Symmetric polynomials, generalized Jacobi-Trudy identities and τ-functions*

J. Harnad

Centre de recherches mathématiques
Université de Montréal
Department of Mathematics and Statistics
Concordia University

Lie Theory and Mathematical Physics Centre de recherches mathématiques, Montreal

May 19-24, 2014
(*Based on joint work with Eunghyun Lee)

Outline

(1) Schur functions, Grassmannians and τ-functions

- Jacobi-Trudy Identity
- Grassmannian $\operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{F}\right)$, partitions, Plücker coordinates
- Generalized Jacobi-Trudy Identity for symmetric polynomials

2 Integrable systems and τ-functions

- The polynomials S_{λ}^{ϕ} as KP τ-functions
- Hilbert space Grassmannian $\operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})$ and linear group actions
- The τ-function as a determinant
(3) Fermionic operator approach
- Fermionic Fock space
- Fermionic VEV representations
- Schur function expansions

4. Examples and Applications

Jacobi-Trudy Identity

Jacobi-Trudy Identity for Schur polynomials

$$
S_{\lambda}=\operatorname{det}\left(h_{\lambda_{i}-i+j}\right)=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)
$$

Where h_{j}, e_{j} are the complete and elementary symmetric functions:

$$
h_{j}:=S_{(j)}, \quad e_{j}:=S_{\left((1)^{j}\right)}
$$

The Generating function representations in terms of $\left(x_{1}, \ldots, x_{n}\right)$:

$$
\prod_{a=1}^{n}\left(1-z x_{a}\right)^{-1}=\sum_{j=0}^{\infty} h_{j} z^{j}, \quad \prod_{a=1}^{n}\left(1+z x_{a}\right)=\sum_{j=0}^{n} e_{j} z^{j}
$$

Here λ denotes an integer partition

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2}, \cdots \geq \lambda_{\ell(\lambda)}>0\right)
$$

Grassmanian $\operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{F}\right)$:

Let $\mathbf{F}:=\mathbf{C}\left(x_{1}, \ldots, x_{n}\right)$ denote the extension of the field of complex numbers by the indeterminates $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$,
$\mathcal{H}_{+}:=$space of square integrable complex functions on the unit circle $|z|=1$ admitting a holomorphic extension to the interior disc.
$\mathcal{H}_{+}(\mathbf{F}):=\mathbf{F} \otimes \mathbf{c} \mathcal{H}_{+}$: Its extension to an \mathbf{F}-module,
$\operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{F}\right):$: Grassmannian of n-dimensional subspaces of $\mathcal{H}_{+}(\mathbf{F})$:
Monomial basis:

$$
\left\{\mathbf{b}_{i}:=z^{i-1}\right\}_{i \in \mathbf{N}^{+}}
$$

These may be viewed as elementary column vectors, labelled increasingly from the bottom element upward:

$$
\mathbf{b}_{1} \sim(\ldots, 0,0,1)^{t}, \mathbf{b}_{2} \sim(\ldots, 0,1,0)^{t} \ldots
$$

Elements $w \in \operatorname{Gr}_{n}\left(\mathcal{H}_{+}, F\right)$ and Plücker coordinates

Elements $w \in \operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{F}\right)$ may be represented by equivalence classes [W] of semi-infinite $\left(\infty \times n\right.$) rank n matrices $W \equiv W, g \in G L\left(\mathcal{H}_{+}\right)$ whose columns $\left(W^{(1)}, \ldots, W^{(n)}\right)$ span w.

$$
W^{(i)}=\sum_{j=1}^{\infty} W_{i j} \mathbf{b}_{j}
$$

Define Particle coordinates $\left\{l_{i} \in \mathbf{Z}\right\}_{i \in \mathbf{N}^{+}}$on the integer lattice

$$
l_{i}:=\lambda_{i}-i+n, \quad i \in \mathbf{N}^{+},
$$

The Plücker coordinates of w are, up to projective equivalence

$$
\pi_{\lambda}(w):=\operatorname{det}\left(W_{\lambda}\right)
$$

where W_{λ} denotes the $n \times n$ minor of W whose i th row (counting from the top down) is $W_{l_{i}+1}$.

