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Effect modification

• An effect modifier is a pretreatment covariate such 
that the magnitude of the treatment effect is affected 
by the covariate.

• Example: Hsu et al. (2013) considered an observational 
study of a treatment to reduce malaria.

• In Garki, Nigeria, some villages were selected to 
receive spraying with an insecticide, propoxur, together 
with mass administration of a drug, sulfalene-
pyrimethamine, at high frequency and other villages to 
receive the usual care.  
– Treatment-control pairs were matched for age and gender. 
– Outcome:  difference in level of malaria parasites found in 

blood from the after period minus the before period.  



 

Figure 2:  Density of the treated‐minus‐control difference in changes in parasite density separately for 

pairs of children 10 years old or younger and for individuals older than 10 years. 
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Why should we care about effect 
modification?

• Personalizing treatment: “What works for 
whom?”

• Finding effect modification can make an 
observational study less sensitive to bias from 
unmeasured confounding.  
– In malaria study, treatment determined by where a 

family leaves.  

– Selection bias applies equally to children and adults. 

– Big effect in children, say effect size of 1, and small 
effect in adults, say effect size of 0.2, harder to explain 
away as a result of unmeasured confounding  than 
uniform effect of 0.6.



Approaches to discovering effect 
modification

• “Traditional clinical trialist approach”: Specify a priori a 
small number of effect modifiers of interest.  Control 
for multiple testing.  
– Advantages: controls for multiple testing.
– Disadvantages: may miss important effect modifiers.

• “Data mining approach”: Explore the data for effect 
modifiers via say regression with interactions between 
covariates and treatment, or machine learning 
methods.  
– Advantages: Can consider a large number of potential 

effect modifiers.
– Disadvantages: Multiple testing is not usually strictly 

controlled for.  

• We seek to develop an intermediate approach that can 
consider numerous effect modifiers but strictly controls 
for multiple testing.  



Outline of our approach

1. Create matched treated-control pairs, 
matched on measured confounders.

2. Use special aspect of the data from matched 
pairs (absolute difference in outcomes) to 
decide what effect modifiers to study.  

3. Use closed testing to test overall treatment 
and effect modifiers built from the data.

– We prove a proposition that shows that the 
familywise type I error rate is controlled by our 
procedure.



Example: Surgical Mortality at 
Hospitals with Superior Nursing

• Magnet hospital: Hospital with superior nurse staffing and nurse 
working environment as determined by the American Academy of 
Nursing.

• Does having surgery done at a magnet hospital vs. non-magnet 
hospital benefit patients?
– Note: We’re assessing causal effect of going to a magnet hospital, not 

the causal effect of superior nursing per se.

• Medicare data from Illinois, Texas and New York in 2004-2006.
• Silber et al. (2016) constructed matched pairs of two patients, one 

undergoing general surgery at a magnet hospital, the other at a 
control hospital. The pairs were matched exactly for surgical 
procedure (130 types of surgical procedure) and 172 pretreatment 
covariates were balanced.  The two patients in a pair





Possible effect modifiers of interest

• Cluster of surgical procedure (130 surgical 
procedures grouped into 26 mutually exclusive 
clusters).

• Age>75
• Chronic heart failure (CHF)
• Emergency admission.
• Chronic obstructive pulmonary disease (COPD)
• 26*2*2*2*2=416 types of individuals.
• 22,622 pairs matched exactly for possible effect 

modifiers, so many types will not be represented 
by many pairs.  

• What subgroups of the types should we focus on?



Regression tree approach
• Let Yi=Treated outcome minus control outcome in pair i
• We consider |Yi| = absolute difference of the treated 

and control outcomes in pair i.
• Key fact: If there is no treatment effect, then |Yi| 

would stay the same if we switched who was treated 
and who was control in pair i.

• We fit a CART regression tree (using rpart in R) of the 
ranks of the |Yi| on the possible effect modifiers of 
interest.
– Build tree using 22,622 pairs exactly matched on all 

possible effect modifiers.  Then add pairs that are exactly 
matched on effect modifiers in tree for later analysis.  

• Motivation for building tree based on |Yi| : If 
treatment effect is bigger with a covariate, then |Yi|  
will often tend to be bigger.

