complete Sun-Jupiter-Saturn system (SJS).
The planar Sun-Jupiter-Saturn-Uranus system (SJSU).

Answers

The KAM theorem was applied to the realistic SJS system (L.&G. 2007).
We applied the Nekhoroshev’s like exponential estimates for the stability
of the SJS system, in the neighborhood of a KAM torus (G.,L.&S. 2009).
We studied the secular problem for the SJSU system (S.L.&G. 2013).
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Dynamics of the SJSU systems

In order to study the secular dynamics of the SJSU system we must take
into account the triple (3,−5,−7) mean-motion resonance. Indeed
Saturn is close to the celebrated 5 : 2 resonance with Jupiter, while
Uranus is near to the 7 : 1 . Moreover, 2nJ − 5nS ' 7nU − nJ .

Remark:
From the study of the Sun-Jupiter-Saturn system we know that a careful
handling of the secular part of the Hamiltonian is crucial. Before starting
to manipulate the secular part of the Hamiltonian, we need to reduce the
main part of the perturbation depending on the fast angles.
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The Hamiltonian of the planetary system

The Hamiltonian is

F (r, r̃) = T (0)(r̃) + U (0)(r) + T (1)(r̃) + U (1)(r) ,

where r are the heliocentric coordinates and r̃ the conjugated momenta.

T (0)(r̃) =
1

2

3∑
j=1

‖r̃j‖2
(

1

m0
+

1

mj

)
,

U (0)(r) = −G
3∑
j=1

m0mj

‖rj‖
,

T (1)(r̃) =
r̃1 · r̃2

m0
+

r̃1 · r̃3

m0
+

r̃2 · r̃3

m0
,

U (1)(r) = −G
(

m1m2

‖r1 − r2‖
+

m1m3

‖r1 − r3‖
+

m2m3

‖r2 − r3‖

)
.



The Poincaré variables in the plane

Λj =
m0mj

m0 +mj

√
G(m0 +mj)aj λj = Mj + ωj︸                                                                  ︷︷                                                                  ︸
fast variables

ξj =
√

2Λj

√
1−

√
1− e2

j cos(ωj) ηj = −
√

2Λj

√
1−

√
1− e2

j sin(ωj)︸                                                                                                  ︷︷                                                                                                  ︸
secular variables

where aj , ej , Mj and ωj are the semi-major axis, the eccentricity, the

mean anomaly and perihelion argument of the j-th planet, respectively.



How to expand the Hamiltonian

1 The development of the Hamiltonian is a quite standard matter.

2 Choose a Λ∗ such that

∂〈F 〉λ
∂Λj

∣∣∣∣Λ=Λ∗

ξ=η=0

= n∗j , j = 1, 2, 3 .

〈.〉λ means the average over the fast angles ,
n∗
j are the fundamental frequencies of the mean motion .

3 Introduce new actions Lj = Λj − Λ∗j .

4 Perform the canonical transformation TF translating the fast actions.

5 Expand the Hamiltonian in power series of L, ξ, η and in Fourier
series of λ .



The expansion of the Hamiltonian

The transformed Hamiltonian reads

H(TF ) = n∗ · L +

∞∑
j1=2

h
(Kep)
j1,0

(L) + µ

∞∑
j1=0

∞∑
j2=0

h
(TF )
j1,j2

(L,λ, ξ,η)

where h
(Kep)
j1,0

is an homogeneous polynomial of degree j1 in L and

h
(TF )
j1,j2

is a


hom. pol. of degree j1 in L ,

hom. pol. of degree j2 in ξ,η ,

with coeff. that are trig. pol. in λ .



Truncation limits of the expansion

This is the Hamiltonian,
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h
(Kep)
j1,0

(L) + µ

∞∑
j1=0

∞∑
j2=0

h
(TF )
j1,j2

(L,λ, ξ,η)

where we also truncate all the coefficients with harmonics of degree
greater than 16.

These are the lowest limits to include the fundamental features of the
system.



