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IDEA

Discretized Weyl-orbit
functions

Sλ(a) =
∑
w∈W

(detw)e2πi〈wλ,a〉

for example

?

⇐
⇒

Affine modular data, modular
S-matrix of WZNW

conformal field theory

Sλ,µ ∝
∑
w∈W

(detw)e−2πi〈wλ,µ〉/M′

... ?



Incidentally, the relation between affine modular data and Weyl-orbit

functions, of both S and C type, was exploited in

Gannon-Jakovljevic-Walton 1995.

Simple Lie algebra weight multiplicities were extracted using these

objects and their symmetries.

Quella has done work similar in spirit (2002).
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Notation

G compact, simple Lie group, rank n, Lie algebra gn

Simple roots: Π = {αj | j ∈ {1, . . . , n} =: I}, normalized |αlong|2 = 2.

Primitive reflections rαj
= rj generate Weyl group W = 〈 rj | j ∈ I 〉

Coxeter-Dynkin diagram of gn encodes W .

Chapter 1

SPECIAL FUNCTIONS OF WEYL GROUPS

1.1. Weyl groups of simple Lie algebras
We wish to investigate special functions related to Weyl groups arising from

simple Lie algebras. There are four series of simple Lie algebras An(n ≥ 1),
Bn(n ≥ 3), Cn(n ≥ 2), Dn(n ≥ 4) and five exceptional simple Lie algebras E6,
E7, E8, F4 and G2, each connected with a unique Weyl group [2, 19, 20, 29, 60].
They are completely classified by Dynkin diagrams (see Figure 1.1). A Dynkin
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Figure 1.1. Dynkin diagrams of simple Lie algebras.

diagram characterizes a set ∆ of simple roots α1, . . . , αn generating an Euclidean
space isomorphic to Rn with the scalar product denoted by 〈·, ·〉. Each node of
the Dynkin diagram represents one simple root αi. The number of links between
two nodes corresponding to αi and αj respectively is equal to

〈αi, α∨j 〉〈αj, α∨i 〉 , where α∨i ≡
2αi
〈αi, αi〉

.

The absence of direct link between two nodes indicates that the corresponding
simple roots are orthogonal. One direct link means that the angle between the
corresponding simple roots is 2π/3, two and three links stay for the angle 3π/4



Notation

Fundamental weights Φ = {ωj | j ∈ I}
weight space PR := RΦ ∼= Rn

Non-negative weights: P+,R := R≥0 Φ;
positive weights P++,R := R>0 Φ

Weight lattice P := ZΦ;
dominant (regular) integral weights:
P+ := N0 Φ (P++ := NΦ).

Roots ∆, long (short) roots ∆` (∆s),
positive roots: ∆+, etc.



ORBIT FUNCTIONS

Weyl-orbit functions: program of study as “special functions”

initiated with Patera 2003; general, systematic study

launched with Klimyk-Patera 2006-08.

C -functions, or Weyl-orbit sums, are

Cλ(a) =
∑
w∈W

e2πi〈wλ,a〉 ,

where λ, a ∈ PR.

So-named since gn = A1 → Cλ(a) = 2 cos (2πi〈λ, a〉)
W -invariance: Cwλ(a) = Cλ(wa) = Cλ(a) , ∀w ∈W .

Restrict to λ, a ∈ P+,R, the fundamental region of W .



S-functions are the antisymmetric Weyl-orbit sums

Sλ(a) =
∑
w∈W

(detw) e2πi〈wλ,a〉 .

gn = A1 → Sλ(a) = 2i sin (2πi〈λ, a〉)
W -antisymmetry: Swλ(a) = Sλ(wa) = (detw)Sλ(a) , ∀w ∈W .

S-functions vanish on ∂P+,R, int(P+,R) =: P̃+,R.

Other “trig” possibility:

Eλ(a) =
∑

w∈We

e2πi〈wλ,a〉

We ⊂W subgroup of even elements.

gn = A1 → Eλ(a) = e2πi〈wλ,a〉.



Non-simply-laced algebras, generalize to S`- and S s -functions, via

ϕσλ(a) =
∑
w∈W

σ(w) e2πi〈wλ,a〉 .

σ(w) is a sign homomorphism on W .

