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GLUE Study - Trauma Genomics

5 

• Study of the mechanisms
underlying inflammation,
coagulation, and host response to
injury (Tompkins 2015).

• Data used were a subset of the
GLUE cohort (n = 167), who had
gene expression measured (Affy
U133 plus 2) in WBC’s measured
(if possible) within 12 hours, and at
1,4,7 14 and 28 days.

6 • Interested in how expression at
various times is related to
outcomes (such multiple organ
failure; MOF) afterwards.

• So, parameter like
Ψ(P)(t) = E (Yahi (t)− Yalow (t))
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Both Expression and Clinical Measurements on Patients
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Joint Variable Importance Measures

Use a combination of causal inference to motivate estimand, and

• SuperLearning (van der Laan et al.
2007),

• TMLE (van der Laan and Rose 2011),
• LIMMA (Smyth 2004),

to produce joint inference on variable importance adjusting for other
covariates.
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SCM for Point Treatment

• X = {W ,A,Y }

• Errors: U = (UW ,UA,UY )
• Structural Equations (nature):

Õ W = fW (UW )

Õ A = fA(W ,UA)

Õ Y = fY (W ,A,UY )

Distribution of (U,X ) generated by:
1 Draw U from PU

2 Generate W via fW with input
UW .

3 Generate A via fA with inputs
(W ,UA)

4 Generate Y via fY with inputs
(W ,A,UY )
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Estimand as variable importance measure

• Let’s say, keeping the above tentative causal model, we have the
equality (skipping identifiabilitiy steps):

Ψ(PX ) = E (Ya1 − Ya0) =
assumptions

E0,W {E0(Y | A = a1,W )−E0(Y | A = a0,W )} = Ψ(P0)
for discrete A with chosen comparison levels (a0, a1).

• Now, generalize the data above to situation with O = (W ,A,Y ),
where A is vector of biomarkers: A = (A1, . . . ,Ag , . . . ,AG).

• Assume estimating Ψg (P0) corresponding to each of the
Ag , g = 1, . . . ,G .

• Estimator based on original work by Robins and Rotnitzky (1992).
• Like Chambaz et al. (2012), Ritter et al. (2014), van der Laan (2006),

etc., we propose using estimands motivated by causal inference for
variable importance measures in high-dimensional contexts.
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Loss-Based Estimation

• In our example, we wish to estimate: Q0 = E0(Y | A,W ).
• Before we can choose a “best" algorithm to estimate this regression

function, we must have a way to define what “best" means, made
explicit by loss function.

• Data structure: O = (W ,A,Y ) ∼ P0
Õ distribution Pn which places probability 1/n on each observed Oi ,

i = 1, . . . , n.

• "Best" algorithm defined in terms of a loss function (for candidate
function Q when applied to an observation O).

L : (O,Q)→ L(O,Q) ∈ R.

• It is a function of the random variable O and parameter value Q.
• Example: L2 squared error (or quadratic) loss function:

L(O,Q) = (Y − Q(A,W ))2.
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Loss Defines Parameter of Interest

• We define our parameter of interest, Q̄0 = E0(Y | A,W ), as the
minimizer of the expected squared error loss:

Q̄0 = arg minQ̄E0L(O, Q̄),

where L(O, Q̄) = (Y − Q̄(A,W ))2.

• E0L(O, Q̄) (the risk), is minimized at the optimal choice of Q̄0.
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Unbiased Estimate of Risk: Cross-Validation

• V-fold cross-validation: partition the sample of n observations
O1, . . . ,On in training and corresponding validation sets.

• Cross-validation is used to select our “best" algorithm among a library.

• In addition, we also use cross-validation to evaluate the overall
performance of the super learner itself.
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• In V -fold cross-validation, our
observed data O1, . . . ,On is
referred to as the learning set.

• Estimate our parameter of
interest by partitioning into V
sets of size ≈ n

V .

• For any given fold, V − 1 sets
will comprise the training set
and the remaining 1 set is the
validation set.

• The observations in the training
set are used to construct (or
train) the candidate estimators.

• The observations in the
validation set are used to assess
the performance (i.e., risk) of
the candidate algorithms.
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The validation set rotates V times such that each set is used as the
validation set once.
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Discrete Super Learner

Discrete Super Learner
Suppose a researcher is interested in using three different parametric
statistical models to estimate E0(Y | A,W ).