Truncation limits of the expansion
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2∑
j1=2

h
(Kep)
j1,0

(L) + µ

1∑
j1=0

12∑
j2=0

h
(TF )
j1,j2

(L,λ, ξ,η)
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The scheme of the preliminary perturbation reduction

We now aim to kill the terms

⌈
µh

(TF )
0,0

⌉
λ:8

(λ, ξ,η),
⌈
µh

(TF )
0,1

⌉
λ:8

(λ, ξ,η), . . . ,
⌈
µh

(TF )
0,6

⌉
λ:8

(λ, ξ,η) ,

and

⌈
µh

(TF )
1,0

⌉
λ:8

(λ, ξ,η),
⌈
µh

(TF )
1,1

⌉
λ:8

(λ, ξ,η), . . . ,
⌈
µh

(TF )
1,6

⌉
λ:8

(λ, ξ,η) .

where d·eλ:K means the truncation of the harmonics of degree greater
than K.



The details of the transformation

This procedure is essentially a “Kolmogorov’s like” step of normalization.

In order to kill the term
⌈
h

(TF )
j1,j2

⌉
λ:K

, one has to solve the equation

{χ, n∗ · L}+
⌈
µh

(TF )
j1,j2

⌉
λ:K

= 0 .

and find the generating function χ .

The generating function χ has the same structure of h
(TF )
j1,j2

, is of order
O(µ) and must depends on the fast angles λ.



The details of the transformation

We now perform a canonical transformation of the Hamiltonian

expLχH =

∞∑
j=0

1

j!
LjχH .

This transformation, by construction, kill the terms
⌈
µh

(TF )
j1,j2

⌉
λ:K

, but

the transformed Hamiltonian still has a term of the same type, but at
least of order O(µ2).

This effect is due to Lie series algorithm, for example take j1 = 0, j2 = 0
and consider the Poisson bracket{

χ , µ h
(TF )
1,0

}
→ µ2 h̃

(TF )
0,0 .



Partial preliminary reduction of the perturbation

First
step


n∗ · ∂χ

(O2)
1

∂λ
+ µ

6∑
j2=0

⌈
h

(TF )
0,j2

⌉
λ:8

(λ, ξ,η) = 0

H̃ = expL
χ
(O2)
1

H =

∞∑
j=0

1

j!
Lj
χ
(O2)
1

H .

Second
step


n∗ · ∂χ

(O2)
2

∂λ
+ µ

6∑
j2=0

⌈
h̃

(TF )
1,j2

⌉
λ:8

(L,λ, ξ,η) = 0

H(O2) = expL
χ
(O2)
2
◦ expL

χ
(O2)
1

H .



Why these limits?

The secular variables:

H̃ χ
(O2)
2 −−−−→ H(O2)

y y y
cos(1λ1 − 7λ3) sin(1λ1 − 7λ3) secular termsy(ξ,η)

y(ξ,η)

y(ξ,η)

6 6 12

The fast angles:

(3,−5,−7) harmonics of order 15

< 16 .
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The Hamiltonian up to order two in the masses

H(O2) is the Hamiltonian up to order two in the masses.

No terms corresponding to any triple resonances before the
“Kolmogorov’s like” step.

The “Kolmogorov’s like” step introduce the triple resonances, in
particular the (3,−5,−7) resonance.

Small limits don’t mean small expansion!

After the “Kolmogorov’s like” step, we have 94 109 751 coefficients.



The secular part up to order two in the masses

Reduction to the secular system:

average over the fast angles λ, and put L = 0 ;
hereafter, we are considering a system with three degrees of freedom.

From the D’Alembert rules, it follows that

H(sec) = H0 +H2 +H4 + . . . ,

where H2j is a hom. pol. of degree (2j + 2) in ξ and η , ∀ j ∈ N .

ξ = η = 0 is an elliptic equilibrium point.

We diagonalize the quadratic term by a linear canonical
transformation D :

H
(D)
2 =

3∑
j=1

νj
2

(
ξ2
j + η2

j

)
.



