Weyl Orbit Functions and

Conformal Field Theory

Mark Walton

Lie Theory and Mathematical Physics
CRM, Montréal, 22 May 2014

Collaborator: Jiří Hrivnák (Prague); supported in part by NSERC.

IDEA

for example

?

Discretized Weyl-orbit functions

$$
S_{\lambda}(a)=\sum_{w \in W}(\operatorname{det} w) e^{2 \pi i\langle w \lambda, a\rangle}
$$

Affine modular data, modular S-matrix of WZNW conformal field theory

$$
S_{\lambda, \mu} \propto \sum_{w \in W}(\operatorname{det} w) e^{-2 \pi i\langle w \lambda, \mu\rangle / M^{\prime}}
$$

Incidentally, the relation between affine modular data and Weyl-orbit functions, of both S and C type, was exploited in

Gannon-Jakovljevic-Walton 1995.
Simple Lie algebra weight multiplicities were extracted using these objects and their symmetries.

Quella has done work similar in spirit (2002).

OUTLINE

- (Weyl-)Orbit Functions
- Affine (Wess-Zumino-Novikov-Witten) Modular Data
- Modified Multiplication, Galois Symmetry
- Conclusion

Notation

G compact, simple Lie group, rank n, Lie algebra g_{n}

Simple roots: $\Pi=\left\{\alpha_{j} \mid j \in\{1, \ldots, n\}=: I\right\}$, normalized $\left|\alpha_{\text {long }}\right|^{2}=2$. Primitive reflections $r_{\alpha_{j}}=r_{j}$ generate Weyl group $W=\left\langle r_{j} \mid j \in I\right\rangle$
Coxeter-Dynkin diagram of g_{n} encodes W.

$$
\begin{aligned}
& B_{n}(n \geq 3) \underset{1}{\mathrm{O}-\mathrm{O}-\cdots-\mathrm{O}=}{ }_{n-1} n \\
& C_{n}(n \geq 2) \underset{1}{\bullet-} \underset{2}{\bullet}-\cdots \xrightarrow[n-1 n]{\bullet} 0
\end{aligned}
$$

Notation

Fundamental weights $\Phi=\left\{\omega_{j} \mid j \in I\right\}$ weight space $P_{\mathbb{R}}:=\mathbb{R} \Phi \cong \mathbb{R}^{n}$

Non-negative weights: $P_{+, \mathbb{R}}:=\mathbb{R}_{\geq 0} \Phi$; positive weights $P_{++, \mathbb{R}}:=\mathbb{R}_{>0} \Phi$

Weight lattice $P:=\mathbb{Z} \Phi$; dominant (regular) integral weights:

$$
P_{+}:=\mathbb{N}_{0} \Phi\left(P_{++}:=\mathbb{N} \Phi\right) .
$$

Roots Δ, long (short) roots $\Delta^{\ell}\left(\Delta^{s}\right)$, positive roots: Δ_{+}, etc.

Root system of C_{2} :

Root system of G_{2} :

ORBIT FUNCTIONS

Weyl-orbit functions: program of study as "special functions" initiated with Patera 2003; general, systematic study launched with Klimyk-Patera 2006-08.

C-functions, or Weyl-orbit sums, are

$$
C_{\lambda}(a)=\sum_{w \in W} e^{2 \pi i\langle w \lambda, a\rangle}
$$

where $\lambda, a \in P_{\mathbb{R}}$.

So-named since $g_{n}=A_{1} \rightarrow C_{\lambda}(a)=2 \cos (2 \pi i\langle\lambda, a\rangle)$
W-invariance: $C_{w \lambda}(a)=C_{\lambda}(w a)=C_{\lambda}(a), \forall w \in W$.
Restrict to $\lambda, a \in P_{+, \mathbb{R}}$, the fundamental region of W.
S-functions are the antisymmetric Weyl-orbit sums

$$
S_{\lambda}(a)=\sum_{w \in W}(\operatorname{det} w) e^{2 \pi i\langle w \lambda, a\rangle}
$$

$$
g_{n}=A_{1} \rightarrow S_{\lambda}(a)=2 i \sin (2 \pi i\langle\lambda, a\rangle)
$$

W-antisymmetry: $S_{w \lambda}(a)=S_{\lambda}(w a)=(\operatorname{det} w) S_{\lambda}(a), \forall w \in W$.
S-functions vanish on $\partial P_{+, \mathbb{R}}, \operatorname{int}\left(P_{+, \mathbb{R}}\right)=: \tilde{P}_{+, \mathbb{R}}$.