S_{λ} as Plücker coordinate of the canonical element $\Phi \in \operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{F}\right)$

Define the canonical element $\Phi \in \operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{F}\right)$ having matrix elements (homogeneous coordinates) that are monomials in (x_{1}, \ldots, x_{n}).

$$
{\stackrel{\circ}{\Phi_{i j}}:=x_{j}^{i}}^{i}
$$

with column vectors:

$$
\stackrel{\circ}{ }^{(j)}=\frac{1}{1-x_{i} z}=\sum_{i=0}^{\infty} x_{j}^{i} \mathbf{b}_{i+1}
$$

Bi-alternant formula for S_{λ} (Weyl character formula):

$$
S_{\lambda}=\frac{\operatorname{det}\left(\dot{\circ}_{\lambda}\right)}{\operatorname{det}\left(\dot{\circ}_{0}\right)}=\frac{\pi_{\lambda}(\stackrel{\circ}{\Phi})}{\pi_{(0)}(\stackrel{\circ}{\Phi})}
$$

Jacobi-Trudy formula as change of basis

Define a new basis for the canonical element $\stackrel{0}{\Phi} \in \operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{F}\right)$

$$
\begin{aligned}
& \mathbf{h}_{i}:=z^{i-1}\left(\prod_{a=1}^{n}\left(1-x_{a} z\right)^{-1}=\sum_{j=0}^{\infty} h_{j} \mathbf{b}_{i+j}\right. \\
& \quad \stackrel{0}{H}:=\left(\stackrel{0}{H}^{(1)} \stackrel{0}{H}^{(2)} \ldots \stackrel{0}{H}^{(n)}\right)=\stackrel{0}{\oplus} T_{0} \\
& \stackrel{0}{H}_{i j}:=h_{i+j-n-1}
\end{aligned}
$$

Then the Jacobi-Trudy identity is just the equality of Plücker coordinates:

$$
S_{\lambda}=\frac{\pi_{\lambda}(\stackrel{0}{\Phi})}{\left.\pi_{(0)}^{(}\right)}=\frac{\pi_{\lambda}(\stackrel{0}{\oplus})}{\pi_{(0)}(\stackrel{0}{H})}=\pi_{\lambda}(\stackrel{0}{H})=\operatorname{det}\left(\stackrel{0}{H}_{\lambda}\right)
$$

Monic polynomial bases

For any monic polynomial basis for $\mathbf{C}[x]$:

$$
\left\{\phi_{i}(x), \operatorname{deg} \phi_{i}=i\right\}_{i \in \mathbf{N}}, \quad \phi_{i}(x)=\sum_{j=0}^{i} \phi_{i, j} x^{j}, \quad \Phi_{i, i}=1,
$$

we associate an $\infty \times n$ matrix Φ with components

$$
\Phi_{i j}:=\phi_{i-1}\left(x_{j}\right)
$$

that determines an element $[\Phi] \in \operatorname{Gr}_{n}\left(\mathcal{H}_{+}^{n}, \mathbf{F}\right)$. Let $\Lambda:=$ semi-infinite upper triangular shift matrix representing multiplication by z :

$$
\Lambda: \mathbf{b}_{i} \rightarrow \mathbf{b}_{i+1}
$$

Define

$$
X:=\operatorname{diag}\left(x_{1}, \ldots x_{n}\right)
$$

\exists ! semi-infinite upper triangular recursion matrix J^{+}such that

$$
\Phi X=J \Phi, \quad J:=\Lambda^{t}+J^{+} .
$$

Recursion matrices and dressing transfornations

Define the infinite triangular matrix A^{ϕ}, with 1's along the diagonal, whose rows are the coefficients of the polynomials $\left\{\phi_{i}\right\}$,

$$
A_{i j}^{\phi}:=\phi_{i-1, j-1} \quad \text { if } \quad i \geq j, \quad A_{i j}^{\phi}=0 \quad \text { if } \quad i<j, \quad i, j \in \mathbf{N}^{+},
$$

We then have

$$
\Phi=A^{\phi} \stackrel{0}{\Phi} .
$$

Since $\stackrel{0}{\Phi}$ satisfies the recursion relations

$$
\stackrel{0}{\Phi} X=\Lambda^{t} \stackrel{0}{\Phi},
$$

the intertwining relation may be solved for J :

$$
\begin{aligned}
A^{\phi} \Lambda^{t} & =J A^{\phi} \\
J & =A^{\phi} \Lambda^{t}\left(A^{\phi}\right)^{-1}
\end{aligned}
$$

Generalized Schur functions

Now define [cf. Sergeev-Veselov (2009)], the following generalizations of the usual Schur functions $S_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$,

$$
S_{\lambda}^{\phi}\left(x_{1}, \ldots, x_{n}\right):=\frac{\operatorname{det}\left(\Phi_{\lambda}\right)}{\operatorname{det}(\Phi(0))}=\frac{\pi_{\lambda}(\Phi)}{\pi_{0}(\Phi)} .
$$

The analogs of the complete symmetric functions are denoted

$$
\begin{aligned}
& h_{i}^{(0)}:=S_{(i)}^{\phi} \quad \text { for } \quad i \geq 0, \\
& h_{-i}^{(0)}:=0 \quad 1 \leq i \leq n-1 .
\end{aligned}
$$