The optimal normalization order

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r o
p
t
(ρ

0
)

ρ0



The estimated “stability time” of the secular Hamiltonian
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Comments about our results

We considered a secular Hamiltonian model of the planar
Sun-Jupiter-Saturn-Uranus system, providing an approximation of
the motions of the secular variables up to order two in the masses.
Our results ensure that such a system is stable for a time
comparable to the age of the universe just in a domain with a radius
that is about a half of the real distance of the initial secular
variables from the origin.

This exponential stability estimate around the equilibrium point is a
“too lazy option”. Indeed, we show that a preliminary construction
of a KAM torus for the planar SJSU system allows much better
estimates.



Secular evolution of

extrasolar systems



Extrasolar systems vs. Solar System

The main difference between the extrasolar
systems and the Solar System regards the
shape of the orbits.

In the extrasolar systems, the majority of
the orbits describe true ellipses (high
eccentricities) and no more almost circles
like in the Solar System.

The classical approach uses the circular approximation as a reference.
Dealing with systems with high eccentricities we need to compute the
expansion at high order to study the long-term evolution of the
extrasolar planetary systems.



Aim of the work

1 Can we predict the long-term evolution of extrasolar systems?

Numerical integrations are really accurate, but have high
computational cost. One has to compute a numerical integration for
each initial condition.

Normal forms provide non-linear approximations of the dynamics in a
neighborhood of an invariant object. In addition, an accurate
analytic approximation is the starting point for the study of the
effective long-time stability.

2 How can we evaluate the influence of a mean-motion resonance?

The semi-major axis ratio gives a rough indication of the proximity to
the main mean-motion resonance.

However, the impact of the proximity to a mean-motion resonance
on the secular evolution of a planetary system depends on many
parameters. This is due to the non-linear character of the system.
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Expansion of the Hamiltonian

In order to compute the Taylor expansion of the Hamiltonian around the
fixed value Λ∗, we introduce the translated fast actions,

L = Λ−Λ∗ .

The Hamiltonian reads,

H = n∗ · L +

∞∑
j1=2

h
(Kep)
j1,0

(L) + µ

∞∑
j1=0

∞∑
j2=0

hj1,j2(L,λ, ξ,η) .

where h
(Kep)
j1,0

is a hom. pol. of degree j1 in L and

hj1,j2 is a


hom. pol. of degree j1 in L ,

hom. pol. of degree j2 in ξ,η ,

with coeff. that are trig. pol. in λ .

We will choose the lowest possible limits in order to include the
fundamental features of the system.
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First order averaging

We consider the averaged Hamiltonian,

H(L,λ, ξ,η) = 〈H(L,λ, ξ,η)〉λ .

Namely, we get rid of the fast motion removing from the expansion of
the Hamiltonian all the terms that depend on the fast angles λ .

This is the so called first order averaging.

We end up with the Hamiltonian,

H(sec) = µ

12∑
j2=0

h0,j2(ξ,η) .



Secular dynamics

Doing the averaging over the fast angles (as we are interested in the
secular motions of the planets), the system pass from 4 to 2
degrees of freedom,

H(sec) = H0(ξ,η) +H2(ξ,η) +H4(ξ,η) + . . . ,

where H2j is a hom. pol. of degree (2j + 2) in (ξ, η), for all j ∈ N .

ξ = η = 0 is an elliptic equilibrium point, thus we can introduce
action-angle variables via Birkhoff normal form.

Having the Hamiltonian in Birkhoff normal form, we can easily
solve the equations of motion and finally obtain the motion of the
orbital parameters.



Secular dynamics

If the remainder, Rr , is small enough, we can neglect it!

The equations of motion are

Φ̇j(0) = 0 , ϕ̇j(0) =
∂H(r)

∂Φj

∣∣∣∣
(Φ(0),ϕ(0))

.

The solutions are

Φj(t) = Φj(0) , ϕj(t) = ϕ̇j(0) t+ ϕj(0) .



Analytical integration

(
η(0), ξ(0)

) (
Φ(r)(0), ϕ(r)(0)

)

(
Φ(r)(t), ϕ(r)(t)

)(
η(t), ξ(t)

)

Secular + NF(r)

Φ(r)(t)=Φ(r)(0)
ϕ(r)(t)=ϕ̇(r)(0)t+ϕ(r)(0)

Numerical
integration

(NF(r))−1



First order approximation (HD 134987)

HD 134987: the system is secular.
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But. . . near mean-motion resonance (HD 108874)

HD 108874: the system is “close” to the 4:1 mean-motion resonance.