σ = 1, det ⇒ C -, S-functions, respectively.

σs(ri ) = −1 (+1), if αi is a short (long) simple root, respectively.

Opposite definition for σ`.

σ = σs , σ` ⇒ ϕ = S s -, S`-functions, respectively.



Ratios ⇒ characters, and “hybrid characters”:

χλ(a) =
Sλ+ρ(a)

Sρ(a)
, χ`λ(a) =

S`λ+ρ`(a)

S`
ρ`

(a)
, χs

λ(a) =
S s
λ+ρ`(a)

S s
ρ`

(a)
;

where

ρ` =
1

2

∑
α∈∆`

+

α =
∑

αi∈Π∩∆`
+

ωi ;

ρs similarly; and ρ is the usual Weyl vector.

Focus here on the C - and S-functions, and characters χ.



Properties of orbit functions

Restricting weight-labels λ ∈ P = ZΦ ⇒ affine Weyl symmetry:

Cλ(wa) = Cλ(a) , Sλ(wa) = (detw)Sλ(a) ,

or ϕσλ(wa) = σ(w)ϕσλ(a) , ∀w ∈W aff .

Affine Weyl group W aff = Q∨ o W = 〈rj | j ∈ Î 〉 ,
where Î := {0, 1, . . . , n}.
0-th simple reflection: r0 a = rξa + 2ξ

〈ξ,ξ〉 , ξ highest root of gn.



Extended Coxeter-Dynkin diagram encodes the affine Weyl group W aff :
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Figure 1. The extended Coxeter–Dynkin diagrams of simple Lie algebras and their numbering.
The extension root carries number 0.

• The root lattice Q of G:

Q = {α ∈ Rn | 〈α, ω∨〉 ∈ Z,∀ω∨ ∈ P ∨} = Zα1 + · · · + Zαn. (2)

• The Z-dual lattice to Q:

P ∨ = {ω∨ ∈ Rn | 〈ω∨, α〉 ∈ Z,∀α ∈ �} = Zω∨
1 + · · · + Zω∨

n .

• The dual root lattice

Q∨ = Zα∨
1 + · · · + Zα∨

n , where α∨
i = 2αi

〈αi, αi〉 .

• The extended Coxeter–Dynkin diagram (DD) of G—this diagram describes the system
of the simple roots � together with the highest root ξ = −α0. The kth node corresponds
to the vector αk, k = 0, . . . , n. Direct links between two nodes indicate the absence
of orthogonality between the pair of the corresponding vectors. Single, double and
triple vertices imply that relative angles between these vectors are 2π/3, 3π/4, 5π/6,
respectively. Quadruple vertex, which appears for the case A1 only, denotes the fact that
the highest root and the simple root coincide. Colors of the nodes indicate relative length
of αk . For the cases Bn,Cn and F4 the squared length of the black node (short root) is
half of the squared length of the white node (long root). For G2, the squared length of the
black node is one third of the squared length of the white node. We also use the standard
additional convention for the squared lengths of the white nodes α:

〈α, α〉 = 2.

The original (non-extended) Coxeter–Dynkin diagram of G can be recovered from
extended DD by omitting the extension 0-node and adjacent edges.

The extended DDs of all simple Lie algebras are shown in figure 1.
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Fundamental domain of W aff ,

F = Conv
{

0,
ω∨

1

m1
, . . . ,

ω∨
n

mn

}
.

mj ∈ N known as marks, and ξ = m1α1 + · · ·+ mnαn. Put m0 = 1.

Φ∨ := {ω∨1 , . . . , ω∨n } denote the dual fundamental weights, satisfying

〈ω∨i , αj〉 = δi,j .

They are the fundamental weights of the dual Lie algebra g∨n .

Short ↔ long roots: Coxeter-Dynkin diagram of gn ⇒ diagram of g∨n .

Dual roots α∨j satisfy 〈α∨i , ωj〉 = δi,j (i , j ∈ I ).



Reflections r∨j = rj (j ∈ I ) associated with the α∨i generate the same

Weyl group W , but a different affine Weyl group arises:

Ŵ aff = Q o W .

r∨0 a = rη a +
2η

〈η, η〉 .

