# **Weyl Orbit Functions**

# and Conformal Field Theory

#### Mark Walton



# Lie Theory and Mathematical Physics CRM, Montréal, 22 May 2014

Collaborator: Jiří Hrivnák (Prague); supported in part by NSERC.

**IDEA** 

# Discretized Weyl-orbit functions

$$_{i\langle w\lambda,a
angle}$$

?

$$S_{\lambda}(a) = \sum_{w \in W} (\det w) e^{2\pi i \langle w\lambda, a \rangle}$$

for example

Affine modular data, modular S-matrix of WZNW conformal field theory

... ?

$$S_{\lambda,\mu} \propto \sum_{w \in W} (\det w) e^{-2\pi i \langle w\lambda, \mu 
angle / M'}$$

Incidentally, the relation between affine modular data and Weyl-orbit functions, of both *S* and *C* type, was exploited in Gannon-Jakovljevic-Walton 1995. Simple Lie algebra weight multiplicities were extracted using these objects and their symmetries.

Quella has done work similar in spirit (2002).

- (Weyl-)Orbit Functions
- Affine (Wess-Zumino-Novikov-Witten) Modular Data
- Modified Multiplication, Galois Symmetry
- Conclusion

#### Notation

G compact, simple Lie group, rank n, Lie algebra  $g_n$ 

Simple roots:  $\Pi = \{\alpha_j \mid j \in \{1, ..., n\} =: I\}$ , normalized  $|\alpha_{\text{long}}|^2 = 2$ . Primitive reflections  $r_{\alpha_j} = r_j$  generate Weyl group  $W = \langle r_j \mid j \in I \rangle$ Coxeter-Dynkin diagram of  $g_n$  encodes W.



### Notation

Fundamental weights  $\Phi = \{\omega_j \mid j \in I\}$ weight space  $P_{\mathbb{R}} := \mathbb{R} \Phi \cong \mathbb{R}^n$ 

Non-negative weights:  $P_{+,\mathbb{R}} := \mathbb{R}_{\geq 0} \Phi$ ; positive weights  $P_{++,\mathbb{R}} := \mathbb{R}_{>0} \Phi$ 

Weight lattice  $P := \mathbb{Z} \Phi$ ; dominant (regular) integral weights:  $P_+ := \mathbb{N}_0 \Phi \ (P_{++} := \mathbb{N} \Phi).$ 

Roots  $\Delta$ , long (short) roots  $\Delta^{\ell}$  ( $\Delta^{s}$ ), positive roots:  $\Delta_{+}$ , etc.



## **ORBIT FUNCTIONS**

Weyl-orbit functions: program of study as "special functions" initiated with Patera 2003; general, systematic study launched with Klimyk-Patera 2006-08.

C-functions, or Weyl-orbit sums, are

$$\mathcal{C}_{\lambda}(a) \;=\; \sum_{w \in W} \, e^{2\pi i \langle w \lambda, a 
angle} \;,$$

where  $\lambda, a \in P_{\mathbb{R}}$ .

So-named since  $g_n = A_1 \rightarrow C_{\lambda}(a) = 2 \cos(2\pi i \langle \lambda, a \rangle)$  *W*-invariance:  $C_{w\lambda}(a) = C_{\lambda}(wa) = C_{\lambda}(a)$ ,  $\forall w \in W$ . Restrict to  $\lambda$ ,  $a \in P_{+,\mathbb{R}}$ , the fundamental region of *W*. S-functions are the antisymmetric Weyl-orbit sums

$$S_{\lambda}(a) = \sum_{w \in W} (\det w) e^{2\pi i \langle w\lambda, a \rangle}.$$

$$\begin{split} g_n &= A_1 \ \to \ S_{\lambda}(a) = 2i \, \sin\left(2\pi i \langle \lambda, a \rangle\right) \\ W\text{-antisymmetry:} \ S_{w\lambda}(a) &= S_{\lambda}(wa) = (\det w) \, S_{\lambda}(a) \,, \ \forall w \in W \,. \\ S\text{-functions vanish on } \partial P_{+,\mathbb{R}}, \ \inf(P_{+,\mathbb{R}}) =: \tilde{P}_{+,\mathbb{R}}. \end{split}$$

Other "trig" possibility:

$$E_{\lambda}(a) = \sum_{w \in W_e} e^{2\pi i \langle w\lambda, a \rangle}$$

 $W_e \subset W$  subgroup of even elements.

