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IDEA

Discretized Weyl-orbit

functions

Sxa(a) = Z (det W)EZWKW)\’a)
weWw

for example

=

Affine modular data, modular
S-matrix of WZNW
conformal field theory

Sy x Z (det w)e 2T (whm) /M
weWw



Incidentally, the relation between affine modular data and Weyl-orbit
functions, of both S and C type, was exploited in
Gannon-Jakovljevic-Walton 1995.

Simple Lie algebra weight multiplicities were extracted using these

objects and their symmetries.

Quella has done work similar in spirit (2002).
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Notation

G compact, simple Lie group, rank n, Lie algebra g,

Simple roots: M= {a;|j € {1,...,n} =: I}, normalized |ajong|® = 2.
Primitive reflections r,, = r; generate Weyl group W = (riljel)

Coxeter-Dynkin diagram of g, encodes W.

n—1 1 3 4 5 6 7 8
D, (n>4) o—o—@—g—o F, 0—0—e—e G, T—®
1 2 3 4

1 2 n—3n—2n



Notation

Fundamental weights ® = {w; | j € I}
weight space P := R® = R”

Non-negative weights: P, r := R>q ®;
positive weights Py g := R0 ®

Weight lattice P := Z &;
dominant (regular) integral weights:
P+ ::Nod) (P++ :Nq))

Roots A, long (short) roots A (A%),
positive roots: A, etc.

az

Root system of Cj:

Root system of Ga:

3}



ORBIT FUNCTIONS

Weyl-orbit functions: program of study as “special functions”
initiated with Patera 2003; general, systematic study
launched with Klimyk-Patera 2006-08.

C-functions, or Weyl-orbit sums, are

C)\(a) _ Z e27'ri(w)\.,a>’

wewWw
where A\, a € Pg.

So-named since g, = A1 — C\(a) = 2 cos (27i (], a))
W-invariance: Cyr(a) = Cy(wa) = Ci(a), Ywe W .

Restrict to A\, a € Py g, the fundamental region of W.



S-functions are the antisymmetric Weyl-orbit sums

S\(a) = Z (det w) e2milwA.a)
weW

gn=A1 — Sx\(a) =2isin(2mi(\, a))
W-antisymmetry: S, (a) = Sx(wa) = (detw) Sx(a), Vw € W.

S-functions vanish on P, g, int(Py r) =: Py .

Other “trig” possibility:

Z Q2mi(wA,2)

we W,

W, C W subgroup of even elements.

gn —Al N E)\( ) 2m(w)\ a}



Non-simply-laced algebras, generalize to S’- and S*-functions, via

) = 3 o(w)einna

weWw

o(w) is a sign homomorphism on W.

o =1, det = C-, S-functions, respectively.
o°(r;) = =1 (+1), if «; is a short (long) simple root, respectively.

Opposite definition for o*.

v

o=0° 0" = ¢ = 5°, S'functions, respectively.



Ratios = characters, and “hybrid characters”:

a SZ ela Ss (a

where

pe:%Za: Z Wi

acnt a;elMnNAL

p°® similarly; and p is the usual Weyl vector.

Focus here on the C- and S-functions, and characters y.



Properties of orbit functions

Restricting weight-labels A € P = Z® =- affine Weyl symmetry:

Ci(wa) = Ci(a), Sa(wa) = (detw)Sx(a),

or  p(wa) = o(w)p(a), VYwe W,

Affine Weyl group W2 = QY x W = (r;|jel),
where [ := {0,1,...,n}.

O-th simple reflection: rna = rea + %, & highest root of g,.



Extended Coxeter-Dynkin diagram encodes the affine Weyl group Waf:

Annz2 : 5 o—g:i—o—o 4 =0
1 2 3 n 1 2 3 4 5 0 1
0 7
1 2 n—1 n 0 1 2 3 4 5 6

0 1 2 n-1 n
0 n Ex

0 1 2 3 4 5 6 7
D, nz4 . O—O0—C—ee ¢ O—C=e

1 2 n-3n—-2n-1 0 1 2 3 4 0 1 2



Fundamental domain of Waft,

F:Conv{O @l w”v}.