Highest dual root η =: −α∨0 = m∨1 α
∨
1 + . . .+ m∨n α

∨
n

defines the dual marks m∨j , j ∈ I ; put m∨0 = 1.

λ ∈ P ⇒ consider ϕσλ(a) a function on the fundamental domain F of

W aff .

Orbit function ϕσλ is an eigenfunction of the Laplace operator on F with

Neumann (Dirichlet) boundary conditions on σ(r) = +1 (σ(r) = −1)

hyperplanes.



gn = G2 example of a fundamental region F , shaded here:

CUBATURE FORMULAE FOR SIMPLE LIE GROUPS 21

α1ˇ

ˇ2α

ˇ 2ω

ω̌1

Figure 2. A schematic view of the co-root system of G2. The shaded triangle
is the fundamental region F . The dotted lines are the mirrors which define
its boundaries, the reflections in which generate the affine Weyl group. The
action of the affine Weyl group on F tiles the plane. A few tiles of this tiling
are shown. Filled (resp, open) squares are the short (resp. long) co-roots of
G2.

The set of positive roots ∆+ and their half sum ρ are:

∆+ = {α1, α2, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2}, ρ = 3α1 + 5α2 = ω1 + ω2 .

The fundamental domain of G2 is the convex hull of its three vertices {0, 1
2 ω̌1,

1
3 ω̌2}.

9.2. Finding S-functions of m-degree 9.
The m-degree of a G2 weight λ = {λ1, λ2} = λ1ω1 + λ2ω2 is calculated as m̌1λ1 + m̌2λ2 =

3λ1 + 2λ2. We find first all the weights with m-degree ≤ 9. They are the following,

{0, 0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 0}, {1, 1}, {1, 2}, {1, 3}, {2, 0}, {2, 1}, {3, 0} .

Among these there are just two weights with m-degree equal to 9, namely {1, 3} and {3, 0}.
Thus there are only two S-functions we need to consider, S1,3(x) and S3,0(x).

9.3. Finding common zeros of the S-functions of m-degree 9.
The interpolation points are the points of the set F ◦14 of EFO’s of Ad-order M + h = 14

which are in the interior of F . They must satisfy the sum rule 14 = s0 + 2s1 + 3s2. We write



Dual affine Weyl symmetry:

Restricting weight-arguments a ∈ P∨ = ZΦ∨ ⇒ affine dual Weyl

symmetry:

Cwλ(a) = Cλ(a) , Swλ(a) = (detw)Sλ(a) ,

or ϕσwλ(a) = σ(w)ϕσλ(a) , ∀w ∈ Ŵ aff .

The fundamental region of Ŵ aff , or dual fundamental domain, is

F∨ = Conv{0, ω1

m∨
1
, . . . , ωn

m∨
n
}.



Generalizations of Chebyshev polynomials

(Nesterenko-Patera-Tereszkiewicz 2011):

Polynomials constructed 3 ways:

• Most familiar: Xj := e2πixj

• When Cλ can be written as a sum of cosines, then it can be written in

terms of basic ones using trig identities. Then these basic cosines can

become the new variables.

• Xj := Cωj (x) and S := Sρ(x).

Decompose Xj Cλ → recursion relations defining the polynomials.

(Also Xj := Sωi (x) and Xj := χωi (x), of course.)



Continuous orthogonality:

〈Cλ,Cλ′〉 := |F |−1

∫
F

Cλ(x)Cλ′(x) dx = |Wλ| δλ,λ′

for λ, λ′ ∈ P+ .

Discrete orthogonality:

〈f , g〉M := |W |
∑
x∈FM

f (x) g(x)

where FM := 1
MP∨/Q∨ ∩ F is the discretized fundamental domain, or

“grid”; M controls the fineness, or resolution of the discretization.



gn = C2 example: grid F4 = 1
4P
∨/Q∨ ∩ F .

Dots in 1
4P
∨/Q∨, and |F4| = 9 (fundamental region F shaded).J. Phys. A: Math. Theor. 42 (2009) 385208 J Hrivnák and J Patera
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r1
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ω1 =
1
2ω

∨
1

ξ = ω∨
1

α∨
1α1

r0

ω2 = ω∨
2α2 = α∨

2

Figure 2. The cosets representants of 1
4 P ∨/Q∨ of C2; the cosets representants are shown as 32

black dots, and the grey area is the fundamental domain F which contains nine points of F4(C2).
The dashed lines represent ‘mirrors’ r0, r1 and r2. Circles are elements of the root lattice Q, and
together with squares they are elements of the weight lattice P.