We can use these algorithms to build a library of algorithms and select the
one with the smallest (honest) cross-validated risk.
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Discrete Super Learner
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Oracle Properties

• Assume K algorithms in the library of algorithms.

• The oracle selector chooses the algorithm with the smallest risk under
true data-generating distribution, P0.

• However, the oracle selector is unknown since it depends on both the
observed data and P0.

• Oracle Inequality (van der Laan et al. (2004)) suggests discrete super
learner performs as well as the oracle selector, up to a second order
term.

• The loss function must be bounded, and then we will perform as well
as the algorithm that is the risk minimizer of the expected loss
function.

• The number of algorithms, K , in the library can grow with sample
size.
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Ensemble Super Learner - Wisdom of the Crowd (van der Laan,
Polley, and Hubbard; 2007)
Stacking algorithm that takes multiple algorithms as inputs can
outperform a single algorithm in realistic non-parametric and
semi-parametric statistical models.

• Define parameter of interest, Q̄0 = E0(Y | A,W ), as the minimizer of
the expected squared error loss:

Q̄0 = arg minQ̄E0L(O, Q̄),

where L(O, Q̄) = (Y − Q̄(A,W ))2.

• E0L(O, Q̄) (risk), evaluates the candidate Q̄, and it is minimized at
the optimal choice of Q̄0.
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Super Learner: How it works

• Provides a family of weighted combinations of the algorithms in the
library of learners, indexed by the weight vector α.

• The family of weighted combinations includes only those α-vectors
that have a sum equal to one, and where each weight is positive or
zero.

• Example for binary outcome:

Pn(Y = 1 | Z ) = expit (αa,nZa + αb,nZb + . . .+ αp,nZp)

where Z are the candidate learner predictions.
• The (cross-validated) probabilities of death (Z ) for each algorithm are

used as inputs in a working (statistical) model to predict the outcome
Y .

• Deriving weights: formulated as a regression of the outcomes Y on
the predicted values of the algorithms (Z ).
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Ensemble Super Learner: How well it works

The super learner improves asymptotically on the discrete super learner by
working with a larger library.

• Asymptotic results: in realistic scenarios (where none of the
algorithms are a correctly specified parametric model), the discrete
super learner performs asymptotically as well as the oracle.

• When collection of algorithms contains correctly specified parametric
statistical model, the super learner will approximate the truth as fast
as the parametric statistical model, although it will be more variable.
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First MLE

• A maximum likelihood estimator for a parametric statistical model
{pθ : θ} is defined as a maximizer over all densities in the parametric
statistical model of the empirical mean of the log density:

θn = argmax
θ

n∑
i=1

log pθ(Oi ).

• This discussion can be equally applied to the case where L(p)(O) is
replaced by any other loss function L(Q) for a relevant part Q0 of p0,
satisfying that E0L(Q0)(O) ≤ E0L(Q)(O) for each possible Q.
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MLE - Substitution Estimator

Ψ(P0) for the causal risk difference can be written as the g-formula:

Ψ(P0) =
∑
w

[∑
y

yP0(Y = y | A = ah,W = w)

−
∑

y
yP0(Y = y | A = al ,W = w)

]
P0(W = w),

where

P0(Y = y | A = a,W = w) = P0(W = w ,A = a,Y = y)∑
y P0(W = w ,A = a,Y = y)

is the conditional probability distribution of Y = y , given A = a, W = w ,
and

P0(W = w) =
∑
y ,a

P0(W = w ,A = a,Y = y).
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MLE - Substitution

• Maximum-likelihood-based substitution estimators of the g-formula
are obtained by substitution of a maximum-likelihood-based estimator
of Q0 into the parameter mapping Ψ(Q0).

• The marginal distribution of W can be estimated with the
nonparametric maximum likelihood estimator, which happens to be
the empirical distribution that puts mass 1/n on each Wi :
i = 1, . . . , n.