'm0 * m,

m; € N known as marks, and § = miay + -+ - + mpo,. Put mg = 1.
oV :={w/,...,w)} denote the dual fundamental weights, satisfying

(WY, a;) = 0.

They are the fundamental weights of the dual Lie algebra g

Short +» long roots: Coxeter-Dynkin diagram of g, = diagram of g.

Dual roots o satisfy (o}, w;) = i (i,j € I).



Reflections r¥ = r; (j € /) associated with the a} generate the same
Weyl group W, but a different affine Weyl group arises:
wat — Q x W .

2
4
rpa = rma-+ .
° ()
Highest dual root n =: —af = myoy + ...+ m) o,/

defines the dual marks m/, j € I; put mg = 1.

A € P = consider ¢§(a) a function on the fundamental domain F of

1%

Orbit function ¢f is an eigenfunction of the Laplace operator on F with
Neumann (Dirichlet) boundary conditions on o(r) = +1 (o(r) = —1)

hyperplanes.



gn = G, example of a fundamental region F, shaded here:




Dual affine Weyl symmetry:

Restricting weight-arguments a € PV = Z®V = affine dual Weyl

symmetry:

Cur(a) = Ca(a), Swi(a) = (detw)Si(a),

or poa(a) = o(w)pS(a), Vwe wet

The fundamental region of Waﬂ, or dual fundamental domain, is

» mY

FY = Conv{0, ,‘;’—15, Yo 1



Generalizations of Chebyshev polynomials
(Nesterenko-Patera-Tereszkiewicz 2011):

Polynomials constructed 3 ways:
o Most familiar: X; := e27ixj

e When C, can be written as a sum of cosines, then it can be written in
terms of basic ones using trig identities. Then these basic cosines can

become the new variables.

o X; 1= C,(x) and S := 5,(x).
Decompose X; C, — recursion relations defining the polynomials.

(Also Xj := S,,;(x) and X := x.,(x), of course.)



Continuous orthogonality:
<C)\,C)\/> = |F|71/ C)\(X)C)\/(X)dx = |W)\|5)\,)\/
F

fOI‘)\,AIEPJ,_.

Discrete orthogonality:
(foglm = [W| Y f(x)g(x)
x€Fm

where F; = %PV/QV N F is the discretized fundamental domain, or

“grid”; M controls the fineness, or resolution of the discretization.



g, = G example: grid F, = 1PV/QV N F.

— 4

Dots in £PV/QV, and |F4| = 9 (fundamental region F shaded).




Discrete orthogonality (Moody-Patera 2006):

(Cr, C)m = cg M [WA|6xx

for A, N €Ay := MFY N P/MQ .

c¢ = det(Cartan matrix)= order of the centre of G.



gn = G example: “dual grid” Ay = 4FV N %.

Dots € 4FY U 5, [\a| = [Fa| = 9.

Loy




(Finite) orbit function transforms:

Consider data with support F, or F. The Weyl-orbit functions provide
useful expansion bases for the analysis of functions on F, or F.
Digitized data, the values on the grid Fy in F, or Fyin F. M € N will

determine the resolution ~ 1/M of the digital data of interest.

Interpolate, by requiring
fx) = > FaGx), Vx€Fn.
AeAy

Discrete orthogonality = Discrete C-Transform

1 -
W Z f(x) Ca(x) -

xEFy

F =



Cubature = quadrature in higher dimensions
Cubature formula: a weighted sum of function evaluations used to

approximate a multivariate integral.
f x)dx = w; L[f
| Few Z 1]
Li[f] = f(>9) eg.

Exact (= — =) cubature formulas are possible if one restricts to a

certain class of functions.

Such exact cubature formulas are found using the orbit functions (H. Li

& Y. Xu 2010, Moody-Patera 2011).



Define domain Q = { (Xi(x),...,Xn(x)) : x€ F} c C".

Put m-degree of X; as m)’, then m-deg(S,)= h—1.