We may view these as the components of the column $H^{(1)}$ of an $\infty \times \infty$ matrix \mathbf{H}, whose columns are recursively defined:

$$
H_{i}^{(j)}=J H^{(j-1)}, \quad H_{i}^{(j)}:=H_{i j}:=h_{i-n}^{(j-1)},
$$

The generalized Jacobi-Trudi formula

Theorem

Generalized Jacobi-Trudi identity: The semi-infinite matrices H and Φ represent the same element $[H]=[\Phi] \in \operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{F}\right)$ of the Grassmannian. It follows that their Plucker coordinates coincide:

$$
\operatorname{det}\left(H_{\lambda}\right)=\frac{\operatorname{det}\left(\Phi_{\lambda}\right)}{\operatorname{det}\left(\Phi_{0}\right)}=S_{\lambda}^{\phi},
$$

which is equivalent to the generalized Jacobi-Trudi identity

$$
S_{\lambda}^{\phi}=\left.\operatorname{det}\left(h_{\lambda_{i}-i+1}^{(j-1)}\right)\right|_{1 \leq i, j \leq \ell(\lambda)} .
$$

Proof.

(Sketch)Two methods of proof: 1) Using the recursion relations.
2) Using the dressing transformation $H=A^{\phi}{ }^{\circ}$.

S_{λ}^{ϕ} as KP τ-functions

Monomial sums:

$$
\begin{aligned}
t_{i} & :=\frac{1}{i} \sum_{a=1}^{n} x_{a}^{i} \\
{[x] } & =\mathbf{t}=\left(t_{1}, t_{2}, \ldots\right)
\end{aligned}
$$

Define coefficients $\phi_{\lambda \mu}^{(n)}$ as the Plücker coordinates $\pi_{\mu}\left(C^{(\lambda, n)}\right)$ of the element $C^{(\lambda, n)}$ of the $\operatorname{Grassmannian} \operatorname{Gr}_{n}\left(\mathcal{H}_{+}, \mathbf{C}\right)$ spanned by the polynomials $\left\{\phi_{\lambda_{i}-i+n}(z)\right\}_{i=1, \ldots n}$

$$
\phi_{\lambda \mu}^{(n)}:=\pi_{\mu}\left(C^{(\lambda, n)}\right)=\left.\operatorname{det}\left(\phi_{l_{i}, m_{j}}\right)\right|_{1 \leq i, j \leq n},
$$

where

$$
I_{i}:=\lambda_{i}-i+n, \quad m_{j}:=\mu_{j}-j+n, \quad i, j \in \mathbf{N}^{+},
$$

are the particle coordinates associated to partitions λ and μ.

Schur function expansions

The following shows that the $\phi_{\lambda \mu}^{(n) \text {, }}$, are the coefficients in the expression for $S_{\lambda, n}^{d}([x])$ as a linear combination of Schur functions $S_{\lambda}([x])$.

Lemma

$$
S_{\lambda, n}^{\phi}([x])=\sum_{\substack{\mu(\mu) \\|\mu \mu \leq n\\| \mu|\leq \lambda|}} \phi_{\lambda \mu}^{(n)} S_{\mu}([x]) .
$$

Corollary

$S_{\lambda, n}^{\phi}(\mathbf{t})$ is a $K P$-function.

Proof.

Use the Cauchy-Binet identity.

Hilbert Space Grassmannians (Sato-Segal-Wilson)

Model for Hilbert space

$$
\begin{aligned}
& \mathcal{H}:=L^{2}\left(S^{1}\right)=\mathcal{H}_{+}+\mathcal{H}_{-} \\
& \mathcal{H}_{+}=\operatorname{span}\left\{z^{i}\right\}_{i \in \mathbf{N}}, \quad \mathcal{H}_{-}=\operatorname{span}\left\{z^{-i}\right\}_{i \in \mathbf{N}^{+}}
\end{aligned}
$$

The infinite dimensional Grassmannian $\operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})$ is defined as

$$
\operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})=\left\{\text { closed subspaces } w \subset \mathcal{H} \text { "commensurable" with } \mathcal{H}_{+}\right\}
$$

i.e., such that orthogonal projection to \mathcal{H}_{+}along \mathcal{H}_{-}

$$
\pi^{\perp}: w \rightarrow \mathcal{H}_{+}
$$

is a Fredholm map and orthogonal projection to \mathcal{H}_{-}

$$
\pi^{\perp}: w \rightarrow \mathcal{H}_{-}
$$

is "small" (e.g. compact). $\quad\left(\mathcal{H}_{+} \in \operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})\right.$ is the "origin".)