( ) ,    from a symmetric, mean zero distribution.i i i iY    x  

If distribution of i  doesn’t depend on ix , then if  *( ) ( )i i x x , then 

 | |iY  is stochastically larger than *| |iY  (Jogdeo, 1977). 



 

Figure 1:  Mortality in 23,715 matched pairs of two Medicare patients, one receiving surgery at a magnet 
hospital identified for superior nursing, the other undergoing the same surgical procedure at a 
conventional control hospital.  The three values (A,B,C) at the nodes of the tree are: A = McNemar odds 
ratio for mortality, control/magnet, B = 30-day mortality rate (%) at the magnet hospitals, C = 30-day 
mortality rate (%) at the control hospitals. 



Table 1: Grouping of procedure clusters, with and without congestive heart failure (CHF).
No CHF CHF No CHF CHF

Procedure Cluster proc1 proc3 proc2 proc4
1 Adrenal procedures x x
2 Appendectomy x x
3 Bowel anastamoses x x
4 Bowel procedures, other x x
5 Breast procedures x x
6 Esophageal procedures x x
7 Femoral hernia procedures x x
8 Gallbladder procedures x x
9 Incisional and abdominal hernias x x
10 Inguinal hernia procedures x x
11 Large bowel resection x x
12 Liver procedures x x
13 Lysis of adhesions x x
14 Ostomy procedures x x
15 Pancreatic procedures x x
16 Parathyroidectomy x x
17 PD access procedure x x
18 Rectal procedures x x
19 Repair of vaginal fistulas x x
20 Small bowel resection x x
21 Splenectomy x x
22 Stomach procedures x x
23 Thyroid procedures x x
24 Ulcer surgery x x
25 Umbilical hernia procedures x x
26 Ventral hernia repair x x

14



Multiple Testing of Subgroups

Consider subgroups 1, ,G . 

Test of treatment effect in subgroup j:  
Null Hypothesis – Response under control equals  
response under treatment for every subject in j 
Alternative: Response under control doesn’t equal 
response under treatment for at least one subject in j 

 
How to test for treatment effect in different subgroups while controlling 
for multiple testing? 
Bonferroni one approach but a more hierarchical approach is closed testing. 



Closed Testing
Consider all nonempty subsets {1, , }K G . 

(e.g., {1,2}K   is the subgroup that combines groups 1 and 2). 

Reject hypothesis of no treatment effect in subgroup K  if and only if 

hypothesis of no treatment effect in all subgroups for which K L  is  

rejected at level  .05. 
 

Example: 3G  .  
First, conduct tests of 1 2 3,  1 2,  1 3,  2 3, 1, 2, 3      at level. .05. 

Reject for group 1 only if we reject for 1 2 3,  1 2,  1 3,  1    . 

Reject for group 2 only if we reject for 1 2 3,  1 2,  2 3,  2    . 

 

How to conduct test of combined subgroups like 1 2 3?   
Hsu et al. (2013) found that when there is effect modification, truncated  
product works well:  
compute p-values for individual group tests 1, 2, 3 and then use as test  
statistic the product of those p-values for 1, 2, 3 that are no larger than  
pre-specified cutoff (e.g., 0.2).  Zaykin et al. (2002) give null distribution 
and it is implemented in R package sensitivitymv.   



Control for Multiple Testing

For groups chosen a priori, closed testing strongly controls the familywise  
type I error rate at level .05, i.e., probability of falsely rejecting at least one  
true null hypothesis is at most .05 (Marcus, Eric and Gabriel, 1976). 
 
Example: Suppose no treatment effect in 1 and 2, treatment effect in 3.   

Then true nulls are 1, 2 and 1 2 .  We can only reject a true null in closed 

testing if we reject 1 2  and this happens with probability at most .05 if  

1 2  was an a priori group and is tested by a valid test like Wilcoxon  
signed rank test. 
 
But the groups were chosen by a tree, looking at the data.   
Is the familywise type I error rate still controlled? 



Control for Multiple Testing Continued
Simple case: Suppose there’s no overall treatment effect (i.e., null for  

1 2 3   true).   

We formed tree by regressing | |iY  on ix .   

Consider a pair in which there’s no treatment effect, 
 

 Subject 1  Subject 2  

 Control  
Response 

Treatment  
Response 

Control 
Response 

Treatment Response 

Pair 1 3 3 2 2 

 

If subject 1 is assigned treatment and subject 2 control, 1iY  . 