Example 3.3. For the algebra E8 we have the Coxeter number m = 30. We calculated in
example 3.1 that |F30(E8)| = 20 956. According to proposition 3.5, among these 20 956
points, there is only one in the interior of F30(E8), i.e. |F̃ 30(E8)| = 1.

Example 3.4. For the Lie algebra C2 we have Coxeter numbers m = 4 and c = 2. Consider for
example M = 4. For the order of the group 1

4P ∨/Q∨ we have from (17) that
∣∣ 1

4P ∨/Q∨∣∣ = 32
and according to theorem 3.3 we calculate

|F4(C2)| =
(

4

2

)
+

(
3

2

)
= 9.

Note also that from proposition 3.5 it follows that the number of points in the interior
|F̃ 4(C2)| = 1. The cosets representants of 1

4P ∨/Q∨ and fundamental domain F are depicted
in figure 2.

3.5. Grid �M

The points of �M are the dominant weights specifying C- or S-functions which belong to the
same pairwise orthogonal set. Later on we consider C- or S-functions which are sampled on
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Discrete orthogonality (Moody-Patera 2006):

〈Cλ,Cλ′〉M = cG Mn |Wλ| δλ,λ′ ,

for λ, λ′ ∈ ΛM := MF∨ ∩ P/MQ .

cG = det(Cartan matrix)= order of the centre of G .



gn = C2 example: “dual grid” Λ4 = 4F∨ ∩ P
4Q .

Dots ∈ 4F∨ ∪ P
4Q , |Λ4| = |F4| = 9.

J. Phys. A: Math. Theor. 42 (2009) 385208 J Hrivnák and J Patera

ξ = ω∨
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η

α1 4α1α∨
1
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ω2 = ω∨
2

4α2

α2 = α∨
2

ω1

r∨0,4

r∨0

r2 r1

1
2ω2
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Figure 3. The cosets representants of P/4Q of C2; the cosets representants are shown as 32 black
dots, the darker grey area is the fundamental domain F∨ and the lighter grey area is the domain
4F∨ which contains nine elements of �4(C2). The dashed lines represent dual ‘mirrors’ r∨

0 , r1, r2
and the affine mirror r∨

0,4 (see (47)). The circles and squares coincide with those in figure 2.

4. W -invariant functions

The numbers hx, h
∨
λ and |FM |, which were determined so far, are important for the properties

of special functions called C- and S-functions when they sampled on FM . A detailed review
of the properties of C- and S-functions may be found in [2, 3]. In this section we want to
complete and make explicit the orthogonality properties of C- and S-functions [17]. Two- and
three-dimensional examples of these relations are found in [5–9].

4.1. C-functions

We recall the definition of C-functions and show that they can be labeled by the finite set �M

when they are sampled on the grid FM .
Consider b ∈ P and recall that (normalized) C-functions can be defined as a mapping

�b : Rn → C

�b(a) =
∑
w∈W

e2π i〈wb,a〉. (37)

The following properties of C-functions are crucial:

• symmetry with respect to w ∈ W

�b(wa) = �b(a) (38)

18



(Finite) orbit function transforms:

Consider data with support F , or F̃ . The Weyl-orbit functions provide

useful expansion bases for the analysis of functions on F , or F̃ .

Digitized data, the values on the grid FM in F , or F̃M in F̃ . M ∈ N will

determine the resolution ∼ 1/M of the digital data of interest.

Interpolate, by requiring

f (x) =
∑
λ∈ΛM

Fλ Cλ(x) , ∀ x ∈ FM .

Discrete orthogonality ⇒ Discrete C -Transform

Fλ =
1

cGMn|W |
∑
x∈FM

f (x)Cλ(x) .



Cubature = quadrature in higher dimensions

Cubature formula: a weighted sum of function evaluations used to

approximate a multivariate integral.∫
Ω

f (x)w(x) dx ≈
N∑
j=1

wj Lj [f ] ,

Lj [f ] = f (xj) , e.g .