Other "trig" possibility:

$$
E_{\lambda}(a)=\sum_{w \in W_{e}} e^{2 \pi i\langle w \lambda, a\rangle}
$$

$W_{e} \subset W$ subgroup of even elements.
$g_{n}=A_{1} \rightarrow E_{\lambda}(a)=e^{2 \pi i\langle w \lambda, a\rangle}$.

Non-simply-laced algebras, generalize to S^{ℓ} - and S^{s}-functions, via

$$
\varphi_{\lambda}^{\sigma}(a)=\sum_{w \in W} \sigma(w) e^{2 \pi i\langle w \lambda, a\rangle}
$$

$\sigma(w)$ is a sign homomorphism on W.
$\sigma=1$, det $\Rightarrow C$-, S-functions, respectively.
$\sigma^{s}\left(r_{i}\right)=-1(+1)$, if α_{i} is a short (long) simple root, respectively.
Opposite definition for σ^{ℓ}.
$\sigma=\sigma^{s}, \sigma^{\ell} \Rightarrow \varphi=S^{s}$-, S^{ℓ}-functions, respectively.

Ratios \Rightarrow characters, and "hybrid characters":

$$
\chi_{\lambda}(a)=\frac{S_{\lambda+\rho}(a)}{S_{\rho}(a)}, \quad \chi_{\lambda}^{\ell}(a)=\frac{S_{\lambda+\rho^{\ell}}^{\ell}(a)}{S_{\rho^{\ell}}^{\ell}(a)}, \quad \chi_{\lambda}^{s}(a)=\frac{S_{\lambda+\rho^{\ell}}^{s}(a)}{S_{\rho^{\ell}}^{s}(a)} ;
$$

where

$$
\rho^{\ell}=\frac{1}{2} \sum_{\alpha \in \Delta_{+}^{\ell}} \alpha=\sum_{\alpha_{i} \in \Pi \cap \Delta_{+}^{\ell}} \omega_{i} ;
$$

ρ^{5} similarly; and ρ is the usual Weyl vector.

Focus here on the C - and S-functions, and characters χ.

Properties of orbit functions

Restricting weight-labels $\lambda \in P=\mathbb{Z} \Phi \Rightarrow$ affine Weyl symmetry:

$$
\begin{aligned}
& C_{\lambda}(w a)=C_{\lambda}(a), \quad S_{\lambda}(w a)=(\operatorname{det} w) S_{\lambda}(a), \\
& \text { or } \quad \varphi_{\lambda}^{\sigma}(w a)=\sigma(w) \varphi_{\lambda}^{\sigma}(a), \quad \forall w \in W^{\text {aff }} .
\end{aligned}
$$

Affine Weyl group $W^{\text {aff }}=Q^{\vee} \rtimes W=\left\langle r_{j} \mid j \in \hat{I}\right\rangle$, where $\hat{I}:=\{0,1, \ldots, n\}$.
0 -th simple reflection: $r_{0} a=r_{\xi} a+\frac{2 \xi}{\langle\xi, \xi\rangle}, \xi$ highest root of g_{n}.

Extended Coxeter-Dynkin diagram encodes the affine Weyl group $W^{\text {aff }}$:

$B_{n}, n \geq 3$ C-

E_{6}

E_{7}

E_{8}

F_{4}

Fundamental domain of $W^{\text {aff }}$,

$$
F=\operatorname{Conv}\left\{0, \frac{\omega_{1}^{\vee}}{m_{1}}, \ldots, \frac{\omega_{n}^{\vee}}{m_{n}}\right\} .
$$

$m_{j} \in \mathbb{N}$ known as marks, and $\xi=m_{1} \alpha_{1}+\cdots+m_{n} \alpha_{n}$. Put $m_{0}=1$.
$\phi^{\vee}:=\left\{\omega_{1}^{\vee}, \ldots, \omega_{n}^{\vee}\right\}$ denote the dual fundamental weights, satisfying $\left\langle\omega_{i}^{\vee}, \alpha_{j}\right\rangle=\delta_{i, j}$.

They are the fundamental weights of the dual Lie algebra g_{n}^{\vee}.
Short \leftrightarrow long roots: Coxeter-Dynkin diagram of $g_{n} \Rightarrow$ diagram of g_{n}^{\vee}.
Dual roots α_{j}^{\vee} satisfy $\left\langle\alpha_{i}^{\vee}, \omega_{j}\right\rangle=\delta_{i, j}(i, j \in I)$.