Basis labelling and frames

Orthonormal basis for \mathcal{H} :

$$
\left\{e_{i}:=z^{-i-1}\right\}_{i \in \mathbf{Z}}
$$

In terms of frames, let

$$
w=\operatorname{span}\left\{w_{1}, w_{2}, \ldots\right\}
$$

and expand the basis vectors w_{i} in the orthonormal basis $\left\{e_{j}\right\}$

$$
w_{i}:=\sum_{j \in \mathbf{Z}} W_{j i} e_{j}
$$

Define doubly ∞ column vectors $\left\{\mathbf{W}_{i}\right\}_{i=1,2 \ldots . .}$ with components

$$
\left(\mathbf{W}_{i}\right)_{j}:=W_{j i}
$$

and the rectangular $2 \infty \times \infty$ matrix W with columns $\left\{\mathbf{W}_{i}\right\}_{i=1,2 \ldots}$

$$
W:=\left(\mathbf{W}_{1}, \mathbf{W}_{2}, \cdots\right)
$$

Linear and abelian group actions $\Gamma_{ \pm} \subset G L(\mathcal{H})$ on \mathcal{H} and $\operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})$

$G L(\mathcal{H})$ action on $\operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})$

More generally, we have the general linear group action:

$$
\begin{aligned}
& G L(\mathcal{H}) \times G r_{\mathcal{H}_{+}}(\mathcal{H}) \rightarrow G r_{\mathcal{H}_{+}}(\mathcal{H}) \\
& \quad(g \in G L(\mathcal{H}), W) \rightarrow g W
\end{aligned}
$$

represented by doubly infinite, invertible matrices

$$
g=e^{A}, \quad A \in \mathfrak{g l}(\infty) . \quad A=\left.\left(A_{i j}\right)\right|_{i, j, \in \mathbf{Z}}
$$

Sato-Segal-Wilson definition of KP τ-functions

For $w=\in \operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})$, the $\operatorname{KP} \tau$-function $\tau_{w}(\mathbf{t})$ is obtained as the Fredholm determinant of the orthogonal projection of $W(\mathbf{t})$ to \mathcal{H}_{+}:

KP τ-function

$$
\tau_{w}(\mathbf{t})=\operatorname{det}\left(\pi^{\perp}: w(\mathbf{t}) \rightarrow \mathcal{H}_{+}\right), \quad \mathbf{t}=\left(t_{1}, t_{2}, \ldots\right)
$$

or, equivalently if

$$
\begin{aligned}
& W(\mathbf{t})=e^{\sum_{i=1}^{\infty} t_{i} \Lambda^{i}} W:=\binom{W_{+}(\mathbf{t})}{W_{-}(\mathbf{t})}, \\
& \left.\tau_{W}(\mathbf{t})=\operatorname{det} W_{+}(\mathbf{t})\right)
\end{aligned}
$$

The Hirota bilinear relations are equivalent to the Plücker relations defining the image of $\operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})$ under the Plücker map embedding.

$$
\mathcal{P}: \operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H}) \rightarrow \mathcal{F}:=\Lambda \mathcal{H}, \quad W=\operatorname{span}\left(w_{1}, w_{2}, \ldots\right) \mapsto w_{1} \wedge w_{2} \wedge \ldots
$$

Fermionic Fock space \mathcal{F}

For every partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and integer $N \in \mathbf{Z}$ extended to the extended semi-infinite sequence

$$
\left.\lambda=\left(\lambda_{1}, \ldots \lambda_{\ell(\lambda)}\right), 0,0, \ldots\right)
$$

define the "particle positions"

$$
I_{j}:=\lambda_{j}-j+N
$$

The fermionic Fock space \mathcal{F} is the exterior space (orthogonal direct sum of charge N subspaces)

$$
\mathcal{F}:=\Lambda \mathcal{H}=\bigoplus_{N \in \mathbf{Z}} \mathcal{F}_{N} .
$$

spanned by semi-infinite wedge products (orthonormal basis for \mathcal{F}_{N})

$$
|\lambda, N\rangle:=e_{l_{1}} \wedge e_{l_{2}} \wedge \cdots
$$

Each charge N sector \mathcal{F}_{N} has a charged vacuum vector

$$
|0, N\rangle=e_{N-1} \wedge e_{N-2} \wedge \ldots
$$

Fermionic creation and annihilation operators

In terms of the Orthonormal basis for \mathcal{H}, and dual basis for \mathcal{H}^{*}

$$
\left\{e_{i}:=z^{-i-1}\right\}_{i \in \mathbf{Z}}, \quad\left\{\tilde{e}_{i}\right\}_{i \in \mathbf{Z}}, \quad \tilde{e}_{i}\left(e_{j}\right)=\delta_{i j}
$$

define the Fermi creation and annihilation operators (exterior and interior muliplication):

$$
\psi_{i} v:=e_{i} \wedge v, \quad \psi_{i}^{\dagger} v:=i_{\tilde{e}^{\tilde{}}} v, \quad v \in \mathcal{H}
$$

These satisfy the usual anti-commutation relations

$$
\left[\psi_{i}, \psi_{j}\right]_{+}=\left[\psi_{i}^{\dagger}, \psi_{j}^{\dagger}\right]_{+}=0, \quad\left[\psi_{i}, \psi_{j}^{\dagger}\right]_{+}=\delta_{i j}
$$

determining the ∞ dimensional Clifford algebra of fermionic operators.