 $g_n = A_1 \rightarrow E_\lambda(a) = e^{2\pi i \langle w\lambda, a \rangle}.$ 

Non-simply-laced algebras, generalize to  $S^{\ell}$ - and  $S^{s}$ -functions, via

$$arphi_{\lambda}^{\sigma}(a) = \sum_{w \in W} \sigma(w) e^{2\pi i \langle w\lambda, a \rangle}$$

 $\sigma(w)$  is a sign homomorphism on W.

 $\sigma = 1$ , det  $\Rightarrow C$ -, *S*-functions, respectively.  $\sigma^{s}(r_{i}) = -1$  (+1), if  $\alpha_{i}$  is a short (long) simple root, respectively. Opposite definition for  $\sigma^{\ell}$ .  $\sigma = \sigma^{s}, \sigma^{\ell} \Rightarrow \varphi = S^{s}$ -,  $S^{\ell}$ -functions, respectively. Ratios  $\Rightarrow$  characters, and "hybrid characters":

$$\chi_{\lambda}(a) = rac{S_{\lambda+
ho}(a)}{S_{
ho}(a)}, \quad \chi_{\lambda}^{\ell}(a) = rac{S_{\lambda+
ho^{\ell}}^{\ell}(a)}{S_{
ho^{\ell}}^{\ell}(a)}, \quad \chi_{\lambda}^{s}(a) = rac{S_{\lambda+
ho^{\ell}}^{s}(a)}{S_{
ho^{\ell}}^{s}(a)};$$

where

$$ho^\ell = rac{1}{2}\sum_{lpha\in\Delta^\ell_+}lpha = \sum_{lpha_i\in\Pi\cap\Delta^\ell_+}\omega_i$$
 ;

 $\rho^{\rm s}$  similarly; and  $\rho$  is the usual Weyl vector.

Focus here on the C- and S-functions, and characters  $\chi$ .

Restricting weight-labels  $\lambda \in P = \mathbb{Z}\Phi \Rightarrow$  affine Weyl symmetry:

$$C_{\lambda}(wa) = C_{\lambda}(a), \quad S_{\lambda}(wa) = (\det w) S_{\lambda}(a),$$
  
or  $\varphi_{\lambda}^{\sigma}(wa) = \sigma(w) \varphi_{\lambda}^{\sigma}(a), \quad \forall w \in W^{\text{aff}}.$ 

Affine Weyl group  $W^{\text{aff}} = Q^{\vee} \rtimes W = \langle r_j \mid j \in \hat{I} \rangle$ , where  $\hat{I} := \{0, 1, \dots, n\}$ . 0-th simple reflection:  $r_0 a = r_{\xi}a + \frac{2\xi}{\langle \xi, \xi \rangle}$ ,  $\xi$  highest root of  $g_n$ .

#### Extended Coxeter-Dynkin diagram encodes the affine Weyl group $W^{\mathrm{aff}}$ :



Fundamental domain of  $W^{\text{aff}}$ ,

$$F = \operatorname{Conv}\left\{0, \frac{\omega_1^{\vee}}{m_1}, \dots, \frac{\omega_n^{\vee}}{m_n}\right\}$$

 $m_j \in \mathbb{N}$  known as *marks*, and  $\xi = m_1 \alpha_1 + \cdots + m_n \alpha_n$ . Put  $m_0 = 1$ .  $\Phi^{\vee} := \{\omega_1^{\vee}, \ldots, \omega_n^{\vee}\}$  denote the dual fundamental weights, satisfying  $\langle \omega_i^{\vee}, \alpha_j \rangle = \delta_{i,j}$ .

They are the fundamental weights of the dual Lie algebra  $g_n^{\vee}$ .