First order averaged Hamiltonian failed.
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Second order averaging

Coming back to the original Hamiltonian,

H = n∗ · L +
∑
j1≥2

hj1,0(L) + µ
∑
j1≥0

∑
j2≥0

hj1,j2(L,λ, ξ,η) .

If we consider the point L(0) = 0, we have

L̇j = −µ
∑
j2≥0

∂h0,j2(λ, ξ,η)

∂λj
.

In order to get rid of the fast motion, instead of simply erasing the terms
depending on fast angles λ, we perform a canonical transformation via
Lie Series to kill the terms

∂h0,0(λ, ξ,η)

∂λ
,
∂h0,1(λ, ξ,η)

∂λ
,
∂h0,2(λ, ξ,η)

∂λ
, . . . .



The scheme of the preliminary perturbation reduction

We perform a “Kolmogorov-like” step of normalization.

We determine the generating function, χ, by solving the equation

n∗
∂χ

∂λ
+

KS∑
j2=0

⌈
h0,j2

⌉
λ:KF

= 0 .

where d·eλ:KF means that we keep only the terms depending on λ and at
most of degree KF . The parameters KS and KF are chosen so as to
include in the secular model the main effects due to the possible
proximity to a mean-motion resonance.

The transformed Hamiltonian reads

H(O2) = expLµχH =

∞∑
j=0

1

j!
LjµχH .

This is our Hamiltonian at order two in the masses.



Analytical integration

(
η(0), ξ(0)

) (
Φ(r)(0), ϕ(r)(0)

)

(
Φ(r)(t), ϕ(r)(t)

)(
η(t), ξ(t)

)

Secular + NF(r)

Φ(r)(t)=Φ(r)(0)
ϕ(r)(t)=ϕ̇(r)(0)t+ϕ(r)(0)

Numerical
integration

(NF(r))−1



First order approximation (HD 11506)

HD 11506: the system is “close” to the 7:1 MMR (weak MMR).
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Second order approximation (HD 11506)

HD 11506: the system is “close” to the 7:1 MMR (weak MMR).
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First order approximation (HD 177830)

HD 177830: the system is “close” to the 3:1 and 4:1 MMR.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  10000  20000  30000  40000  50000

Eccentricities analy_HD_177830_ord1

"./ecc_0.dat"
"./ecc_1.dat"

"./orbitals_1.dat" u 1:4
"./orbitals_2.dat" u 1:4



Second order approximation (HD 177830)

HD 177830: the system is “close” to the 3:1 and 4:1 MMR.
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First order approximation (HD 108874)

HD 108874: the system is “close” to the 4:1 MMR (strong MMR).
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Second order approximation (HD 108874)

HD 108874: the system is “close” to the 4:1 MMR (strong MMR).
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Proximity to a mean-motion resonance

We now want to evaluate the proximity to a mean-motion resonance.

The idea is to rate the proximity by looking at the canonical change of
coordinates induced by the approximation at order two in the masses.

ξ′j = ξj − µ
∂ χ

∂ηj
= ξj

(
1− µ

ξj

∂ χ

∂ηj

)
,

η′j = ηj − µ
∂ χ

∂ξj
= ηj

(
1− µ

ηj

∂ χ

∂ξj

)
.

In particular, we focus on the coefficients of the terms

δξj =
µ

ξj

∂ χ

∂ηj
and δηj =

µ

ηj

∂ χ

∂ξj
.