Reflections $r_{j}^{\vee}=r_{j}(j \in I)$ associated with the α_{i}^{\vee} generate the same Weyl group W, but a different affine Weyl group arises:
$\widehat{W}^{\text {aff }}=Q \rtimes W$.

$$
r_{0}^{\vee} a=r_{\eta} a+\frac{2 \eta}{\langle\eta, \eta\rangle} .
$$

Highest dual root $\eta=:-\alpha_{0}^{\vee}=m_{1}^{\vee} \alpha_{1}^{\vee}+\ldots+m_{n}^{\vee} \alpha_{n}^{\vee}$
defines the dual marks $m_{j}^{\vee}, j \in I$; put $m_{0}^{\vee}=1$.
$\lambda \in P \Rightarrow$ consider $\varphi_{\lambda}^{\sigma}(a)$ a function on the fundamental domain F of $W^{\text {aff }}$.

Orbit function $\varphi_{\lambda}^{\sigma}$ is an eigenfunction of the Laplace operator on F with
Neumann (Dirichlet) boundary conditions on $\sigma(r)=+1(\sigma(r)=-1)$
hyperplanes.
$g_{n}=G_{2}$ example of a fundamental region F, shaded here:

Dual affine Weyl symmetry:

Restricting weight-arguments $a \in P^{\vee}=\mathbb{Z} \Phi^{\vee} \Rightarrow$ affine dual Weyl symmetry:

$$
\begin{aligned}
& C_{w \lambda}(a)=C_{\lambda}(a), \quad S_{w \lambda}(a)=(\operatorname{det} w) S_{\lambda}(a), \\
& \text { or } \quad \varphi_{w \lambda}^{\sigma}(a)=\sigma(w) \varphi_{\lambda}^{\sigma}(a), \quad \forall w \in \widehat{W}^{\text {aff }} .
\end{aligned}
$$

The fundamental region of $\widehat{W^{\text {aff }}}$, or dual fundamental domain, is $F^{\vee}=\operatorname{Conv}\left\{0, \frac{\omega_{1}}{m_{1}^{1}}, \ldots, \frac{\omega_{n}}{m_{n}^{\vee}}\right\}$.

Generalizations of Chebyshev polynomials (Nesterenko-Patera-Tereszkiewicz 2011):

Polynomials constructed 3 ways:

- Most familiar: $X_{j}:=e^{2 \pi i x_{j}}$
- When C_{λ} can be written as a sum of cosines, then it can be written in terms of basic ones using trig identities. Then these basic cosines can become the new variables.
- $X_{j}:=C_{\omega_{j}}(x)$ and $S:=S_{\rho}(x)$.

Decompose $X_{j} C_{\lambda} \rightarrow$ recursion relations defining the polynomials.
(Also $X_{j}:=S_{\omega_{i}}(x)$ and $X_{j}:=\chi_{\omega_{i}}(x)$, of course.)

Continuous orthogonality:

$$
\begin{gathered}
\left\langle C_{\lambda}, C_{\lambda^{\prime}}\right\rangle:=|F|^{-1} \int_{F} C_{\lambda}(x) \overline{C_{\lambda^{\prime}}(x)} d x=|W \lambda| \delta_{\lambda, \lambda^{\prime}} \\
\text { for } \lambda, \lambda^{\prime} \in P_{+} .
\end{gathered}
$$

Discrete orthogonality:

$$
\langle f, g\rangle_{M}:=|W| \sum_{x \in F_{M}} f(x) \overline{g(x)}
$$

where $F_{M}:=\frac{1}{M} P^{\vee} / Q^{\vee} \cap F$ is the discretized fundamental domain, or "grid"; M controls the fineness, or resolution of the discretization.
$g_{n}=C_{2}$ example: grid $F_{4}=\frac{1}{4} P^{\vee} / Q^{\vee} \cap F$.
Dots in $\frac{1}{4} P^{\vee} / Q^{\vee}$, and $\left|F_{4}\right|=9$ (fundamental region F shaded).