Short  $\leftrightarrow$  long roots: Coxeter-Dynkin diagram of  $g_n \Rightarrow$  diagram of  $g_n^{\vee}$ . Dual roots  $\alpha_j^{\vee}$  satisfy  $\langle \alpha_i^{\vee}, \omega_j \rangle = \delta_{i,j}$   $(i, j \in I)$ . Reflections  $r_j^{\vee} = r_j$   $(j \in I)$  associated with the  $\alpha_i^{\vee}$  generate the same Weyl group W, but a different affine Weyl group arises:  $\widehat{W}^{\text{aff}} = Q \rtimes W$ .

$$r_0^{ee} a = r_\eta a + rac{2\eta}{\langle \eta, \eta 
angle} .$$

Highest dual root  $\eta =: -\alpha_0^{\vee} = m_1^{\vee} \alpha_1^{\vee} + \ldots + m_n^{\vee} \alpha_n^{\vee}$ defines the *dual marks*  $m_j^{\vee}$ ,  $j \in I$ ; put  $m_0^{\vee} = 1$ .

 $\lambda \in P \Rightarrow$  consider  $\varphi_{\lambda}^{\sigma}(a)$  a function on the fundamental domain F of  $W^{\text{aff}}$ .

Orbit function  $\varphi_{\lambda}^{\sigma}$  is an eigenfunction of the Laplace operator on F with Neumann (Dirichlet) boundary conditions on  $\sigma(r) = +1$  ( $\sigma(r) = -1$ ) hyperplanes.  $g_n = G_2$  example of a fundamental region F, shaded here:



Dual affine Weyl symmetry:

Restricting weight-arguments  $a \in P^{\vee} = \mathbb{Z}\Phi^{\vee} \Rightarrow$  affine dual Weyl symmetry:

$$\begin{array}{lll} C_{w\lambda}(a) &=& C_{\lambda}(a) \;, \;\; S_{w\lambda}(a) \;=\; (\det w) \, S_{\lambda}(a) \;, \\ \\ \mathrm{or} & \varphi_{w\lambda}^{\sigma}(a) \;=\; \sigma(w) \, \varphi_{\lambda}^{\sigma}(a) \;, & \forall w \in \widehat{W}^{\mathrm{aff}} \;. \end{array}$$

The fundamental region of  $\widehat{W}^{\text{aff}}$ , or dual fundamental domain, is  $F^{\vee} = \text{Conv}\{0, \frac{\omega_1}{m_1^{\vee}}, \dots, \frac{\omega_n}{m_n^{\vee}}\}.$  Generalizations of Chebyshev polynomials

(Nesterenko-Patera-Tereszkiewicz 2011):

Polynomials constructed 3 ways:

• Most familiar:  $X_j := e^{2\pi i x_j}$ 

• When  $C_{\lambda}$  can be written as a sum of cosines, then it can be written in terms of basic ones using trig identities. Then these basic cosines can become the new variables.

•  $X_j := C_{\omega_j}(x)$  and  $S := S_{\rho}(x)$ .

Decompose  $X_j C_\lambda \rightarrow$  recursion relations defining the polynomials. (Also  $X_j := S_{\omega_i}(x)$  and  $X_j := \chi_{\omega_i}(x)$ , of course.) Continuous orthogonality:

$$\langle C_{\lambda}, C_{\lambda'} \rangle := |F|^{-1} \int_{F} C_{\lambda}(x) \overline{C_{\lambda'}(x)} \, dx = |W\lambda| \, \delta_{\lambda,\lambda'}$$
  
for  $\lambda, \lambda' \in P_{+}$ .

Discrete orthogonality:

$$\langle f,g \rangle_M := |W| \sum_{x \in F_M} f(x) \overline{g(x)}$$

where  $F_M := \frac{1}{M} P^{\vee} / Q^{\vee} \cap F$  is the discretized fundamental domain, or "grid"; *M* controls the fineness, or resolution of the discretization.

 $g_n = C_2$  example: grid  $F_4 = \frac{1}{4}P^{\vee}/Q^{\vee} \cap F$ .

Dots in  $\frac{1}{4}P^{\vee}/Q^{\vee}$ , and  $|F_4| = 9$  (fundamental region F shaded).



Discrete orthogonality (Moody-Patera 2006):

$$\langle C_{\lambda}, C_{\lambda'} \rangle_{M} = c_{G} M^{n} |W\lambda| \delta_{\lambda,\lambda'} ,$$
  
for  $\lambda, \lambda' \in \Lambda_{M} := MF^{\vee} \cap P/MQ .$ 

 $c_G = \det(Cartan matrix) = order of the centre of G.$ 

 $g_n = C_2$  example: "dual grid"  $\Lambda_4 = 4F^{\vee} \cap \frac{P}{4Q}$ . Dots  $\in 4F^{\vee} \cup \frac{P}{4Q}$ ,  $|\Lambda_4| = |F_4| = 9$ .