Plücker map and Plücker coordinates

The Plücker map $\mathcal{P}: \operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H}) \rightarrow \mathbf{P}(\mathcal{F})$ into the projectivization of \mathcal{F},

$$
\mathcal{P}: \operatorname{span}\left(w_{1}, w_{2}, \ldots\right) \mapsto\left[w_{1} \wedge w_{2} \wedge \cdots\right]
$$

embeds $\operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})$ in $\mathbf{P}(\mathcal{F})$ as the intersection of an infinite number of quadrics. If orthogonal projection to \mathcal{H}_{+}

$$
\pi^{\perp}: w \rightarrow \mathcal{H}_{+}
$$

has Fredholm index $N, \mathcal{P}(w)$ is in the charge N sector: $\mathcal{P}(w) \subset \mathcal{F}_{N}$. Expanding in the standard orthonormal basis,

$$
\mathcal{P}(w)=w_{1} \wedge w_{2} \wedge \cdots=\sum_{\lambda} \pi_{\lambda}(w, N) \mid \lambda, N>
$$

the coefficients $\pi_{\lambda}(w, N)$ are the Plücker cordinates of w (which satisfy the infinite set of bilinear Plücker equations.)

Fermionic representation of group actions and flows

The Plücker map

$$
\mathcal{P}: \operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H}) \rightarrow \mathbf{P}(\mathcal{F})
$$

interlaces the action of the abelian groups

$$
\Gamma_{ \pm} \times \operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H}) \rightarrow \operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})
$$

with the following representations on \mathcal{F} (and its projectivization)

$$
\gamma_{ \pm}(\mathbf{t}): v \mapsto \hat{\gamma}_{ \pm}(\mathbf{t}) v, \quad \hat{\gamma}_{ \pm}(\mathbf{t}):=e^{\sum_{i=1}^{\infty} t_{i} J_{ \pm i}}, \quad v \in \mathcal{F}
$$

where

$$
J_{i}:=\sum_{n \in \mathbb{Z}} \psi_{n} \psi_{n+i}^{\dagger}, \quad i \in \mathbb{Z}
$$

More generally, if $g=e^{A} \in G L(\mathcal{H}), A \in \mathfrak{g l}(\mathcal{H})$ has the fermionic representation

$$
\hat{g}:=e^{\sum_{i, j \in \mathbb{Z}} A_{i j}: \psi_{i} \psi_{j}^{\dagger}},
$$

VEV (vacuum expectations value) representations of τ-functions

Fermionic representation of KP-chain and 2-Toda τ-function

For $w \in \operatorname{Gr}_{\mathcal{H}_{+}}(\mathcal{H})=g\left(\mathcal{H}_{+}\right), g \in G L(\mathcal{H})$, with $\mathcal{P}(w) \subset \mathcal{F}_{N}$ in the charge- N sector, the KP chain τ-function has the fermionic representation:

$$
\tau_{w}(\mathbf{t}, N)=\langle N| \hat{\gamma}_{+}(\mathbf{t}) \hat{g}|N\rangle=: \tau_{g}(\mathbf{t}, N)
$$

Similarly, for the 2-Toda τ-function:

$$
\tau_{w}^{(2)}(\mathbf{t}, \tilde{\mathbf{t}}, N)=\langle N| \hat{\gamma}_{+}(\mathbf{t}) \hat{g} \hat{\gamma}_{-}(\tilde{\mathbf{t}})|N\rangle:=\tau_{g}^{(2)}(\mathbf{t}, \tilde{\mathbf{t}}, N)
$$

Schur function expansions

It follows that we have the Schur function expansions

$$
\begin{aligned}
\tau_{g}(\mathbf{t}, N) & =\sum_{\lambda} \pi_{\lambda}\left(g\left(\mathcal{H}_{+}\right), N\right) s_{\lambda}(\mathbf{t}), \\
\tau_{g}^{(2)}(\mathbf{t}, \tilde{\mathbf{t}}, N) & =\sum_{\lambda} \sum_{\mu} B_{\lambda, \mu}(g, N) s_{\lambda}(\mathbf{t}) s_{\mu}(\tilde{\mathbf{t}}) .
\end{aligned}
$$

where

$$
\begin{aligned}
\pi_{\lambda}\left(g\left(\mathcal{H}_{+}\right), N\right) & =\langle\lambda, N| \hat{g}|N\rangle \\
B_{\lambda, \mu}(g, N) & =\langle\lambda, N| \hat{g}|\mu, N\rangle
\end{aligned}
$$

are the Plücker coordinates along the basis direction $|\lambda, N\rangle$.