Discrete orthogonality (Moody-Patera 2006):

$$
\begin{gathered}
\left\langle C_{\lambda}, C_{\lambda^{\prime}}\right\rangle_{M}=c_{G} M^{n}|W \lambda| \delta_{\lambda, \lambda^{\prime}}, \\
\text { for } \lambda, \lambda^{\prime} \in \Lambda_{M}:=M F^{\vee} \cap P / M Q .
\end{gathered}
$$

$c_{G}=\operatorname{det}($ Cartan matrix $)=$ order of the centre of G.
$g_{n}=C_{2}$ example: "dual grid" $\Lambda_{4}=4 F^{\vee} \cap \frac{P}{4 Q}$.
Dots $\in 4 F^{\vee} \cup \frac{P}{4 Q},\left|\Lambda_{4}\right|=\left|F_{4}\right|=9$.

(Finite) orbit function transforms:

Consider data with support F, or \tilde{F}. The Weyl-orbit functions provide useful expansion bases for the analysis of functions on F, or \tilde{F}.
Digitized data, the values on the grid F_{M} in F, or \tilde{F}_{M} in $\tilde{F} . M \in \mathbb{N}$ will determine the resolution $\sim 1 / M$ of the digital data of interest.

Interpolate, by requiring

$$
f(x)=\sum_{\lambda \in \Lambda_{M}} \mathcal{F}_{\lambda} C_{\lambda}(x), \quad \forall x \in F_{M} .
$$

Discrete orthogonality \Rightarrow Discrete C-Transform

$$
\mathcal{F}_{\lambda}=\frac{1}{c_{G} M^{n}|W|} \sum_{x \in F_{M}} f(x) \overline{C_{\lambda}(x)}
$$

Cubature $=$ quadrature in higher dimensions
Cubature formula: a weighted sum of function evaluations used to approximate a multivariate integral.

$$
\begin{aligned}
\int_{\Omega} f(x) w(x) d x & \approx \sum_{j=1}^{N} w_{j} L_{j}[f] \\
L_{j}[f] & =f\left(x_{j}\right), \text { e.g. }
\end{aligned}
$$

Exact $(\approx \rightarrow=)$ cubature formulas are possible if one restricts to a certain class of functions.

Such exact cubature formulas are found using the orbit functions (H. Li
\& Y. Xu 2010, Moody-Patera 2011).

Define domain $\Omega=\left\{\left(X_{1}(x), \ldots, X_{n}(x)\right): x \in \tilde{F}\right\} \subset \mathbb{C}^{n}$.
Put m-degree of X_{i} as m_{i}^{\vee}, then $m-\operatorname{deg}\left(S_{\rho}\right)=h-1$.

For any function f on Ω, define

$$
\tilde{f}(x):=f\left(\chi_{\omega_{1}}(x), \ldots, \chi_{\omega_{n}}(x)\right) .
$$

Cubature formula:

Polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ with m-degree $\leq 2 M+1$, have

$$
\int_{\Omega} f K^{1 / 2} d X_{1} \cdots d X_{n}=\frac{1}{c_{G}}\left(\frac{2 \pi}{M+h}\right)^{n} \sum_{x \in \tilde{F}_{M+h}} \tilde{f}(x) \tilde{K}(x) .
$$

Here $K(x):=\left|S_{\rho}(x)\right|^{2}$ and the Coxeter number $h=\sum_{j=0}^{n} m_{j}$.

Example of domain Ω for cubature formula ($M=8$ for G_{2}):

Wess-Zumino-Novikov-Witten conformal field theories: AFFINE MODULAR DATA

Objects related to the modular data of Wess-Zumino-Novikov-Witten (WZNW) models bear a striking resemblance to the discretized

Weyl-orbit functions. This modular data is associated with the affine Kac-Moody algebras of untwisted type, at a fixed level, and so is also called affine modular data.

As for any RCFT, the WZNW 1-loop partition function is invariant under the modular group $S L(2 ; \mathbb{Z})$, with generators S and T. genus- 1 conformal blocks \cong characters of the untwisted affine Kac-Moody algebra at fixed level, sometimes denoted $g_{n, k}$.

The affine characters form a finite-dimensional representation of the modular group (Kac-Peterson 1984).

Put $P_{+}^{M}=\left\{\sum_{i \in \hat{\imath}} \lambda_{i} \omega_{i} \mid \lambda_{i} \in \mathbb{N}_{0}, \sum_{i \in \hat{\imath}} \lambda_{i} m_{i}^{\vee}=M\right\}$, and $\quad P_{++}^{M}=\left\{\sum_{i \in \hat{\imath}} \lambda_{i} \omega_{i} \mid \lambda_{i} \in \mathbb{N}, \sum_{i \in \hat{\imath}} \lambda_{i} m_{i}^{\vee}=M\right\}$.