#### (Finite) orbit function transforms:

Consider data with support F, or  $\tilde{F}$ . The Weyl-orbit functions provide useful expansion bases for the analysis of functions on F, or  $\tilde{F}$ . Digitized data, the values on the grid  $F_M$  in F, or  $\tilde{F}_M$  in  $\tilde{F}$ .  $M \in \mathbb{N}$  will determine the resolution  $\sim 1/M$  of the digital data of interest.

Interpolate, by requiring

$$f(x) \;=\; \sum_{\lambda \in \Lambda_M} \, \mathcal{F}_\lambda \, \mathcal{C}_\lambda(x) \;, \;\; \forall \, x \in \mathcal{F}_M \;.$$

Discrete orthogonality  $\Rightarrow$  Discrete C-Transform

$$\mathcal{F}_{\lambda} = \frac{1}{c_G M^n |W|} \sum_{x \in F_M} f(x) \overline{C_{\lambda}(x)} .$$

 $Cubature = quadrature \ in \ higher \ dimensions$ 

Cubature formula: a weighted sum of function evaluations used to approximate a multivariate integral.

$$\int_{\Omega} f(x) w(x) dx \approx \sum_{j=1}^{N} w_j L_j[f] ,$$
$$L_j[f] = f(x_j), \text{ e.g.}$$

*Exact* ( $\approx \rightarrow =$ ) cubature formulas are possible if one restricts to a certain class of functions.

Such exact cubature formulas are found using the orbit functions (H. Li & Y. Xu 2010, Moody-Patera 2011).

Define domain  $\Omega = \{ (X_1(x), \dots, X_n(x)) : x \in \tilde{F} \} \subset \mathbb{C}^n$ . Put *m*-degree of  $X_i$  as  $m_i^{\vee}$ , then *m*-deg $(S_{\rho}) = h - 1$ .

For any function f on  $\Omega$ , define

$$\widetilde{f}(x) := f(\chi_{\omega_1}(x), \ldots, \chi_{\omega_n}(x))$$
.

Cubature formula:

Polynomial  $f \in \mathbb{C}[X_1, \ldots, X_n]$  with *m*-degree  $\leq 2M + 1$ , have

$$\int_{\Omega} f \, \mathcal{K}^{1/2} \, dX_1 \cdots dX_n = \frac{1}{c_G} \, \left(\frac{2\pi}{M+h}\right)^n \sum_{x \in \tilde{F}_{M+h}} \tilde{f}(x) \, \tilde{\mathcal{K}}(x) \; .$$

Here  $K(x) := |S_{\rho}(x)|^2$  and the Coxeter number  $h = \sum_{j=0}^{n} m_j$ .



Example of domain  $\Omega$  for cubature formula (M = 8 for  $G_2$ ):

# Wess-Zumino-Novikov-Witten conformal field theories: AFFINE MODULAR DATA

Objects related to the modular data of Wess-Zumino-Novikov-Witten (WZNW) models bear a striking resemblance to the discretized Weyl-orbit functions. This modular data is associated with the affine Kac-Moody algebras of untwisted type, at a fixed level, and so is also called affine modular data. As for any RCFT, the WZNW 1-loop partition function is invariant under the modular group  $SL(2; \mathbb{Z})$ , with generators S and T. genus-1 conformal blocks  $\cong$  characters of the untwisted affine Kac-Moody algebra at fixed *level*, sometimes denoted  $g_{n,k}$ . The affine characters form a finite-dimensional representation of the modular group (Kac-Peterson 1984).