Exact (≈ → =) cubature formulas are possible if one restricts to a

certain class of functions.

Such exact cubature formulas are found using the orbit functions (H. Li

& Y. Xu 2010, Moody-Patera 2011).



Define domain Ω = { (X1(x), . . . ,Xn(x)) : x ∈ F̃ } ⊂ Cn .

Put m-degree of Xi as m∨i , then m-deg(Sρ)= h − 1.

For any function f on Ω, define

f̃ (x) := f (χω1 (x), . . . , χωn(x) ) .

Cubature formula:

Polynomial f ∈ C[X1, . . . ,Xn] with m-degree ≤ 2M + 1, have∫
Ω

f K 1/2 dX1 · · · dXn =
1

cG

(
2π

M + h

)n ∑
x∈F̃M+h

f̃ (x) K̃ (x) .

Here K (x) := |Sρ(x)|2 and the Coxeter number h =
∑n

j=0 mj .



Example of domain Ω for cubature formula (M = 8 for G2):CUBATURE FORMULAE FOR SIMPLE LIE GROUPS 23
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Figure 3. The region Ω along with the 10 regular EFOs of the example.
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Figure 4. The region Ω along with the 884 regular EFOs of Ad-order 106.
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Wess-Zumino-Novikov-Witten conformal field theories:

AFFINE MODULAR DATA

Objects related to the modular data of Wess-Zumino-Novikov-Witten

(WZNW) models bear a striking resemblance to the discretized

Weyl-orbit functions. This modular data is associated with the affine

Kac-Moody algebras of untwisted type, at a fixed level, and so is also

called affine modular data.



As for any RCFT, the WZNW 1-loop partition function is invariant under

the modular group SL(2;Z), with generators S and T .

genus-1 conformal blocks ∼= characters of the untwisted affine

Kac-Moody algebra at fixed level, sometimes denoted gn,k .

The affine characters form a finite-dimensional representation of the

modular group (Kac-Peterson 1984).



Put PM
+ = {∑i∈Î λiωi |λi ∈ N0,

∑
i∈Î λim

∨
i = M},

and PM
++ = {∑i∈Î λiωi |λi ∈ N,

∑
i∈Î λim

∨
i = M} .

Similarly, P∨M+ = {∑i∈Î λiω
∨
i |λi ∈ N0,

∑
i∈Î λimi = M},

and P∨M++ = {∑i∈Î λiω
∨
i |λi ∈ N,

∑
i∈Î λimi = M} .

Grid FM := P∨M
+ /M. Grid interior F̃M := P∨M

++ /M.

Dual grid ΛM = PM
+ ; interior Λ̃M = PM

++.

Note that m0 + m1 + . . .+ mn = m∨0 + m∨1 + . . .+ m∨n = h , the

Coxeter number.



Highest root of gn: ξ =
∑

j∈I m
′
j α
∨
j , m′j are known as co-marks.

Dual Coxeter number h∨ := 1 +
∑

j∈I m
′
j .

Let ∆+ denote the set of positive roots of gn and put M ′ := k + h∨.

The affine characters can be labeled by weights in PM′

++, and the

Kac-Peterson modular S matrix has the form

Sλ′,µ′ = RM′

∑
w∈W

(detw) e−2πi〈wλ′,µ′〉/M′
,

for λ′, µ′ ∈ PM′

++.



But PM′

++ = Pk
+ + ρ; rewrite as

Sλ,µ = Rk+h∨

∑
w∈W

(detw) exp

{−2πi〈w(λ+ ρ), µ+ ρ〉
k + h∨

}
= Rk+h∨ Sλ+ρ

(
µ

k + h∨

)
,

with λ, µ ∈ Pk
+ , and Rk+h∨ = i‖∆+‖ |P/Q∨|− 1

2 (k + h∨)−
r
2 .

Modular S-matrix is unitary and symmetric, with symmetric affine Weyl

symmetry:

Sw .λ,µ = Sλ,w .µ = (detw)Sλ,µ , ∀w ∈W aff ;

shifted action w .λ := w(λ+ ρ)− ρ.



Modified multiplication

The affine Weyl symmetry → modified (truncated) multiplication of

characters.