Similarly, $\quad P_{+}^{\vee M}=\left\{\sum_{i \in \hat{\imath}} \lambda_{i} \omega_{i}^{\vee} \mid \lambda_{i} \in \mathbb{N}_{0}, \sum_{i \in \hat{\imath}} \lambda_{i} m_{i}=M\right\}$, and $\quad P_{++}^{\vee M}=\left\{\sum_{i \in \hat{I}} \lambda_{i} \omega_{i}^{\vee} \mid \lambda_{i} \in \mathbb{N}, \sum_{i \in \hat{I}} \lambda_{i} m_{i}=M\right\}$.

Grid $F_{M}:=P_{+}^{\vee M} / M$. Grid interior $\tilde{F}_{M}:=P_{++}^{\vee M} / M$.

Dual grid $\Lambda_{M}=P_{+}^{M}$; interior $\tilde{\Lambda}_{M}=P_{++}^{M}$.

Note that $m_{0}+m_{1}+\ldots+m_{n}=m_{0}^{\vee}+m_{1}^{\vee}+\ldots+m_{n}^{\vee}=h$, the
Coxeter number.

Highest root of $g_{n}: \xi=\sum_{j \in I} m_{j}^{\prime} \alpha_{j}^{\vee}, \quad m_{j}^{\prime}$ are known as co-marks.
Dual Coxeter number $h^{\vee}:=1+\sum_{j \in I} m_{j}^{\prime}$.
Let Δ_{+}denote the set of positive roots of g_{n} and put $M^{\prime}:=k+h^{\vee}$.
The affine characters can be labeled by weights in $P_{++}^{M^{\prime}}$, and the Kac-Peterson modular S matrix has the form

$$
S_{\lambda^{\prime}, \mu^{\prime}}=R_{M^{\prime}} \sum_{w \in W}(\operatorname{det} w) e^{-2 \pi i\left\langle w \lambda^{\prime}, \mu^{\prime}\right\rangle / M^{\prime}}
$$

for $\lambda^{\prime}, \mu^{\prime} \in P_{++}^{M^{\prime}}$.

But $P_{++}^{M^{\prime}}=P_{+}^{k}+\rho$; rewrite as

$$
\begin{aligned}
S_{\lambda, \mu}=R_{k+h \vee} & \sum_{w \in W}(\operatorname{det} w) \exp \left\{\frac{-2 \pi i\langle w(\lambda+\rho), \mu+\rho\rangle}{k+h^{\vee}}\right\} \\
= & R_{k+h^{\vee}} S_{\lambda+\rho}\left(\frac{\mu}{k+h^{\vee}}\right),
\end{aligned}
$$

with $\lambda, \mu \in P_{+}^{k}$, and $R_{k+h^{\vee}}=i^{\left\|\Delta_{+}\right\|}\left|P / Q^{\vee}\right|^{-\frac{1}{2}}\left(k+h^{\vee}\right)^{-\frac{r}{2}}$.

Modular S-matrix is unitary and symmetric, with symmetric affine Weyl symmetry:

$$
S_{w \cdot \lambda, \mu}=S_{\lambda, w \cdot \mu}=(\operatorname{det} w) S_{\lambda, \mu}, \quad \forall w \in W^{\text {aff }} ;
$$

shifted action $w \cdot \lambda:=w(\lambda+\rho)-\rho$.

Modified multiplication

The affine Weyl symmetry \rightarrow modified (truncated) multiplication of characters.

Verlinde formula:

$$
\left(\frac{S_{\lambda, \sigma}}{S_{\rho, \sigma}}\right)\left(\frac{S_{\mu, \sigma}}{S_{\rho, \sigma}}\right)=\sum_{\nu \in P_{+}^{k}}{ }^{(k)} N_{\lambda, \mu}^{\nu}\left(\frac{S_{\nu, \sigma}}{S_{\rho, \sigma}}\right) .
$$

The ratios are (discretized) Weyl characters of integrable, highest-weight representations of g_{n} :

$$
\left(\frac{S_{\lambda, \sigma}}{S_{\rho, \sigma}}\right)=\chi_{\lambda}(\sigma)
$$

Products of characters decompose as tensor products of representations do:

$$
\chi_{\lambda}(\sigma) \chi_{\mu}(\sigma)=\sum_{\phi \in P_{+}} T_{\lambda, \mu}^{\phi} \chi_{\phi}(\sigma),
$$

where $T_{\lambda, \mu}^{\phi}$ is the tensor product coefficient. Using the affine Weyl symmetry to compare this with the Verlinde formula \rightarrow (Kac-W)

$$
{ }^{(k)} N_{\lambda, \mu}^{\nu}=\sum_{w \in W^{\text {aff }}}(\operatorname{det} w) T_{\lambda, \mu}^{w, \nu} .
$$

The affine Weyl symmetry valid when the character is discretized results in a modified multiplication, so that the tensor product coefficients are modified, truncated to the fusion coefficients.