Put 
$$P^M_+ = \{\sum_{i \in \hat{I}} \lambda_i \omega_i \mid \lambda_i \in \mathbb{N}_0, \sum_{i \in \hat{I}} \lambda_i m^{\vee}_i = M\},\$$
  
and  $P^M_{++} = \{\sum_{i \in \hat{I}} \lambda_i \omega_i \mid \lambda_i \in \mathbb{N}, \sum_{i \in \hat{I}} \lambda_i m^{\vee}_i = M\}.$ 

Similarly, 
$$P_{+}^{\vee M} = \{\sum_{i \in \hat{I}} \lambda_i \omega_i^{\vee} | \lambda_i \in \mathbb{N}_0, \sum_{i \in \hat{I}} \lambda_i m_i = M\},\$$
  
and  $P_{++}^{\vee M} = \{\sum_{i \in \hat{I}} \lambda_i \omega_i^{\vee} | \lambda_i \in \mathbb{N}, \sum_{i \in \hat{I}} \lambda_i m_i = M\}.$ 

Grid  $F_M := P_+^{\vee M}/M$ . Grid interior  $\tilde{F}_M := P_{++}^{\vee M}/M$ .

Dual grid  $\Lambda_M = P^M_+$ ; interior  $\tilde{\Lambda}_M = P^M_{++}$ .

Note that  $m_0+m_1+\ldots+m_n=m_0^\vee+m_1^\vee+\ldots+m_n^\vee=h$ , the Coxeter number.

Highest root of  $g_n$ :  $\xi = \sum_{j \in I} m'_j \alpha_j^{\vee}$ ,  $m'_j$  are known as co-marks. Dual Coxeter number  $h^{\vee} := 1 + \sum_{j \in I} m'_j$ . Let  $\Delta_+$  denote the set of positive roots of  $g_n$  and put  $M' := k + h^{\vee}$ . The affine characters can be labeled by weights in  $P^{M'}_{++}$ , and the Kac-Peterson modular S matrix has the form

$$S_{\lambda',\mu'} = R_{M'} \sum_{w \in W} (\det w) e^{-2\pi i \langle w \lambda',\mu' 
angle/M'} ,$$

for  $\lambda', \mu' \in P_{++}^{M'}$ .

But 
$$P_{++}^{M'} = P_{+}^{k} + \rho$$
; rewrite as  
 $S_{\lambda,\mu} = R_{k+h^{\vee}} \sum_{w \in W} (\det w) \exp\left\{\frac{-2\pi i \langle w(\lambda + \rho), \mu + \rho \rangle}{k + h^{\vee}}\right\}$   
 $= R_{k+h^{\vee}} S_{\lambda+\rho} \left(\frac{\mu}{k + h^{\vee}}\right),$ 

with  $\lambda, \mu \in \mathcal{P}_+^k$ , and  $R_{k+h^{\vee}} = i^{\Vert \Delta_+ \Vert} \vert P/Q^{\vee} \vert^{-\frac{1}{2}} (k+h^{\vee})^{-\frac{r}{2}}$ .

Modular *S*-matrix is unitary and symmetric, with symmetric affine Weyl symmetry:

$$S_{w,\lambda,\mu} = S_{\lambda,w,\mu} = (\det w) S_{\lambda,\mu} , \ \forall w \in W^{\mathrm{aff}}$$
;

shifted action  $w.\lambda := w(\lambda + \rho) - \rho$ .

## **Modified multiplication**

The affine Weyl symmetry  $\rightarrow$  modified (truncated) multiplication of characters.

Verlinde formula:

$$\left(\frac{S_{\lambda,\sigma}}{S_{\rho,\sigma}}\right) \left(\frac{S_{\mu,\sigma}}{S_{\rho,\sigma}}\right) = \sum_{\nu \in P_+^k} {}^{(k)} N_{\lambda,\mu}^{\nu} \left(\frac{S_{\nu,\sigma}}{S_{\rho,\sigma}}\right) .$$

The ratios are (discretized) Weyl characters of integrable, highest-weight representations of  $g_n$ :

$$\left(rac{\mathcal{S}_{\lambda,\sigma}}{\mathcal{S}_{
ho,\sigma}}
ight) \;=\; \chi_{\lambda}(\sigma)\;.$$

Products of characters decompose as tensor products of representations do:

$$\chi_{\lambda}(\sigma) \chi_{\mu}(\sigma) = \sum_{\phi \in P_{+}} T^{\phi}_{\lambda,\mu} \chi_{\phi}(\sigma) ,$$

where  $T^{\phi}_{\lambda,\mu}$  is the tensor product coefficient. Using the affine Weyl symmetry to compare this with the Verlinde formula  $\rightarrow$  (Kac-W)

$$^{(k)}\mathcal{N}^{
u}_{\lambda,\mu} \;=\; \sum_{w\in W^{\mathrm{aff}}} \left(\det w 
ight) T^{w.
u}_{\lambda,\mu} \;.$$

The affine Weyl symmetry valid when the character is discretized results in a modified multiplication, so that the tensor product coefficients are modified, truncated to the fusion coefficients.