δ-criterion

System a1/a2 δ

S
ec

u
la

r
HD 11964 0.072 9.897× 10−4 sin(−λ1 + 2λ2)

HD 74156 0.075 9.681× 10−4 cos( 4λ1 − λ2)

HD 134987 0.140 9.897× 10−4 sin(−λ1 + 2λ2)

HD 163607 0.149 1.376× 10−3 cos( 3λ1 − λ2)

HD 12661 0.287 1.760× 10−3 sin(−λ1 + 2λ2)

HD 147018 0.124 2.455× 10−3 sin(−2λ1 + λ2)

n
ea

r
a

M
M

R

HD 11506 0.263 2.943× 10−3 cos( λ1 − 7λ2)

HD 177830 0.420 2.551× 10−3 cos( λ1 − 4λ2)

HD 9446 0.289 2.328× 10−3 sin(−2λ1 + λ2)

HD 169830 0.225 2.316× 10−2 cos( λ1 − 9λ2)

υ Andromedae 0.329 1.009× 10−2 cos( λ1 − 5λ2)

Sun-Jup-Sat 0.546 2.534× 10−2 cos(2λ1 − 5λ2)

M
M

R HD 108874 0.380 4.314× 10−2 sin(−λ1 + 4λ2)

HD 128311 0.622 6.421× 10−1 sin(−λ1 + 2λ2)

HD 183263 0.347 5.253× 10−2 cos( λ1 − 5λ2)



Results

1 Can we predict the long-term evolution of extrasolar systems?

If the system is not too close to a mean-motion resonance, providing
an approximation of the motions of the secular variables up to order
two in the masses, the secular evolution is well approximated via
Birkhoff normal form.

2 How can we evaluate the influence of a mean-motion resonance?

The secular Hamiltonian at order two in the masses is explicitly
constructed via Lie Series, so the generating function contains the
information about the proximity to a mean-motion.

We introduce an heuristic and quite rough criterion that we think is
useful to discriminate between the different behaviors:

(i) δ ≤ 2.6× 10−3 : secular;
(ii) 2.6× 10−3 < δ ≤ 2.6× 10−2 : near mean-motion resonance;
(iii) δ > 2.6× 10−2 : in mean-motion resonance.



Effective stability around the Cassini state

in the spin-orbit problem



Hamiltonian formulation

We consider a rotating body (e.g., Titan) with mass m and equatorial
radius Re , orbiting around a point body (e.g., Saturn) with mass M .

The rotating body is considered as a triaxial rigid body whose principal
moments of inertia are A, B and C, with A ≤ B < C.

We closely follow the Hamiltonian formulation that has already been used
in previous works, see, e.g., Henrard & Schwanen (2004) for a general
treatment of synchronous satellites.



Reference planes

In order to describe the spin-orbit motion we need four reference frames,
centered at the center of mass of the rotating body,

(i) the inertial frame, (X0, Y0, Z0) , with X0 and Y0 in the ecliptic
plane;

(ii) the orbital frame, (X1, Y1, Z1) , with Z1 perpendicular to the orbit
plane;

(iii) the spin frame, (X2, Y2, Z2) , with Z2 pointing to the spin axis
direction and X2 to the ascending node of the equatorial plane on
the ecliptic plane;

(iv) the body frame, (X3, Y3, Z3) , with Z3 in the direction of the axis of
greatest inertia and X3 of the axis of smallest inertia.



Reference planes

The four reference frames and the relevant angles related to the Andoyer
(left) and Delaunay (right) canonical variables.



Andoyer variables

For the rotational motion we adopt the Andoyer variables,

Ls = Gs cos J , ls ,

Gs , gs ,

Hs = Gs cosK , hs ,

where Gs is the norm of the angular momentum.

In order to remove the two virtual singularity (J = 0 and K = 0), we
introduce the modified Andoyer variables,

L1 =
Gs
noC

, l1 = ls + gs + hs ,

L2 =
Gs − Ls
noC

, l2 = −ls ,

L3 =
Gs −Hs

noC
, l3 = −hs ,

where no is the orbital mean-motion of the rotating body.



Delaunay variables

For the orbital motion, we introduce the classical Delaunay variables,

Lo = m
√
µa , lo ,

Go = Lo
√

1− e2 , go = ω ,

Ho = Go cos i , ho = Ω ,

Again, to remove the singularity (e = 0 and i = 0), we introduce the
modified Delaunay variables,

L4 = Lo , l4 = lo + go + ho ,

L5 = Lo −Go , l5 = −go − ho ,
L6 = Go −Ho , l6 = −ho .