If subject 1 is assigned control and subject 2 treatment, 1iY   . 

Thus, | |iY always equals 1.   

If there’s no overall treatment effect and we consider the randomization 
distribution of a test statistic when one subject in each pair randomly  

assigned to treatment, then the | |iY ’s will always be the same and the  

tree will always be the same. 
 
Thus, groups are in some sense chosen a priori when no overall  
treatment effect and familywise Type I error rate is controlled. 



More complicated case: Treatment effect in some pairs but not others. 
 

 Subject 1  Subject 2  

 Control  
Response 

Treatment  
Response 

Control 
Response 

Treatment Response 

Pair 1 2 2 3 3 

Pair 2 4 4 6 6 

Pair 3 2 3 4 7 

 
Consider the subgroup of pairs 1 and 2 in which there’s no treatment effect. 
 
The tree will not depend on which subject gets assigned to treatment in  

pairs 1 and 2 since the | |iY  is fixed but may depend on the assignment  

in pair 3, since | | 1iY   if subject 1 assigned to treatment, | | 5iY  if subject 2 

assigned to treatment. 
 
Suppose that the tree only creates pairs 1 and 2 as a subgroup if subject 1 in  
pair 3 is assigned to treatment. 
Assuming random assignment in each pair, when pairs 1 and 2 are created  
as a subgroup, the assignment of treatment in pairs 1 and 2 is random.   
 
Thus, when a hypothesis for the subgroup of pairs 1 and 2 is tested, the  
distribution of treatment assignments in pairs 1 and 2 is random and can  
be validly tested with Wilcoxon signed rank test or other permutation tests. 



Strong Control of 
Familywise Error Rate

Proposition: The closed testing procedure with the tree  

formed by regressing | |iY  on ix  has probability at most  

.05 of falsely rejecting a true null hypothesis.   



Table 2: Mortality in 23,715 matched pairs of a patient receiving surgery at a magnet
hospital or a control hospital, where the pairs have been divided into five groups selected
by CART. A sensitivity analysis using McNemar’s test examines mortality in each group,
combining group specific results using the truncated product of P -values, truncated at 0.1.
The control/magnet odds ratio associated with McNemar’s test is given.

Subgroups Pooled
Group 1 Group 2 Group 3 Group 4 Group5

CHF no no no yes yes
Procedures proc1 proc2 proc2 proc3 proc4
ER admission both no yes both both
Number of Pairs 10127 5636 2943 2086 2923 23715
Discordant Pairs 210 293 488 217 760 1968

Percent Discordant % 2.1 5.2 16.6 10.4 26.0 8.3
Odds Ratio 1.41 1.53 1.09 1.28 1.18 1.23

Morality %, Magnet 0.9 2.5 10.1 4.9 16.5 4.7
Morality %, Control 1.3 3.5 10.8 6.2 18.6 5.6

Sensitivity analysis: Upper bounds on P -values for various Γ

Γ Subgroups Truncated
Group 1 Group 2 Group 3 Group 4 Group 5 Product

1.00 0.008 0.000 0.195 0.039 0.013 0.000
1.05 0.019 0.001 0.374 0.080 0.062 0.000
1.10 0.042 0.003 0.576 0.143 0.184 0.012
1.15 0.079 0.010 0.753 0.230 0.386 0.032
1.17 0.099 0.015 0.809 0.270 0.479 0.044
1.20 0.135 0.025 0.875 0.335 0.616 0.163
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Sensitivity analysis
• Analysis so far has assumed random 

assignment of treatment in a matched pair.
• But nursing study is an observational study.
• Central concern in observational study: 

assignment of treatment nonrandom, 
related to unmeasured confounders.

• Sensitivity analysis: How sensitive are 
conclusions to allowing for some amount of 
unmeasured confounding?

• Original sensitivity analysis: 
– Fisher asserted that smoking had no causal 

effect on lung cancer, association due to 
unmeasured genetic variant.  

– Cornfield et al. (1959) showed that genetic 
variant would have to be 9 times more likely 
among smokers than nonsmokers for 
association to be non-causal.



Model for sensitivity analysis
Consider matched pair – the subjects in the matched pair have (approximately)  
the same observed covariates x . 
 
Suppose there’s an unmeasured confounder u that might differ between subjects 
in a matched pair. 
 