ψn = Ψ(Qn) = 1
n

n∑
i=1
{Q̄n(1,Wi )− Q̄n(0,Wi )},

where this estimate is obtained by plugging in Qn = (Q̄n,QW ,n) into
the mapping Ψ.
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MLE - fitting Q0

• MLE using regression in a parametric working model. Q̄0(A,W )
is estimated using regression in a parametric working (statistical)
model and plugged into the formula given previously.

• ML-based super learning. Estimate Q̄0 with the super learner, in
which the collection of estimators may include stratified maximum
likelihood estimators, maximum likelihood estimators based on
dimension reductions implied by the propensity score, and maximum
likelihood estimators based on parametric working models, beyond
many other machine learning algorithms for estimation of Q̄0.
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TMLE: Targeted Maximum Likelihood Estimation

• TMLE (van der Laan and Rubin 2006) Produces a well-defined,
unbiased, efficient substitution estimator of target parameters of a
data-generating distribution.

• It is generally an iterative procedure (though there is now a general
one-step; van der Laan and Gruber (2016)) that updates an initial
(super learner) estimate of the relevant part Q0 of the data generating
distribution P0, possibly using an estimate of a nuisance parameter g0.

• Like corresponding A-IPTW estimators (Robins and Rotnitzky 1992),
removes asymptotic residual bias of initial estimator for the target
parameter, if it uses a consistent estimator of g0, thus Doubly Robust.

• If initial estimator was consistent for the target parameter, the
additional fitting of the data in the targeting step may remove finite
sample bias, and preserves consistency property of the initial
estimator.
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TMLE and Machine Learning

• Natural use of machine learning methods for the estimation of both
Q0 and g0.

• Focuses effort to achieve minimal bias and asymptotic
semi-parametric efficiency bound for the variance, but still get
inference (with some assumptions).
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This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.

91

Chapter 5
Understanding TMLE

No Author Given

O1, . . . ,On

Ψ ()

P0
n

P∗n

P0

Ψ (P0)

Ψ (P∗n)

Ψ (P0
n)

This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.

91

Chapter 5
Understanding TMLE

No Author Given

O1, . . . ,On

Ψ ()

P0
n

P∗n

P0

Ψ (P0)

Ψ (P∗n)

Ψ (P0
n)

This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.

91

Chapter 5
Understanding TMLE

No Author Given

O1, . . . ,On

Ψ ()

P0
n

P∗n

P0

Ψ (P0)

Ψ (P∗n)

Ψ (P0
n)

This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.

91

Chapter 5
Understanding TMLE

No Author Given

O1, . . . ,On

Ψ ()

P0
n

P∗n

P0

Ψ (P0)

Ψ (P∗n)

Ψ (P0
n)

This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.

91

Chapter 5
Understanding TMLE

No Author Given

O1, . . . ,On

Ψ ()

P0
n

P∗n

P0

Ψ (P0)

Ψ (P∗n)

Ψ (P0
n)

This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.

91

Chapter 5
Understanding TMLE

No Author Given

O1, . . . ,On

Ψ ()

P0
n

P∗n

P0

Ψ (P0)

Ψ (P∗n)

Ψ (P0
n)

This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.

91

Chapter 5
Understanding TMLE

No Author Given

O1, . . . ,On

Ψ ()

P0
n

P∗n

P0

Ψ (P0)

Ψ (P∗n)

Ψ (P0
n)

This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.

91

A Hubbard, N Hejazi, W Cai (UC Berkeley) Targeted Learning for Variable Importance July 27, 2016 25 / 39



Example: TMLE for the Average Causal Effect

NPSEM/SCM for a point treatment data structure with missing outcome

W = fW (UW ),
A = fA(W ,UA),
∆ = fA(W ,A,U∆),
Y = fY (W ,A,∆,UY ).

We can now define counterfactuals Y1,1 and Y0,1 corresponding with
interventions setting A and ∆.

The additive causal effect EY1 − EY0 equals:
Ψ(P) = E [E (Y | A = 1,∆ = 1,W )− E (Y | A = 0,∆, 1,W )
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Example: TMLE for "Causal" Risk Difference:
E0,W{E0(Y | A = ah, W )− E0(Y | A = al , W )}

• Generate an initial estimator of P0
n of P; we estimate

E (Y | A,∆ = 1,W ).