Verlinde formula:(
Sλ,σ
Sρ,σ

) (
Sµ,σ
Sρ,σ

)
=

∑
ν∈Pk

+

(k)Nν
λ,µ

(
Sν,σ
Sρ,σ

)
.

The ratios are (discretized) Weyl characters of integrable, highest-weight

representations of gn: (
Sλ,σ
Sρ,σ

)
= χλ(σ) .



Products of characters decompose as tensor products of representations

do:

χλ(σ)χµ(σ) =
∑
φ∈P+

Tφ
λ,µ χφ(σ) ,

where Tφ
λ,µ is the tensor product coefficient. Using the affine Weyl

symmetry to compare this with the Verlinde formula → (Kac-W)

(k)Nν
λ,µ =

∑
w∈W aff

(detw)Tw .ν
λ,µ .

The affine Weyl symmetry valid when the character is discretized results

in a modified multiplication, so that the tensor product coefficients are

modified, truncated to the fusion coefficients.

The modified multiplications of discretized Weyl-orbit functions will work

essentially the same way.



Galois symmetry

Galois symmetry is an important property of all RCFTs (Coste-Gannon

1994). The Galois symmetry of WZNW models is the motivation for a

Galois symmetry of discretized orbit functions.

Kac-Peterson Sλ,µ is a linear combination of roots of unity

exp{−2πi〈w(λ+ ρ), µ+ ρ〉/(k + h∨)} =: ϕ with rational coefficients.

Let N ∈ N denote the minimum such that ϕN = 1 for all such ϕ.



Suppose gcd(`,N) = 1 for ` ∈ N. Define the Galois transformation t` by

t` (ϕ) := ϕ` ,

and extend it linearly to sums of such terms. This transformation swaps

one primitive root of unity for another.

Equivalently, it maps λ+ ρ to `(λ+ ρ), possibly outside the dominant

sector. Transforming back is possible, however, using the affine Weyl

group:

`(λ+ ρ) = w`[λ] (t`[λ] + ρ) , w`[λ] ∈W aff .

The Galois symmetry of the modular S-matrix then follows:

t` (Sλ,µ ) = ε`[λ]St`[λ],µ = ε`[µ]Sλ,t`[µ]



ORBIT FUNCTIONS

The affine Weyl symmetry of the orbit functions can be summarized as

follows. With a ∈ P, we have

Cλ(wa) = Cλ(a) , w ∈W aff ;

Cŵλ(a) = Cλ(a) , ŵ ∈ Ŵ aff ;

Sλ̃(wa) = (detw)Sλ(a) , w ∈W aff ; (1)

Sŵλ(a) = (det ŵ)Sλ(a) , ŵ ∈ Ŵ aff ;

provided λ, λ̃ ∈ P∨/M.



Modified multiplication of discretized Weyl-orbit functions

For any a ∈ PR, write

Cλ(a)Cµ(a) =
∑
ν∈P+

〈C |CC 〉νλ,µ Cν(a) ,

Cλ(a)Sµ̃(a) =
∑
ν̃∈P++

〈S |CS〉ν̃λ,µ̃ Sν̃(a) ,

Sλ̃(a)Sµ̃(a) =
∑
ν∈P+

〈C |SS〉ν
λ̃,µ̃

Cν(a) ,

for all λ, µ, ν ∈ P+, and all λ̃, µ̃, ν̃ ∈ P++.



Similarly, if λ, µ, ν ∈ PM
+ , and all λ̃, µ̃, ν̃ ∈ PM

++, then

Cλ(a)Cµ(a) =
∑
ν∈PM

+

M
〈C |CC 〉νλ,µ Cν(a) ,

Cλ(a)Sµ̃(a) =
∑
ν̃∈PM

++

M
〈S |CS〉ν̃λ,µ̃ Sν̃(a)

Sλ̃(a)Sµ̃(a) =
∑
ν∈PM

+

M
〈C |SS〉ν

λ̃,µ̃
Cν(a) ,

for any a ∈ FM ⊃ F̃M .