The modified multiplications of discretized Weyl-orbit functions will work essentially the same way.

Galois symmetry

Galois symmetry is an important property of all RCFTs (Coste-Gannon 1994). The Galois symmetry of WZNW models is the motivation for a Galois symmetry of discretized orbit functions.

Kac-Peterson $S_{\lambda, \mu}$ is a linear combination of roots of unity $\exp \left\{-2 \pi i\langle w(\lambda+\rho), \mu+\rho\rangle /\left(k+h^{\vee}\right)\right\}=: \varphi$ with rational coefficients.
Let $N \in \mathbb{N}$ denote the minimum such that $\varphi^{N}=1$ for all such φ.

Suppose $\operatorname{gcd}(\ell, N)=1$ for $\ell \in \mathbb{N}$. Define the Galois transformation t_{ℓ} by

$$
t_{\ell}(\varphi):=\varphi^{\ell}
$$

and extend it linearly to sums of such terms. This transformation swaps one primitive root of unity for another.

Equivalently, it maps $\lambda+\rho$ to $\ell(\lambda+\rho)$, possibly outside the dominant sector. Transforming back is possible, however, using the affine Weyl group:

$$
\ell(\lambda+\rho)=w_{\ell}[\lambda]\left(t_{\ell}[\lambda]+\rho\right), \quad w_{\ell}[\lambda] \in W^{\mathrm{aff}} .
$$

The Galois symmetry of the modular S-matrix then follows:

$$
t_{\ell}\left(S_{\lambda, \mu}\right)=\epsilon_{\ell}[\lambda] S_{t_{\ell}[\lambda], \mu}=\epsilon_{\ell}[\mu] S_{\lambda, t_{\ell}[\mu]}
$$

ORBIT FUNCTIONS

The affine Weyl symmetry of the orbit functions can be summarized as follows. With $a \in P$, we have

$$
\begin{array}{r}
C_{\lambda}(w a)=C_{\lambda}(a), \quad w \in W^{\mathrm{aff}} ; \\
C_{\hat{w} \lambda}(a)=C_{\lambda}(a), \quad \hat{w} \in \widehat{W}^{\mathrm{aff}} ; \\
S_{\tilde{\lambda}}(w a)=(\operatorname{det} w) S_{\lambda}(a), \quad w \in W^{\mathrm{aff}} ; \tag{1}\\
S_{\hat{w} \lambda}(a)=(\operatorname{det} \hat{w}) S_{\lambda}(a), \quad \hat{w} \in \widehat{W}^{\mathrm{aff}} ;
\end{array}
$$

provided $\lambda, \tilde{\lambda} \in P^{\vee} / M$.

Modified multiplication of discretized Weyl-orbit functions

For any $a \in P_{\mathbb{R}}$, write

$$
\begin{aligned}
& C_{\lambda}(a) C_{\mu}(a)=\sum_{\nu \in P_{+}}\langle C \mid C C\rangle_{\lambda, \mu}^{\nu} C_{\nu}(a), \\
& C_{\lambda}(a) S_{\tilde{\mu}}(a)=\sum_{\tilde{\nu} \in P_{++}}\langle S \mid C S\rangle_{\lambda, \tilde{\mu}}^{\tilde{\mu}} S_{\tilde{\nu}}(a), \\
& S_{\tilde{\lambda}}(a) S_{\tilde{\mu}}(a)=\sum_{\nu \in P_{+}}\langle C \mid S S\rangle_{\tilde{\lambda}, \tilde{\mu}}^{\nu} C_{\nu}(a),
\end{aligned}
$$

for all $\lambda, \mu, \nu \in P_{+}$, and all $\tilde{\lambda}, \tilde{\mu}, \tilde{\nu} \in P_{++}$.