Fermionic representation of the matrices H and E

Fermionic representation of the matrices H and E

We may express the infinite lower triangular matrix with coefficients $\left(\phi_{i j}\right)_{i, j \in \mathbf{N}}$ that are all equal to 1 on the diagonal as the exponential of a strictly lower triangular matrix α

$$
\phi=e^{\alpha}
$$

with matrix elements $\left(\alpha_{i j}\right)_{i, j \in \mathbf{N}}$ satisfying

$$
\alpha_{i j}=0 \quad \text { if } \quad j \geq i
$$

The fermionic representation of this group element is then

$$
g_{\phi}:=\exp \sum_{i>j \geq 0} \alpha_{i j} \psi_{i} \psi_{j}^{\dagger}
$$

Theorem

The matrix elements $H_{i}^{(j)}$ and $E_{(i)}^{j}$ are given as fermionic matrix elements as follows

$$
\begin{aligned}
& H_{i}^{(j)}=\langle(i+j-n-1) ; n-j+1| g_{\phi} \gamma_{-}([x])|n-j+1\rangle=h_{i-n}^{(j-1)} \\
& E_{(i)}^{j}=(-1)^{n-i-j+1}\left\langle(1)^{n-i-j+1} ; n-i\right| g_{\phi} \gamma-([x])|n-i\rangle=(-1)^{n-i-j+1} e_{(-i)}^{n-j+}
\end{aligned}
$$

Theorem

$$
\phi_{\lambda \mu}^{(n)}=\langle\lambda ; n| g_{\phi}|\mu ; n\rangle=\langle\mu ; n| g_{\phi^{t}}|\lambda ; n\rangle .
$$

Corollary

$$
S_{\lambda, n}^{\phi}([x])=\langle\lambda ; n| g_{\phi} \gamma_{-}([x])|n\rangle=\langle n| \gamma_{+}([x]) g_{\phi^{t}}|\lambda ; n\rangle .
$$

2D-Toda chain of τ-functions

The polynomials $S_{\lambda}^{\phi}([x])$ can themselves be used as coefficients in a Schur function expansion to define a family of KP τ-functions, in which the indeterminates $\left(x_{1}, \ldots x_{n}\right)$ are interpreted as complex parameters

$$
\tau_{\phi}(n, \mathbf{t},[x]):=\sum_{\lambda} S_{\lambda, n}^{\phi}([x]) S_{\lambda}(\mathbf{t})
$$

Here, the KP flow parameters $\mathbf{t}=\left(t_{1}, t_{2}, \ldots\right)$ are independent and

$$
\mathbf{s}:=\left(s_{1}, s_{2}, \ldots\right):=[x]
$$

may be viewed as a second set of flow parameters.

Theorem

The functions $\tau_{\phi}(n, \mathbf{t}, \mathbf{s})$ form a 2D-Toda chain of τ-functions which may be expressed fermionically as

$$
\tau_{\phi}(n, \mathbf{t}, \mathbf{s})=\langle n| \gamma_{+}(\mathbf{t}) g_{\phi} \gamma_{-}(\mathbf{s})|n\rangle .
$$

Nontriangular 2-D Toda τ-functions

We may furthermore choose a pair of polynomial systems $\left\{\phi_{i}\right\}_{i \in \mathbf{N}}$ and $\left\{\theta_{i}\right\}_{i \in \mathbf{N}}$ and associate to them the generalized Schur functions $S_{\lambda, n}^{\phi}$ and $S_{\lambda, n}^{\theta}$. Forming the sum of their products

$$
\tau_{\phi, \theta}(n, \mathbf{t}, \mathbf{s}):=\sum_{\lambda} S_{\lambda, n}^{\phi}(\mathbf{s}) S_{\lambda, n}^{\theta}(\mathbf{t})
$$

we obtain a more general, nontriangular form of 2D Toda τ-functions.

Theorem

$$
\tau_{\phi, \theta}(n, \mathbf{t}, \mathbf{s})=\langle n| \gamma_{+}(\mathbf{t}) g_{\theta}^{t} g_{\phi} \gamma_{-}(\mathbf{s})|n\rangle .
$$

Examples and applications

Example

1. Character expansions of classical groups.

The subgroup reductions:
$S p(n) \supset U(n), \quad O(2 n) \supset U(n), \quad O(2 n+1) \supset U(n)$ give rise to the Littlewood character expansions

$$
\begin{aligned}
\chi_{\lambda}^{S p(2 n)}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\substack{\ell(\mu \leq \leq n \\
\mu \leq \lambda \mid}} \sum_{\alpha}(-1)^{|\alpha|} C_{D^{\prime}(\alpha), \mu}^{\lambda} S_{\mu}\left(x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right. \\
\chi_{\lambda}^{S O(2 n)}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\substack{\ell(\mu \leq \leq n}}^{\mu \leq \lambda \mid} \sum_{\alpha}(-1)^{|\alpha|} C_{D(\alpha), \mu}^{\lambda} S_{\mu}\left(x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right. \\
\chi_{\lambda}^{S O(2 n+1)}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\substack{\ell(\mu) \leq n \\
\mu \leq \backslash \lambda \mid}} \sum_{\alpha}(-1)^{|\alpha|} C_{D(\alpha), \mu}^{\lambda} S_{\mu}\left(x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right.
\end{aligned}
$$

where the sums in α are taken over strict partitions.

