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M Riemannian manifold
Let (ψk)k∈N be an orthonormal basis of L2(M), with

−∆ψk = λkψk , λk ≤ λk+1.

QE theorem (simplified) :

Theorem (Shnirelman 74, Zelditch 85, Colin de Verdière 85)

Assume that the action of the geodesic flow is ergodic for the
Liouville measure. Let a ∈ C 0(M). Then

1

N(λ)

∑
λk≤λ

∣∣∣∣∫
M
a(x)|ψk(x)|2dVol(x)−

∫
M
a(x)dVol(x)

∣∣∣∣2 −→λ−→∞
0.
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Equivalently, there exists a subset S ⊂ N of density 1, such that∫
M
a(x)|ψk(x)|2dVol(x)

k∈S−−−−−→
k−→+∞

∫
M
a(x)dVol(x).

Equivalently,

|ψk(x)|2dVol(x)
k∈S−−−−−→

k−→+∞
dVol(x)

in the weak topology.
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The Quantum Unique Ergodicity conjecture

QUE conjecture :

Conjecture (Rudnick, Sarnak 94)

On a negatively curved manifold, we have convergence of the whole
sequence :

∫
M a(x)|ψk(x)|2dVol(x) −→

∫
M a(x)dVol(x) (for all a).

and more generally,
〈ψk , a(x ,Dx)ψk〉L2(M) −→

∫
(x ,ξ)∈SM a(x , ξ)dxdξ.
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Other questions or conjectures

Random wave Ansatz. In the case of a chaotic geodesic flow,
M. Berry’ Ansatz is that eigenfunctions of ∆ should locally
resemble a “monochromatic gaussian random field”

ψλ(x) =
N∑
α=1

aαe
i
√
λuα·x

with the uα equidistributed over the unit sphere, aα iid
gaussian random variables, N −→ +∞.

Spectral statistics : eigenvalues of ∆,
λk ∈ (E − E 1/2,E + E 1/2) (E −→ +∞) should after suitable
rescaling resemble the eigenvalues of large N × N gaussian
symmetric matrices.



QE on manifolds QE on discrete graphs Sketch of proof From graphs to manifolds ?

QE on discrete graphs

Since the 90s there has been the idea of using graphs as a testing
ground / toy model for quantum chaos.

Smilansky, Kottos, Elon,...

Bogomolny, Keating, Berkolaiko, Winn, Piotet, Marklof,
Gnutzmann...

studied mostly “metric graphs” with Kirchhoff matching conditions
for the derivatives at the vertices.
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For a fixed metric graph, it is known that QE does NOT hold in
the limit λj −→ +∞ (at least for rationally lengths of the edges :
Colin de Verdière 2014, Tanner 2001).

For the limit of large graphs, spectral statistics have been studied
(star graphs), “scarring”, as well as as the validity of random wave
ansatz.
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Here we focus on the case of large regular (discrete) graphs (cf
Smilansky).
Let G = (V ,E ) be a (q + 1)-regular graph.

Discrete laplacian : f : V −→ C,

∆f (x) =
∑
y∼x

(f (y)− f (x)) =
∑
y∼x

f (y)− (q + 1)f (x).

∆ = A− (q + 1)I
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Sp(A) ⊂ [−(q + 1), q + 1]

Let |V | = N.
We look at the limit N −→ +∞.

We assume that GN has “few” short loops (= converges to a tree
in the sense of Benjamini-Schramm).

This implies convergence of the spectral measure (Kesten-McKay)

1

N
]{i , λi ∈ I} −→

N−→+∞

∫
I
m(λ)dλ

for any interval I . m is a completely explicit density, supported in
(−2
√
q, 2
√
q)
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Theorem

(Brooks-Lindenstrauss 2011) Assume that GN has “few” loops of
length ≤ c logN.
For ε > 0, there exists δ > 0 s.t. for every eigenfunction φ,

B ⊂ VN ,
∑
x∈B
|φ(x)|2 ≥ ε =⇒ |B| ≥ Nδ.

Proof also yields that ‖φ‖∞ ≤ | logN|−1/4.
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Theorem

(A-Le Masson, 2013) Assume that GN has “few” short loops and
that it forms an expander family = uniform spectral gap for A.

Let (φ
(N)
i )Ni=1 be an ONB of eigenfunctions of the laplacian on GN .

Let a = aN : VN −→ C be such that |a(x)| ≤ 1 for all x ∈ VN .
Then

lim
N−→+∞

1

N

N∑
i=1

∣∣∣∣∣∣
∑
x∈VN

a(x)|φ(N)
i (x)|2 − 〈a〉

∣∣∣∣∣∣
2

= 0.