For any function f on €2, define

F(x) = (X (X)X, (X)) -

Cubature formula:

Polynomial f € C[Xi, ..., X,] with m-degree < 2M + 1, have

/Qle/delde,, _ 1 (/\/121/7) > ) K(x) .

%9

Here K(x) :=|S,(x)|? and the Coxeter number h = Z;:o m;.



Example of domain Q for cubature formula (M = 8 for G):




Wess-Zumino-Novikov-Witten conformal field theories:
AFFINE MODULAR DATA

Objects related to the modular data of Wess-Zumino-Novikov-Witten
(WZNW) models bear a striking resemblance to the discretized

Weyl-orbit functions. This modular data is associated with the affine
Kac-Moody algebras of untwisted type, at a fixed level, and so is also

called affine modular data.



As for any RCFT, the WZNW 1-loop partition function is invariant under
the modular group SL(2;Z), with generators S and T.

genus-1 conformal blocks = characters of the untwisted affine
Kac-Moody algebra at fixed /evel, sometimes denoted g, .

The affine characters form a finite-dimensional representation of the

modular group (Kac-Peterson 1984).



Put {Z,e/)"W'M € No, Z:el)‘ mY = M},
mY

and Pi/lJr_{Z:el)‘wl‘)‘ENZlel =M} .

Similarly,  PYM = (¢ Ay | A € No. Siej himy = M},
and P-\i-/y:{Zief)‘iwy|/\f€N’ E,E,)\ m; = M} .

Grid Fy := PYM/M. Grid interior Fpy := PYM/M.

Dual grid Ay = PJ"F”; interior Ay = PﬂL.

Note that mg + my + ...+ m, = m§ + my + ...+ m) = h, the

Coxeter number.



Highest root of g,: & = Zjel m; ajv , m; are known as co-marks.
Dual Coxeter number hY := 1+ Zjel mj’-.

Let A, denote the set of positive roots of g, and put M’ := k + h".
The affine characters can be labeled by weights in PJ"F/’J; and the
Kac-Peterson modular S matrix has the form

5)\/7#/ = RM/ Z (det W) 672WI<W/\/’H/>/M/
wew

for X, ' € PY..



But PM. = Pk 1 p; rewrite as

5)\:# = Riipv Z (det W) exp
weW

I
= Rikinv Sxip (kJrhv) ;

with A, 1 € PX  and Reypv = il21|P/QV|72 (k 4 hV) 5.

{ —2W/<W£A++h€), w+p) }

Modular S-matrix is unitary and symmetric, with symmetric affine Weyl

symmetry:
Swrp = Sawp = (detw)Sy,, Vwe watt

shifted action w.\ := w(\ + p) — p.



Modified multiplication

The affine Weyl symmetry — modified (truncated) multiplication of

characters.

Verlinde formula:

5)\.17) (S[L ¢7> (k) (51/.17>
) ) _ NY § )
<5p,0 Sp.o Z M Spo

The ratios are (discretized) Weyl characters of integrable, highest-weight

(2:) = xa(0) -

representations of g,:



Products of characters decompose as tensor products of representations

do:

@) xule) = > TY xe(0)
PEP,

where ij”# is the tensor product coefficient. Using the affine Weyl
symmetry to compare this with the Verlinde formula — (Kac-W)

WINY, = > (detw) Ty .

we Waff

The affine Weyl symmetry valid when the character is discretized results
in a modified multiplication, so that the tensor product coefficients are
modified, truncated to the fusion coefficients.
The modified multiplications of discretized Weyl-orbit functions will work

essentially the same way.



Galois symmetry

Galois symmetry is an important property of all RCFTs (Coste-Gannon
1994). The Galois symmetry of WZNW models is the motivation for a

Galois symmetry of discretized orbit functions.

Kac-Peterson S ,, is a linear combination of roots of unity
exp{—2mi{w(A+ p), 1+ p)/(k + hY)} =: ¢ with rational coefficients.

Let N € N denote the minimum such that oV = 1 for all such ¢.



Suppose gcd(¢, N) = 1 for £ € N. Define the Galois transformation t; by

and extend it linearly to sums of such terms. This transformation swaps

one primitive root of unity for another.