Similarly, if $\lambda, \mu, \nu \in P_{+}^{M}$, and all $\tilde{\lambda}, \tilde{\mu}, \tilde{\nu} \in P_{++}^{M}$, then

$$
\begin{aligned}
& C_{\lambda}(a) C_{\mu}(a)=\sum_{\nu \in P_{+}^{M}} M\langle C \mid C C\rangle_{\lambda, \mu}^{\nu} C_{\nu}(a), \\
& C_{\lambda}(a) S_{\tilde{\mu}}(a)=\sum_{\tilde{\nu} \in P_{++}^{M}} M\langle S \mid C S\rangle_{\lambda, \tilde{\mu}}^{\tilde{\tilde{\mu}}} S_{\tilde{\nu}}(a) \\
& S_{\tilde{\lambda}}(a) S_{\tilde{\mu}}(a)=\sum_{\nu \in P_{+}^{M}} M\langle C \mid S S\rangle_{\tilde{\lambda}, \tilde{\mu}}^{\nu} C_{\nu}(a),
\end{aligned}
$$

for any $a \in F_{M} \supset \tilde{F}_{M}$.

We find

$$
\begin{gathered}
M^{\langle }\langle C \mid C C\rangle_{\lambda, \mu}^{\nu}=\sum_{\hat{w} \in \widehat{W}^{\text {aff }}}\langle C \mid C C\rangle_{\lambda, \mu}^{\hat{\omega} \nu}, \\
{ }_{M}\langle S \mid C S\rangle_{\lambda, \tilde{\mu}}^{\tilde{\nu}}=\sum_{\hat{\hat{w}} \in \widehat{W}^{\text {aff }}}(\operatorname{det} w)\langle S \mid C S\rangle_{\lambda, \tilde{\mu}}^{\hat{\nu} \tilde{\tilde{\mu}}}, \\
M^{\langle C \mid S S\rangle_{\tilde{\lambda}, \tilde{\mu}}^{\nu}=\sum_{\hat{\hat{w}} \in \widehat{W}^{\text {aff }}}\langle C \mid S S\rangle_{\hat{\lambda}, \tilde{\mu}}^{\hat{\tilde{\mu}} \nu} .} .
\end{gathered}
$$

Galois symmetry of Weyl-orbit functions

Let N denote the minimum positive integer such that

$$
\left(e^{2 \pi i\langle\lambda, a\rangle}\right)^{N}=e^{2 \pi i\langle N \lambda, a\rangle}=1
$$

for all $\lambda \in \Lambda_{M}, a \in F_{M}$.

Suppose $\operatorname{gcd}(\ell, N)=1$ for $\ell \in \mathbb{N}$. Define the Galois transformation t_{ℓ} by

$$
t_{\ell}\left(e^{2 \pi i\langle\lambda, a\rangle}\right):=e^{2 \pi i \ell\langle\lambda, a\rangle}
$$

and extend it linearly to sums of such terms. This transformation swaps one primitive root of unity for another.

Applying the Galois transformation to the orbit functions, one gets

$$
\begin{align*}
t_{\ell}\left(C_{\lambda}(a)\right) & =C_{\ell \lambda}(a)=C_{\lambda}(\ell a) \\
t_{\ell}\left(S_{\tilde{\lambda}}(\tilde{a})\right) & =S_{\ell \tilde{\lambda}}(\tilde{a})=S_{\tilde{\lambda}}(\ell \tilde{a}) \tag{2}
\end{align*}
$$

Now suppose that $\lambda \in P_{+}^{M}, \tilde{\lambda} \in P_{++}^{M}, a \in F_{M}$, and $\tilde{a} \in \tilde{F}_{M}$. Multiples of these weights by a factor of ℓ will not also, in general, be part of the same sets.

They can all, however, be moved there by appropriate elements of the relevant affine Weyl group:

$$
\begin{array}{rll}
\hat{w}_{\ell}[\lambda](\ell \lambda)=: t_{\ell}[\lambda] \in P_{+}^{M}, & & \hat{w}_{\ell}[\lambda] \in \widehat{W}^{\text {aff }} ; \\
\hat{w}_{\ell}[\tilde{\lambda}](\ell \tilde{\lambda})=: t_{\ell}[\tilde{\lambda}] \in P_{++}^{M}, & & \hat{w}_{\ell}[\tilde{\lambda}] \in \widehat{W}^{\text {aff }} ; \\
w_{\ell}[a](\ell a)=: t_{\ell}[a] \in F_{M}, & & w_{\ell}[a] \in W^{\text {aff }} ; \tag{3}\\
w_{\ell}[\tilde{a}](\ell \tilde{a})=: t_{\ell}[\tilde{a}] \in \tilde{F}_{M}, & & w_{\ell}[\tilde{a}] \in W^{\text {aff }} .
\end{array}
$$