〈a〉 =
1

N

∑
x∈VN

a(x)

• Also works on shrinking spectral intervals
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Examples

Deterministic examples :

the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988
(arithmetic quotients of the q-adic symmetric space
PGL(2,Qq)/PGL(2,Zq)).

Cayley graphs of SL2(Z/pZ), p ranges over the primes,
(Bourgain-Gamburd, based on Helfgott 2005)

Extended to all simple Chevalley groups
(Breuillard-Green-Tao), perfect groups and square-free p
(Salehi-Golsefidy–Varju)
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Random regular graphs

Our result applies in particular to random regular graphs. In that
case there also exists a probabilistic proof (Geisinger 2013) in the
case where a(x) is chosen independently of GN .



QE on manifolds QE on discrete graphs Sketch of proof From graphs to manifolds ?

Just as a comparison... the Erdös-Renyi model
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More general version

Theorem

(A-Le Masson, 2013) Assume that GN has “few” short loops and
that it forms an expander family.

Let (φ
(N)
i )Ni=1 be an ONB of eigenfunctions of the laplacian on GN .

Let K = KN : VN × VN −→ C be a matrix such that
d(x , y) > D =⇒ K (x , y) = 0. Assume |K (x , y)| ≤ 1. Then

lim
N−→+∞

1

N

N∑
i=1

∣∣∣〈φ(N)
i ,Kφ

(N)
i 〉 − 〈K 〉λi

∣∣∣2 = 0.

〈K 〉λ =
1

N

∑
x ,y

K (x , y)Φsph,λ(d(x , y)).
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〈K 〉λ =
1

N

∑
x ,y

K (x , y)Φsph,λ(d(x , y)).

Φsph,λ is the spherical function of parameter λ on the
(q + 1)-regular tree.

Φλ(d) = q−d/2

(
2

q + 1
cos(ds ln q) +

q − 1

q + 1

sin((d + 1)s ln q)

sin(s ln q)

)
if λ = q1/2+is + q1/2−is = 2

√
q cos(s ln q).
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Our result says that

〈φ(N)
i ,Kφ

(N)
i 〉 =

∑
x ,y

φ
(N)
i (x)K (x , y)φ

(N)
i (y)

∼ 1

N

∑
x ,y

K (x , y)Φsph,λi (d(x , y))

for most i .
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Sketch of proof : phase space analysis on regular graphs

Fourier-Helgason transform on the (q + 1)-regular tree ;

“phase space analysis” on the tree and on a finite regular
graph ;

use of the geodesic dynamics to study eigenfunctions of the
laplacian.
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Fourier-Helgason transform on the (q + 1)-regular tree

f : X −→ C. Its Fourier transform is

f̂ (ω, s) =
∑
x∈X

f (x)es,ω(x)

where s ∈ Tq = R/(2π/ log q), ω ∈ ∂X, and

es,ω(x) = q(1/2+is)hω(x)

satisfies
Aes,ω = 2

√
q cos(s log q)es,ω.
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Inversion formula, Plancherel theorem

f (x) =

∫
s∈Tq ,ω∈∂X

f̂ (ω, s)es,ω(x)dm(s)dνo(ω)

∑
x∈X
|f (x)|2 =

∫
s∈Tq ,ω∈∂X

|f̂ (ω, s)|2dm(s)dνo(ω)
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Paley-Wiener type theorem

(Cowling-Setti)

Decay of f (x) when d(x , o) −→∞! “smoothness” of f̂ (ω, s).
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Phase space

We define it as
X× ∂X× Tq
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“Pseudodifferential” calculus on a regular tree

For a function a(x , ω, s) on X× ∂X× Tq, we define an operator
Op(a) on `2(X) by

Op(a)es,ω(x) = a(x , ω, s)es,ω

in other words

Op(a)f (x) =

∫
s∈Tq ,ω∈∂X

a(x , ω, s)f̂ (ω, s)es,ω(x)dm(s)dνo(ω).

The adjacency operator A corresponds to
a(x , ω, s) = 2

√
q cos(s log q).
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According to the “Paley-Wiener” theorem,
Decay of Ka(x , y) when d(x , y) −→∞! “smoothness” of
a(x , ω, s) wrt (ω, s).