Free rotation

The rotational kinetic energy, (Deprit, 1967), reads

T =
L2
s

2C
+

1

2
(G2

s − L2
s)

(
sin2 ls
A

+
cos2 ls
B

)
.

Thus, in our set of variables, we get

T

noC
=
noL

2
1

2
+
n0L3(2L1 − L3)

2

(
γ1 + γ2

1− γ1 − γ2
sin2(l3)

+
γ1 − γ2

1− γ1 + γ2
cos2(l3)

)
,

where

γ1 =
2C −B −A

2C
and γ2 =

B −A
2C

.



Perturbation by another body

The perturbation induced by the point body mass on the rotation of the
rigid body, can be expressed via a gravitational potential, V , in the form

V =
3

2

GM
a3

(a
r

)3 (
C0

2

(
x2

3 + y2
3

)
− 2C2

2

(
x2

3 − y2
3

))
,

where (x3, y3, z3) are the components (in the body frame) of the unit
vector pointing to the perturbing body. The coefficients C0

2 and C2
2 , can

be written in terms of the moments of inertia and of the dimensionless
parameters J2 and C22, as

C0
2 =

A+B − 2C

2
= −mR2

eJ2 ,

C2
2 =

B −A
4

= mR2
eC22 .



Simplified model

We now consider a simplified spin-orbit model, making some strong
assumptions on the system.

(i) We assume that the wobble, J , is equal to zero. This means that
the spin axis is aligned with figure one.

(ii) We introduce the resonant variables

Σ1 = L1 , σ1 = l1 − l4 ,
Σ3 = L3 , σ3 = l3 − l6 ,

and make an over the fast angle, l4, namely

〈V 〉l4 =
1

2π

∫ 2π

0

V dl4 .

(iii) We neglect the influence of the rotation on the orbit of the body
and we model the time dependence of the Hamiltonian via the two
angular variables,

l4(t) = n t+ l4(0) and l6(t) = Ω̇ t+ l6(0) .



Simplified model

Finally, we end up with a Hamiltonian that reads

H =
noΣ

2
1

2
− noΣ1 + Ω̇Σ3 + 〈V 〉l4 .

This Hamiltonian possesses an equilibrium, the Cassini state, defined by

σ1 = 0 ,
∂H

∂Σ1
= 0 ,

σ3 = 0 ,
∂H

∂Σ3
= 0 .

We denote by Σ∗1 and Σ∗3 the values at the equilibrium.



Stability around the Cassini state

We now aim to study the dynamics in the neighborhood of the Cassini
state defined here above. We introduce the translated canonical variables

∆Σ1 = Σ1 − Σ∗1 , σ1 ,

∆Σ3 = Σ3 − Σ∗3 , σ3 ,

and, with a little abuse of notation, in the following we will denote again
∆Σi by Σi, with i = 1, 3 .

In these new coordinates, the equilibrium is set at the origin, thus we can
expand the Hamiltonian in power series of (Σ, σ). Let us remark that the
linear terms disappear, as the origin is an equilibrium, thus the lower
order terms in the expansion are quadratic in (Σ, σ) .



Stability around the Cassini state

Precisely, we can write the Hamiltonian as

H(Σ, σ) = H0(Σ, σ) +
∑
j>0

Hj(Σ, σ) , (1)

where Hj is an homogeneous polynomial of degree j + 2 in (Σ, σ) .
The Hamitonian is almost in the “right” form, we just need to
diagonalize the quadratic part, H0, via the so-called ‘untangling
transformation” (Henrard & Lemâıtre, 2005), perform a rescaling and
introduce the action-angle coordinates.
Finally, the transformed Hamiltonian can be expanded in Taylor-Fourier
series and reads

H(0)(U, u) = ωu · U +
∑
j>0

H
(0)
j (U, u) ,

where the terms Hj are homogeneous polynomials of degree j/2 + 1 in
U , whose coefficients are trigonometric polynomials in the angles u .



Estimated effective stability time
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Estimated effective stability time
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Estimated effective stability time
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Estimated effective stability time
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Thanks for your attention!

Questions?

Comments?