The modified multiplications of discretized Weyl-orbit functions will work essentially the same way.

Galois symmetry is an important property of all RCFTs (Coste-Gannon 1994). The Galois symmetry of WZNW models is the motivation for a Galois symmetry of discretized orbit functions.

Kac-Peterson  $S_{\lambda,\mu}$  is a linear combination of roots of unity  $\exp\{-2\pi i \langle w(\lambda + \rho), \mu + \rho \rangle / (k + h^{\vee})\} =: \varphi$  with rational coefficients. Let  $N \in \mathbb{N}$  denote the minimum such that  $\varphi^N = 1$  for all such  $\varphi$ . Suppose  $gcd(\ell, N) = 1$  for  $\ell \in \mathbb{N}$ . Define the Galois transformation  $t_{\ell}$  by

$$t_{\ell}\left( arphi 
ight) := arphi^{\ell}$$
,

and extend it linearly to sums of such terms. This transformation swaps one primitive root of unity for another.

Equivalently, it maps  $\lambda + \rho$  to  $\ell(\lambda + \rho)$ , possibly outside the dominant sector. Transforming back is possible, however, using the affine Weyl group:

$$\ell(\lambda + 
ho) = w_{\ell}[\lambda] (t_{\ell}[\lambda] + 
ho) , w_{\ell}[\lambda] \in W^{\operatorname{aff}}$$

The Galois symmetry of the modular S-matrix then follows:

$$t_{\ell} \left( S_{\lambda,\mu} \right) = \epsilon_{\ell}[\lambda] S_{t_{\ell}[\lambda],\mu} = \epsilon_{\ell}[\mu] S_{\lambda,t_{\ell}[\mu]}$$

The affine Weyl symmetry of the orbit functions can be summarized as follows. With  $a \in P$ , we have

$$egin{aligned} & C_{\lambda}(wa) \ &=\ C_{\lambda}(a)\ , & w \in W^{\mathrm{aff}}\ ; \ & C_{\hat{w}\lambda}(a) \ &=\ C_{\lambda}(a)\ , & \hat{w} \in \widehat{W}^{\mathrm{aff}}\ ; \ & S_{\tilde{\lambda}}(wa) \ &=\ (\det w)\ S_{\lambda}(a)\ , & w \in W^{\mathrm{aff}}\ ; \ & S_{\hat{w}\lambda}(a) \ &=\ (\det \hat{w})\ S_{\lambda}(a)\ , & \hat{w} \in \widehat{W}^{\mathrm{aff}}\ ; \end{aligned}$$

provided  $\lambda, \tilde{\lambda} \in P^{\vee}/M$ .

## Modified multiplication of discretized Weyl-orbit functions

For any  $a \in P_{\mathbb{R}}$ , write

for all  $\lambda, \mu, \nu \in P_+$ , and all  $\tilde{\lambda}, \tilde{\mu}, \tilde{\nu} \in P_{++}$ .

Similarly, if  $\lambda,\mu,\nu\in P^M_+,$  and all  $\tilde\lambda,\tilde\mu,\tilde\nu\in P^M_{++},$  then

$$\mathcal{C}_{\lambda}(a) \mathcal{C}_{\mu}(a) \; = \; \sum_{
u \in \mathcal{P}^{M}_{+}} \, {}_{\mathcal{M}} \langle \mathcal{C} | \mathcal{C} \mathcal{C} 
angle^{
u}_{\lambda,\mu} \, \, \mathcal{C}_{
u}(a) \; ,$$

$$C_{\lambda}(a) S_{\tilde{\mu}}(a) = \sum_{\tilde{\nu} \in P^{M}_{++}} {}_{M} \langle S | CS \rangle_{\lambda,\tilde{\mu}}^{\tilde{\nu}} S_{\tilde{\nu}}(a)$$
  
$$S_{\tilde{\lambda}}(a) S_{\tilde{\mu}}(a) = \sum_{\nu \in P^{M}_{+}} {}_{M} \langle C | SS \rangle_{\tilde{\lambda},\tilde{\mu}}^{\nu} C_{\nu}(a) ,$$

for any  $a \in F_M \supset \tilde{F}_M$ .