Example

Maximal tori of $O(2 n), S p(2 n) \subset U(2 n)$ or $O(2 n+1) \subset U(2 n+1)$ consist of elements of the form $\operatorname{diag}\left(x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots x_{n}^{-1}\right)$ or $\operatorname{diag}\left(x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots x_{n}^{-1}, 1\right)$.
Systems of orthogonal polynomials $\left\{\phi_{i}^{S p(2 n)}(z)\right\},\left\{\phi_{i}^{S O(2 n)}(z)\right\}$ and $\left\{\phi_{i}^{S O(2 n+1)}(z)\right\}$ are expressed in terms of the variables $z:=x+x^{-1}$

$$
\begin{aligned}
& \phi_{i}^{S p(2 n)}(z)=\sum_{j=0}^{i} x^{i-2 j}=\sum_{j=0}^{i} \phi_{i j}^{S p(2 n)} z^{j}, \\
& \phi_{i}^{S O(2 n)}(z)=x^{i}+x^{-i}=\sum_{j=0}^{i} \phi_{i j}^{S O(2 n)} z^{j}, \\
& \phi_{i}^{S O(2 n+1)}(z)=\sum_{j=0}^{2 i} x^{i-j}=\sum_{j=0}^{i} \phi_{i j}^{S O(2 n+1)} z^{j},
\end{aligned}
$$

As noted by Sergeev-Veselov, the corresponding generalized Schur functions coincide with the irreducible characters

$$
\begin{aligned}
S_{\lambda}^{S p(2 n)}\left(z_{1}, \ldots, z_{n}\right) & =\chi_{\lambda}^{S p(2 n)}\left(x_{1}, \ldots, x_{n}\right) \\
S_{\lambda}^{S O(2 n)}\left(z_{1}, \ldots, z_{n}\right) & =\chi_{\lambda}^{S O(2 n)}\left(x_{1}, \ldots, x_{n}\right) \\
S_{\lambda}^{S O(2 n+1)}\left(z_{1}, \ldots, z_{n}\right) & =\chi_{\lambda}^{S O(2 n+1)}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

where

$$
z_{i}:=x_{i}+x_{i}^{-1} . \quad i=1, \ldots, n
$$

and

$$
S_{\lambda}^{G}\left(z_{1}, \ldots, z_{n}\right):=S_{\lambda}^{\phi^{G}}\left(z_{1}, \ldots, z_{n}\right)
$$

for $G=S p(2 n), S O(2 n)$, or $S O(2 n+1)$.

For any pair of partitions (λ, μ), , define

$$
\phi_{\lambda \mu}^{G}:=\operatorname{det}\left(\phi_{\lambda_{i}-i+n, \mu_{j}-j+n}^{G}\right)_{1 \leq i, j, \leq n}
$$

for $G=S p(2 n), S O(2 n)$, or $S O(2 n+1)$. By the above Schur expansionsm we have

$$
\begin{aligned}
S_{\lambda}^{S p(2 n)}\left(z_{1}, \ldots, z_{n}\right) & =\sum_{\substack{\ell(\mu \leq \leq n \\
\mu \leq \lambda \mid}} \phi_{\lambda \mu}^{S p(2 n)} S_{\mu}\left(z_{1}, \ldots, z_{n}\right), \\
S_{\lambda}^{S O(2 n)}\left(z_{1}, \ldots, z_{n}\right) & =\sum_{\substack{\ell(\mu \leq \leq n}}^{\mu \leq \lambda \mid} \phi_{\lambda \mu}^{S O(2 n)} S_{\mu}\left(z_{1}, \ldots, z_{n}\right), \\
S_{\lambda}^{S O(2 n+1)}\left(z_{1}, \ldots, z_{n}\right) & =\sum_{\substack{\ell(\mu \leq \leq n \\
\mu \leq|\lambda|}}^{S O(2 n+1)} S_{\lambda \mu}\left(z_{1}, \ldots, z_{n}\right) .
\end{aligned}
$$