Equivalently, it maps A + p to £(\ + p), possibly outside the dominant

sector. Transforming back is possible, however, using the affine Weyl
group:

(N +p) = we[\] (k[N +p) , we[N] € Wt
The Galois symmetry of the modular S-matrix then follows:

ty ( 5/\,;1 ) = 6([/\] 5&[}\],[1 = EZ[M] 5)\.,173[#]



ORBIT FUNCTIONS

The affine Weyl symmetry of the orbit functions can be summarized as

follows. With a € P, we have

C)\(Wa) = C,\(a) , we watt ;
Car(a) = Ci(a), we W,
Si(wa) = (detw)Sy(a), we W, (1)

Saxn(a) = (detw)Si(a), we W,

provided X\, X\ € PV /M.



Modified multiplication of discretized Weyl-orbit functions

For any a € Pg, write

vEP,
Ci(a) Sa(a) = Z (SICS)% 5 Si(a) ,
S5(a) Sa(a) = D (CISS)5 ; Cu(a) .

forall A, i,v € P, and all X\, ji,i € P



Similarly, if A, s, € PM, and all X, ji, 7 € P, then

Ca(a) Cu(a) = D (CICOK, Cu(a)

VEPQ/’

Cr(a)Sa(a) = Y ,(SICS) s So(a)

vepM,

forany a€ Fy D IEM.



We find

w(CICO)K,, = Y (clcORy,,
we Waft
S(SICS)E . = (detw) (S|CS)R% .
WGWa“
w(CISS)% . = > (CISS)¥Y,



Galois symmetry of Weyl-orbit functions

Let N denote the minimum positive integer such that
2minay )Y 2mi(NA
(e i 7a>) — miiNNa)

forall A € Ay, a € Fuy.

Suppose ged(¢, N) = 1 for £ € N. Define the Galois transformation t; by
ty (ezm(,\,a>) — 2mit(\a) 7

and extend it linearly to sums of such terms. This transformation swaps

one primitive root of unity for another.



Applying the Galois transformation to the orbit functions, one gets
tg(C)\(a)) = C@\(a) = CA(&?) R
u(5:0) = Ss(0) = i) @

Now suppose that A € PM, ) € PM ., a€ Fy,and 3¢ Frp. Multiples of
these weights by a factor of £ will not also, in general, be part of the

same sets.



They can all, however, be moved there by appropriate elements of the

relevant affine Weyl group:

WA (EX) = t[\ € PM . W\ e WA,
WA (6R) = [ € PM . W[N] e WA,
wela] (£a) =: tfa] € Fu wela] € watt, (3)

weld] (£3) =: t3] € Fu weld] € wat



Using the affine Weyl symmetries = the Galois symmetry of the orbit

functions:
u(G@) = Cuna) = CulaD
($309) = bS5 = ald Sl 4)
Here we have defined the signs

&N = det (welX]), welX] € WA,

(3] = det(we[3]), we[3d] € WT. (5)



Galois symmetry also produces relations involving the decomposition
coefficients discussed above. For example, because the Galois
transformation exchanges one root of unity for another, and because the

coefficients , (C| 55)% 5 are rational, we have

tg(S;\(a))tg(Sﬁ(a)> = > w(CISS) . tg(Cu(a)>.

&N S, (@) &lil] Supm(a) = Y 4 (CISSK , Cupi(a) -



so that

o[\ ] Z (C|SS)Y o[t G.(a)

VGPM

= Z M<C|SS>§’[L Cttz[l/](a) .

vepPM

Orthogonality relations for C,(a) =

A &l (C155)y (clss)iy’ -

t[fLteld] — M

Similar relations for the other decomposition coefficients.



CONCLUSION (Future Work?)

(Generalized?) Orbit Functions &= Conformal Field Theory

v < Modified multiplication, Galois symmetries (Hrivnak-W)

7 < Fusion generators and bases (Gannon-Walton 1999)

7 = Pasquier algebras, NIM-reps, boundary conditions, .. .7

Chevalley groups = ?

?