Let  be the maximum ratio of odds of subject 1 getting treated compared to  
subject 2 because of differences in u . 
 

1  : Effectively random assignment, u  doesn’t affect treatment assignment 

2  : Unit with higher  u  could have double the odds of treatment. 

3  : Unit with higher u could have triple the odds of treatment. 
 
For a given  , we can test the null hypothesis of no treatment effect  
(Rosenbaum, 2002, Observational Studies, Ch. 4). 
 
Our proposition extends to sensitivity analysis to say that forming the tree by  

regressing | |iY  on ix  and then applying the closed testing procedure with  

sensitivity analysis tests that allow for unmeasured confounding up to   
has probability at most .05 of falsely rejecting a true null assuming the  
unmeasured confounding is at most  . 



Table 2: Mortality in 23,715 matched pairs of a patient receiving surgery at a magnet
hospital or a control hospital, where the pairs have been divided into five groups selected
by CART. A sensitivity analysis using McNemar’s test examines mortality in each group,
combining group specific results using the truncated product of P -values, truncated at 0.1.
The control/magnet odds ratio associated with McNemar’s test is given.

Subgroups Pooled
Group 1 Group 2 Group 3 Group 4 Group5

CHF no no no yes yes
Procedures proc1 proc2 proc2 proc3 proc4
ER admission both no yes both both
Number of Pairs 10127 5636 2943 2086 2923 23715
Discordant Pairs 210 293 488 217 760 1968

Percent Discordant % 2.1 5.2 16.6 10.4 26.0 8.3
Odds Ratio 1.41 1.53 1.09 1.28 1.18 1.23

Morality %, Magnet 0.9 2.5 10.1 4.9 16.5 4.7
Morality %, Control 1.3 3.5 10.8 6.2 18.6 5.6

Sensitivity analysis: Upper bounds on P -values for various Γ

Γ Subgroups Truncated
Group 1 Group 2 Group 3 Group 4 Group 5 Product

1.00 0.008 0.000 0.195 0.039 0.013 0.000
1.05 0.019 0.001 0.374 0.080 0.062 0.000
1.10 0.042 0.003 0.576 0.143 0.184 0.012
1.15 0.079 0.010 0.753 0.230 0.386 0.032
1.17 0.099 0.015 0.809 0.270 0.479 0.044
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Summary
• We provide a tree-based approach for 

discovering effect modifiers and testing them in a 
way that strongly controls for multiple testing.

• Did we discover the “true” groups?  
• Arguably, this is the wrong question.
• The empirical division of patients is helpful in 

thinking about the strength of the evidence and 
its practical implications:
– Evidence of an effect of magnet hospitals is strongest 

for patients without CHF undergoing riskier forms of 
general surgery on a nonemergent basis. 

– No indication of reduced mortality for patients 
without CHF undergoing the same surgical procedures 
on an emergent basis. 

– Evidence for an effect for CHF patients is sensitive to 
bias.
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Simulation Study

• Six binary covariates that are potential effect 
modifiers.

• Only two of the covariates are actual effect 
modifiers.

• 2000 pairs. 



Scenario: 

00 10 01 11( , , , )     

  >=1 False Rejection Power to Reject  
No Overall Effect 

Reject  

False 0H  

   Combined Trunc  

Null case, no effect 
(0,0,0,0) 

1 .052 .051 .052  

1.01 .034 .034 .034  

1.1 0 0 0  

1.2 0 0 0  

Constant effect  
without effect modification 
(.5,.5,.5,.5) 

1  1 1 1 

2.8  .807 .805 .803 

3  .378 .378 .377 

3.2  .077 .078 .077 

Slight effect 
modification 
(.6,.6,.4,.4) 

1  1 1 1 

2.8  .796 .803 .711 

3  .322 .438 .347 

3.2  .059 .211 .128 

3.4  .005 .131 .067 

Complex effect  
modification 
(1.5,0,0,.5) 

1 .048 1 1 1 

2.3 0 .822 1 .574 

2.5 0 .284 1 .553 

15 0 0 .999 .499 

30 0 0 .064 .032 

 A combined test for all pairs is inferior in power in all simulated cases of effect modification  
and only has slightly better power when effect is constant. 

 Closed testing using the truncated product with groups discovered by the data will 
often identify affected groups when a combined test would accept no effect at all. 