We find

$$\begin{split} {}_{\mathcal{M}} \langle C | CC \rangle_{\lambda,\mu}^{\nu} &= \sum_{\hat{w} \in \widehat{W}^{\mathrm{aff}}} \langle C | CC \rangle_{\lambda,\mu}^{\hat{w}\nu} , \\ {}_{\mathcal{M}} \langle S | CS \rangle_{\lambda,\tilde{\mu}}^{\tilde{\nu}} &= \sum_{\hat{w} \in \widehat{W}^{\mathrm{aff}}} (\det w) \langle S | CS \rangle_{\lambda,\tilde{\mu}}^{\hat{w}\tilde{\nu}} , \\ {}_{\mathcal{M}} \langle C | SS \rangle_{\tilde{\lambda},\tilde{\mu}}^{\nu} &= \sum_{\hat{w} \in \widehat{W}^{\mathrm{aff}}} \langle C | SS \rangle_{\tilde{\lambda},\tilde{\mu}}^{\hat{w}\nu} . \end{split}$$

## Galois symmetry of Weyl-orbit functions

Let N denote the minimum positive integer such that

$$\left(e^{2\pi i \langle \lambda, a \rangle}\right)^N = e^{2\pi i \langle N \lambda, a \rangle} = 1$$

for all  $\lambda \in \Lambda_M$ ,  $a \in F_M$ .

Suppose  $gcd(\ell, N) = 1$  for  $\ell \in \mathbb{N}$ . Define the Galois transformation  $t_{\ell}$  by

$$t_{\ell}\left(e^{2\pi i\langle\lambda,a
angle}
ight):=e^{2\pi i\ell\langle\lambda,a
angle}$$

,

and extend it linearly to sums of such terms. This transformation swaps one primitive root of unity for another.

Applying the Galois transformation to the orbit functions, one gets

$$t_{\ell}\left(C_{\lambda}(a)\right) = C_{\ell\lambda}(a) = C_{\lambda}(\ell a) ,$$
  
$$t_{\ell}\left(S_{\tilde{\lambda}}(\tilde{a})\right) = S_{\ell\tilde{\lambda}}(\tilde{a}) = S_{\tilde{\lambda}}(\ell\tilde{a}) .$$
(2)

Now suppose that  $\lambda \in P_+^M$ ,  $\tilde{\lambda} \in P_{++}^M$ ,  $a \in F_M$ , and  $\tilde{a} \in \tilde{F}_M$ . Multiples of these weights by a factor of  $\ell$  will not also, in general, be part of the same sets.

They can all, however, be moved there by appropriate elements of the relevant affine Weyl group:

$$\hat{w}_{\ell}[\lambda] (\ell \lambda) =: t_{\ell}[\lambda] \in P^{M}_{+} , \qquad \hat{w}_{\ell}[\lambda] \in \widehat{W}^{\text{aff}} ; \hat{w}_{\ell}[\tilde{\lambda}] (\ell \tilde{\lambda}) =: t_{\ell}[\tilde{\lambda}] \in P^{M}_{++} , \qquad \hat{w}_{\ell}[\tilde{\lambda}] \in \widehat{W}^{\text{aff}} ; w_{\ell}[a] (\ell a) =: t_{\ell}[a] \in F_{M} , \qquad w_{\ell}[a] \in W^{\text{aff}} ; w_{\ell}[\tilde{a}] (\ell \tilde{a}) =: t_{\ell}[\tilde{a}] \in \widetilde{F}_{M} , \qquad w_{\ell}[\tilde{a}] \in W^{\text{aff}} .$$

$$(3)$$

Using the affine Weyl symmetries  $\Rightarrow$  the Galois symmetry of the orbit functions:

$$t_{\ell}\bigg(C_{\lambda}(a)\bigg) = C_{t_{\ell}[\lambda]}(a) = C_{\lambda}(t_{\ell}[a]) ,$$
  
$$t_{\ell}\bigg(S_{\tilde{\lambda}}(\tilde{a})\bigg) = \hat{\epsilon}_{\ell}[\lambda] S_{t_{\ell}[\tilde{\lambda}]}(\tilde{a}) = \epsilon_{\ell}[\tilde{a}] S_{\tilde{\lambda}}(t_{\ell}[\tilde{a}]) .$$
(4)