• Fluctuate this initial estimator with a logistic regression:

logitP0
n (ε)(Y = 1 | A,∆ = 1,W ) = logitP0

n (Y = 1 | A,∆ = 1,W )+εh

where
h(A,W ) = 1

Π(A,W )

( I(A = ah)
g(ah |W ) −

I(A = al )
g(al |W

)
and
g(a |W ) = P(A = a |W ) Treatment Mechanism
Π(A,W ) = P(∆ = 1 | A,W ) Missingness Mechanism.
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TMLE for risk difference (cont.)

• Let εn be the maximum likelihood estimator and

P∗
n = P0

n (εn).

• The TMLE is given by Ψ(P∗
n ).

• Specifically in the case of the risk difference:

logit Q̄1
n(A,W ) = logit Q̄0

n(A,W ) + εnH∗
n (A,W ).

• This parametric working model incorporated information from gn,
through H∗

n (A,W ), into an updated regression.
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Inference (Standard errors) via Influence Curve (IC)

• influence curve for estimator is:

ICn(Oi ) =
( I(Ai = ah)

gn(ah |Wi )
− I(Ai = al )

gn(al |Wi )

)
(Y − Q̄1

n(Ai ,Wi ))

+ Q̄1
n(ah,Wi )− Q̄1

n(al ,Wi )− ψTMLE ,n,

• Sample variance of the estimated influence curve:

S2(ICn) = 1
n
∑n

i=1 (ICn(oi ))2 .

• Use sample variance to estimate the standard error of our estimator:

SEn =

√
S2(ICn)

n .

• Use this to derive uncertainty measures (p-values, confidence
intervals, etc.).
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Repeating Estimates of Variable Importance one biomarker
at a time

• Consider this is repeated for j = 1, . . . , J different
biomarkers, so that one has, for each j :

Ψj(Q∗j ,n), S2
j (ICj ,n)

or estimate of variable importance and standard error
for all J .

• Propose an existing joint-inferential procedure that
can add some finite-sample robustness to an estimator
that can be highly variable.
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LIMMA: Linear Models for Microarray Data

• Thus, one can define a standard t-test statistic for a general
(asymptotically linear) parameter estimate (over j = 1, . . . , J) as:

tj =
√

n(Ψj(Pn)− ψ0)
Sj(ICj,n)

• Consider the moderated t-statistic proposed by Smyth (2005):

t̃j =
√

n(Ψj(Pn)− ψ0)
S̃2

j

where the posterior estimate of the variance of the influence curve is

S̃2
j =

d0S2
0 + djS2

j (ICj,n)
d0 + dj
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Implement for Any Asymptotically Linear Parameter

• Treat like one-sample problem estimate of parameter with associated
SE from IC.

• Just need to get estimate for each j as well as the plug-in IC for every
observation for that j and repeat for all j .

• Transform data original Jxn matrix where new entries are:

Y ∗
j,i = ICj,n(Oi ; Pn) + Ψj(Pn)

• Since the average of the ICj,n across the columns (units) for a single j
will be 0, the average of this transform will be the original estimate
Ψj(Pn).

• For simplicity assume the null value is ψ0 = 0 for all j . Then, running
limma package on this transform,Y ∗

j,i , will generate multiple testing
corrections based on presented above for t̃j .
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Why LIMMA approach in this context?

• Often times these analyses based on relatively small samples.
• want data-adaptive estimate but at least with standard

implementation of these estimates (estimation equation,
substitution,...), the SE’s can be non-robust.

• practically, one can get "significant" estimates of variable
importance measures that are driven by poorly and
underestimated S2

j (ICj,n).
• LIMMA shrinks these S2

j (ICj,n) by making them bigger and thus
takes biomarkers with small parameter estimates but very small
S2

j (ICj,n) out of statistical significance.
• Also, just seems to work very well...
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GLUE Study

• Goal: Ascertain relative variable importance based on estimand
for adjusted risk difference discussed above.

• Because expression generally fairly low, and wanted to discretize
expression, used a cut-off that separated (roughly) some
expression from background.

• Though there are thousands of expression values, just focus on a
few genes known to be involved in coagulation.
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GLUE Study Expression Data - coagulation pathway genes
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Substitution based on Simple Parametric Model vs. SL
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