We find

M
〈C |CC 〉νλ,µ =

∑
ŵ∈Ŵ aff

〈C |CC 〉ŵνλ,µ ,

M
〈S |CS〉ν̃λ,µ̃ =

∑
ŵ∈Ŵ aff

(detw) 〈S |CS〉ŵ ν̃λ,µ̃ ,

M
〈C |SS〉ν

λ̃,µ̃
=

∑
ŵ∈Ŵ aff

〈C |SS〉ŵν
λ̃,µ̃

.



Galois symmetry of Weyl-orbit functions

Let N denote the minimum positive integer such that(
e2πi〈λ,a〉

)N
= e2πi〈Nλ,a〉 = 1 ,

for all λ ∈ ΛM , a ∈ FM .

Suppose gcd(`,N) = 1 for ` ∈ N. Define the Galois transformation t` by

t`
(
e2πi〈λ,a〉

)
:= e2πi`〈λ,a〉 ,

and extend it linearly to sums of such terms. This transformation swaps

one primitive root of unity for another.



Applying the Galois transformation to the orbit functions, one gets

t`

(
Cλ(a)

)
= C`λ(a) = Cλ(`a) ,

t`

(
Sλ̃(ã)

)
= S`λ̃(ã) = Sλ̃(`ã) . (2)

Now suppose that λ ∈ PM
+ , λ̃ ∈ PM

++, a ∈ FM , and ã ∈ F̃M . Multiples of

these weights by a factor of ` will not also, in general, be part of the

same sets.



They can all, however, be moved there by appropriate elements of the

relevant affine Weyl group:

ŵ`[λ] ( ` λ ) =: t`[λ] ∈ PM
+ , ŵ`[λ] ∈ Ŵ aff ;

ŵ`[λ̃]
(
` λ̃
)

=: t`[λ̃] ∈ PM
++ , ŵ`[λ̃] ∈ Ŵ aff ;

w`[a] ( ` a ) =: t`[a] ∈ FM , w`[a] ∈ W aff ; (3)

w`[ã] ( ` ã ) =: t`[ã] ∈ F̃M , w`[ã] ∈ W aff .



Using the affine Weyl symmetries ⇒ the Galois symmetry of the orbit

functions:

t`

(
Cλ(a)

)
= Ct`[λ](a) = Cλ(t`[a]) ,

t`

(
Sλ̃(ã)

)
= ε̂`[λ] St`[λ̃](ã) = ε`[ã] Sλ̃(t`[ã]) . (4)

Here we have defined the signs

ε̂`[λ̃] := det
(
ŵ`[λ̃]

)
, ŵ`[λ̃] ∈ Ŵ aff ;

ε`[ã] := det
(
w`[ã]

)
, w`[ã] ∈ W aff . (5)



Galois symmetry also produces relations involving the decomposition

coefficients discussed above. For example, because the Galois

transformation exchanges one root of unity for another, and because the

coefficients
M
〈C | SS〉ν

λ̃,µ̃
are rational, we have

t`

(
Sλ̃(a)

)
t`

(
Sµ̃(a)

)
=

∑
ν∈PM

+

M
〈C |SS〉ν

λ̃,µ̃
t`

(
Cν(a)

)
.

⇒

ε̂`[λ̃]St`[λ̃](a) ε̂`[µ̃]St`[µ̃](a) =
∑
ν∈PM

+

M
〈C |SS〉ν

λ̃,µ̃
Ct`[ν](a) .



so that

ε̂`[λ̃] ε̂`[µ̃]
∑
ν∈PM

+

M
〈C |SS〉ν

t`[λ̃],t`[µ̃]
Cν(a)

=
∑
ν∈PM

+

M
〈C |SS〉ν

λ̃,µ̃
Ct`[ν](a) .

Orthogonality relations for Cν(a) ⇒

ε̂`[λ̃] ε̂`[µ̃]
M
〈C |SS〉ν

t`[λ̃],t`[µ̃]
=

M
〈C |SS〉t`[ν]

λ̃,µ̃
.

Similar relations for the other decomposition coefficients.



CONCLUSION (Future Work?)

(Generalized?) Orbit Functions ⇔ Conformal Field Theory

X ⇐ Modified multiplication, Galois symmetries (Hrivnák-W)

? ⇐ Fusion generators and bases (Gannon-Walton 1999)

? ⇒ Pasquier algebras, NIM-reps, boundary conditions, . . . ?

Chevalley groups ⇒ ?