Example

2. Moment matrices and 1-matrix models.

Factorization of the Hankel matrix of moments:

$$
M_{i j}:=\int_{\Gamma} d \mu(z) z^{i+j}
$$

of some measure $d \mu$, supported on a curve Γ in the complex plane:

$$
\begin{aligned}
& \sum_{k=\max (i, j)}^{\infty} \phi_{k i} \phi_{k j}=M_{i j}, \quad i, j \in \mathbf{N} . \\
\tau_{\phi, \phi}(n, \mathbf{t}, \mathbf{0})= & \frac{1}{n!}\left(\prod_{a=1}^{n} \int_{\Gamma} d \mu\left(z_{a}\right)\right) \Delta^{2}(\mathbf{z}) \exp \left(\sum_{j=1}^{\infty} \sum_{a=1}^{n} t_{j} z_{a}^{j}\right) \\
= & \sum_{\lambda, \ell(\lambda) \leq n} B_{\lambda, n}(d \mu) S_{\lambda}(\mathbf{t})=\sum_{\lambda, \ell(\lambda) \leq n} S_{\lambda}^{\phi}(\mathbf{0}) S_{\lambda}^{\phi}(\mathbf{t}),
\end{aligned}
$$

where

$$
\Delta(\mathbf{z})=\prod_{i<j}^{n}\left(z_{i}-z_{j}\right)
$$

is Vandermonde determinant and

$$
\begin{aligned}
B_{\lambda, n}(d \mu) & :=\operatorname{det}\left(M_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq n} \\
& =\sum_{\nu, \ell(\nu) \leq n} \phi_{\nu \lambda}^{(n)} \phi_{\nu(0)}^{(n)}
\end{aligned}
$$

Example

3. Bimoments of two variable measures and 2-matrix models.

We may choose the product of matrices $\theta^{t} \phi$ entering in the 2D-Toda chain of τ-functions $\tau_{\theta, \phi}(n, \mathbf{t}, \mathbf{s})$ to be the upper/lower factorization of the matrix of bimoments

$$
M_{i j}:=\sum_{p, q} c_{p q} \int_{\Gamma_{p}} \int_{\tilde{\Gamma_{q}}} d \mu(z, w) z^{i} w^{j}=\left(\theta^{t} \phi\right)_{i j}
$$

of a two-variable measure. The 2D-Toda τ-function $\tau_{\theta, \phi}(n, \mathbf{t}, \mathbf{s})$ is then the partition function of a coupled two-matrix model:

$$
\begin{aligned}
& \tau_{\theta, \phi}(n, \mathbf{t}, \mathbf{s})=\frac{1}{n!} \prod_{a=1}^{n}\left(\iint d \mu\left(z_{a}, w_{a}\right) e^{\sum_{i=1}^{\infty} t_{i} z_{a}^{\prime}} e^{\sum_{j=1}^{\infty} s_{j} w_{a}^{j}}\right) \Delta(\mathbf{z}) \Delta(\mathbf{w}) \\
& =\sum_{\substack{\lambda \\
\ell(\lambda) \leq n}}^{a=} \sum_{\substack{\nu \\
\ell(\nu) \leq n}} B_{\lambda, \nu, n}(d \nu) S_{\lambda}(\mathbf{t}) S_{\nu}(\mathbf{s})=\sum_{\substack{\lambda \\
\ell(\lambda) \leq n}} S_{\lambda}^{\psi}(\mathbf{t}) S_{\lambda}^{\phi}(\mathbf{s}), \\
& B_{\lambda, \nu, n}(d \mu):=\operatorname{det}\left(M_{\lambda_{i}-i+n, \nu_{j}-j+n}\right)_{1 \leq i . j \leq n}:=\sum_{\rho, \ell(\rho) \leq n} \psi_{\rho \lambda}^{(n)} \phi_{\rho \nu}^{(n)} .
\end{aligned}
$$

Background and related work

Fermionic approach to τ-functions

E. Date, M. Jimbo, M. Kashiwara and T. Miwa, "Transformation groups for soliton equations,

IV A new hierarchy of soliton equations of KP-type", Physica D 4, 343-365 (1982).
M. Jimbo and T. Miwa "Solitons and Infinite Dimensional Lie Algebras", Publ. RIMS Kyoto Univ. 19, 943-1001 (1983).

Generalized Jacobi-Trudy, symmetric polynomials, τ-functions

I. Cherednik, "An analogue of character formula for Hecke algebras", Funct. Anal. and Appl. 21:2 94-95 (1987) (translation: pgs 172-174).
V. Bazhanov and N. Reshetikhin, "Restricted solid-on-solid models connected with simply laced algebras and conformal field theory", J. Phys. A Math. Gen. 23 1477-1492 (1990).
A.N Sergeev and A.P. Veselov, "Jacobi-Trudi formula for generalized Schur polynomials", arXiv: 0905.2557.
A. Alexandrov, A. Kazakov, S. Leurent, Z. Tsuboi and A. Zabrodin, "Classical τ-function for quantum spin chains", arXiv: 1112: 3310 [math.ph].
J. Harnad and Eunghyun Lee, "Symmetric polynomials, generalized Jacobi-Trudi identities and τ-functions", preprint CRM-3326 (2013), arXiv:1304.0020