Le Masson (2012) studied the operators Op(a) (behaviour under
composition, boundedness on `2(X) etc).
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Definition of Op(a) on a finite regular graph

GN = (VN ,EN) = ΓN\X where Γ is a group of automorphisms
acting without fixed point on the regular tree X.

Op(a) preserves the Γ-invariant functions on X (and thus act on
`2(V ))

iff

a(x , ω, s) is Γ-invariant (a(γ · x , γ · ω, s) = a(x , ω, s) for γ ∈ Γ)
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Quantum variance

GN = (VN ,EN) = ΓN\X, N = |VN |.

Aφ(N)
i = λ

(N)
i φ

(N)
i

Var(K ) =
1

N

N∑
i=1

|〈φ(N)
i ,Kφ

(N)
i 〉|

2.

•Trivially, Var([A,K ]) = 0 for any operator K .
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Classical dynamics ?

Trivially, Var([A,K ]) = 0 for any operator K .

[A,Op(a)] = Op(b)

where

b(x , ω, s) = i sin(s ln q)(a ◦ σ − La) + cos(s ln q)(a ◦ σ + La− 2a)
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Although we do not know if 〈φ(N)
i ,Op(a ◦ σ − a)φ

(N)
i 〉 is small for

every i , we can prove that

Var(Op(a ◦ σ − a)) −→
N−→+∞

0.

Var(Op(a)) ≤ 1

N

∑
x∈DN

∫
∂X×Tq

|a(x , ω, s)|2dνx(ω)dm(s)

We deduce (density argument) that Var(Op(a)) −→ 0 (as
N −→∞) if

1

N

∑
x∈DN

∫
∂X×Tq

a(x , ω, s)dνx(ω) = 0

= 〈Ka〉λ(s)

for all s.
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Do graphs teach us something about manifolds ?

By approximation of a manifold by graphs (triangulation) ? A priori
NO.
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Continuous analogue of our theorem...

Let (SN) be a sequence of hyperbolic surfaces, whose genus goes
to ∞.
Assume the first eigenvalue λ1(N) of −∆ is bounded away from 0
as N −→∞. Assume there are few short geodesics.

Fix an interval I ⊂ (1/4,+∞).

Let (φ
(N)
i ) be an ONB of eigenfunctions of the laplacian on SN .

Let a = aN : SN −→ C be such that |a(x)| ≤ 1 for all x ∈ SN .

Then

lim
N−→+∞

1

Vol(SN)

∑
λi (N)∈I

∣∣∣∣∫
SN

a(x)|φ(N)
i (x)|2dx − 〈a〉

∣∣∣∣2 = 0.

(Le Masson–Sahlsten 2016)
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Application to Arithmetic Quantum Unique Ergodicity

M arithmetic surface.
Assume

〈ψk , a(x ,Dx)ψk〉L2(M) −→
λk−→∞

∫
(x ,ξ)∈SM

a(x , ξ)dµ(x , ξ).

Lindenstrauss 2001 : if the ψk are eigenfunctions of ∆ and ALL
the Hecke operators, then µ is the Liouville (uniform) measure.

One step is to prove that all the ergodic components of µ have
positive Kolmogorov-Sinai entropy
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Application to Arithmetic Quantum Unique Ergodicity

(on arithmetic surfaces)

Assume

〈ψk , a(x ,Dx)ψk〉L2(M) −→
∫

(x ,ξ)∈SM
a(x , ξ)dµ(x , ξ).

Brooks-Lindenstrauss 2011 : if the ψk are eigenfunctions of ∆ and
ONE Hecke operator, then µ is the Liouville (uniform) measure.

Idea : approximate Hecke trees by finite regular graphs, use a
modification of the previously quoted result of BL.
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QE on the sphere, revisited

(Brooks-Le Masson-Lindenstrauss 2015)
For g1, . . . , gk a finite set of rotations in SO(3),

Tk f (x) =
k∑

j=1

(f (gjx) + f (g−1
j x))

commutes with ∆S2 .

Theorem

Assume that g1, . . . , gk generate a free subgroup of SO(3).

For each `, let (ψ
(`)
j )2`+1

j=1 be an o-n family of eigenfunctions of
−∆S2 of eigenvalue `(`+ 1), that are also eigenfunctions of Tk .
Then for any continuous function a on S2, we have

1

2`+ 1

2`+1∑
j=1

∣∣∣∣∫
M
a(x)|ψ(`)

j (x)|2dVol(x)−
∫
M
a(x)dVol(x)

∣∣∣∣2 −→`−→∞
0.

Rk :
– not proven for more general PDOs
– QUE not known for this basis
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