Here we have defined the signs

$$\begin{aligned} \hat{\epsilon}_{\ell}[\tilde{\lambda}] &:= \det \left( \ \hat{w}_{\ell}[\tilde{\lambda}] \ \right) \ , \quad \hat{w}_{\ell}[\tilde{\lambda}] \ \in \ \widehat{\mathcal{W}}^{\operatorname{aff}} \ ; \\ \epsilon_{\ell}[\tilde{a}] &:= \det \left( \ w_{\ell}[\tilde{a}] \ \right) \ , \quad w_{\ell}[\tilde{a}] \ \in \ \mathcal{W}^{\operatorname{aff}} \ . \end{aligned}$$

$$(5)$$

Galois symmetry also produces relations involving the decomposition coefficients discussed above. For example, because the Galois transformation exchanges one root of unity for another, and because the coefficients  $_{M}\langle C|~SS \rangle^{\nu}_{\tilde{\lambda},\tilde{\mu}}$  are rational, we have

$$t_{\ell}\left(S_{\tilde{\lambda}}(a)\right)t_{\ell}\left(S_{\tilde{\mu}}(a)\right) = \sum_{\nu\in P^{M}_{+}} {}_{M}\langle C|SS\rangle^{\nu}_{\tilde{\lambda},\tilde{\mu}} t_{\ell}\left(C_{\nu}(a)\right).$$

 $\Rightarrow$ 

$$\widehat{\epsilon}_{\ell}[\widetilde{\lambda}] \, S_{t_{\ell}[\widetilde{\lambda}]}(a) \, \widehat{\epsilon}_{\ell}[\widetilde{\mu}] \, S_{t_{\ell}[\widetilde{\mu}]}(a) \; = \; \sum_{\nu \in \mathcal{P}^{M}_{+}} \, _{\mathcal{M}} \langle C|SS 
angle^{
u}_{\widetilde{\lambda},\widetilde{\mu}} \, \, \mathcal{C}_{t_{\ell}[\nu]}(a) \; .$$

so that

$$egin{aligned} & \hat{\epsilon}_{\ell}[\tilde{\lambda}]\,\hat{\epsilon}_{\ell}[\tilde{\mu}]\,\sum_{
u\in P^M_+}\,_{M}\langle C|SS
angle^{
u}_{t_{\ell}[\tilde{\lambda}],t_{\ell}[\tilde{\mu}]}\,\,\mathcal{C}_{
u}(a) \ & =\sum_{
u\in P^M_+}\,_{M}\langle C|SS
angle^{
u}_{\tilde{\lambda}, ilde{\mu}}\,\,\mathcal{C}_{t_{\ell}[
u]}(a) \;. \end{aligned}$$

Orthogonality relations for  $\mathit{C}_{\!\nu}(a)$   $\Rightarrow$ 

$$\hat{\epsilon}_{\ell}[\tilde{\lambda}] \, \hat{\epsilon}_{\ell}[\tilde{\mu}]_{M} \langle C|SS \rangle^{\nu}_{t_{\ell}[\tilde{\lambda}], t_{\ell}[\tilde{\mu}]} = {}_{M} \langle C|SS \rangle^{t_{\ell}[\nu]}_{\tilde{\lambda}, \tilde{\mu}}$$

.

Similar relations for the other decomposition coefficients.

#### $({\sf Generalized?}) \ {\sf Orbit} \ {\sf Functions} \qquad \Leftrightarrow \qquad {\sf Conformal} \ {\sf Field} \ {\sf Theory}$

- $\checkmark$   $\Leftarrow$  Modified multiplication, Galois symmetries (Hrivnák-W)
- ?  $\leftarrow$  Fusion generators and bases (Gannon-Walton 1999)
- ?  $\Rightarrow$  Pasquier algebras, NIM-reps, boundary conditions, ...?

Chevalley groups  $\Rightarrow$  ?