Using the affine Weyl symmetries \Rightarrow the Galois symmetry of the orbit functions:

$$
\begin{array}{r}
t_{\ell}\left(C_{\lambda}(a)\right)=C_{t_{\ell}[\lambda]}(a)=C_{\lambda}\left(t_{\ell}[a]\right), \\
t_{\ell}\left(S_{\tilde{\lambda}}(\tilde{a})\right)=\hat{\epsilon}_{\ell}[\lambda] S_{t_{\ell}[\tilde{\lambda}]}(\tilde{a})=\epsilon_{\ell}[\tilde{a}] S_{\tilde{\lambda}}\left(t_{\ell}[\tilde{a}]\right) \tag{4}
\end{array}
$$

Here we have defined the signs

$$
\begin{align*}
\hat{\epsilon}_{\ell}[\tilde{\lambda}]:=\operatorname{det}\left(\hat{w}_{\ell}[\tilde{\lambda}]\right), \quad \hat{w}_{\ell}[\tilde{\lambda}] \in \widehat{W}^{\text {aff }} ; \\
\epsilon_{\ell}[\tilde{a}]:=\operatorname{det}\left(w_{\ell}[\tilde{a}]\right), \quad w_{\ell}[\tilde{a}] \in W^{\text {aff }} . \tag{5}
\end{align*}
$$

Galois symmetry also produces relations involving the decomposition coefficients discussed above. For example, because the Galois transformation exchanges one root of unity for another, and because the coefficients ${ }_{M}\langle C \mid S S\rangle_{\tilde{\lambda}, \tilde{\mu}}^{\nu}$ are rational, we have

$$
\Rightarrow
$$

$$
\begin{aligned}
& t_{\ell}\left(S_{\tilde{\lambda}}(a)\right) t_{\ell}\left(S_{\tilde{\mu}}(a)\right)=\sum_{\nu \in P_{+}^{M}} M\langle C \mid S S\rangle_{\tilde{\lambda}, \tilde{\mu}}^{\nu} t_{\ell}\left(C_{\nu}(a)\right) . \\
& \left.\hat{\epsilon}_{\ell}[\tilde{\lambda}] S_{t_{\ell}[\tilde{\lambda}]}(a) \hat{\epsilon}_{\ell}[\tilde{\mu}] S_{t_{\ell}[\tilde{\mu}]}(a)=\sum_{\nu \in P_{+}^{M}} M|C| S S\right\rangle_{\tilde{\lambda}, \tilde{\mu}}^{\nu} C_{t_{\ell}[\nu]}(a) .
\end{aligned}
$$

so that

$$
\begin{aligned}
\hat{\epsilon}_{\ell}[\tilde{\lambda}] \hat{\epsilon}_{\ell}[\tilde{\mu}] & \sum_{\nu \in P_{+}^{M}} M \\
= & \sum_{\nu \in P_{+}^{M}} M|S S\rangle_{t_{\ell}[\tilde{\lambda}], t_{\ell}[\tilde{\mu}]}^{\nu} C_{\nu}(a) \\
&
\end{aligned}
$$

Orthogonality relations for $C_{\nu}(a) \Rightarrow$

$$
\hat{\epsilon}_{\ell}[\tilde{\lambda}] \hat{\epsilon}_{\ell}[\tilde{\mu}]_{M}\langle C \mid S S\rangle_{t_{\ell}[\tilde{\lambda}], t_{\ell}[\tilde{\mu}]}^{\nu}={ }_{M}\langle C \mid S S\rangle_{\tilde{\lambda}, \tilde{\mu}}^{t_{\ell}[\nu]} .
$$

Similar relations for the other decomposition coefficients.

CONCLUSION (Future Work?)

(Generalized?) Orbit Functions $\quad \Leftrightarrow \quad$ Conformal Field Theory
$\checkmark \quad \Leftarrow$ Modified multiplication, Galois symmetries (Hrivnák-W)
? $\quad \Leftarrow$ Fusion generators and bases (Gannon-Walton 1999)
? $\quad \Rightarrow \quad$ Pasquier algebras, NIM-reps, boundary conditions, . . . ?

Chevalley groups $\quad \Rightarrow \quad$?

