
Quantum ergodicity of
Wigner induced spherical harmonics

Robert Chang (Northwestern University)

CRM Workshop:
Probabilistic Methods in Spectral Geometry and PDE

August 25, 2016

Robert Chang Quantum ergodicity of Wigner induced spherical harmonics



Setup

(M, g) compact Riemannian manifold

∆ = ∆g the Laplace-Beltrami operator

Eigenvalue problem

(∆ + λk)ϕk = 0, 0 < λ1 ≤ λ2 ≤ · · · ↑ ∞

Delocalization/diffuseness of eigenfunctions in phase space
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Quantum ergodicity

A ∈ Ψ0(M) a zeroth order pseudo-differential operator

σA(x , ξ) is the principal symbol of A

dµL normalized Liouville measure on S∗M

Definition

The Laplacian eigenfunctions ϕk are quantum ergodic if

lim
λ→∞

1

#{λk ≤ λ}
∑
λk≤λ

∣∣∣∣〈Aϕk , ϕk〉 −
∫
S∗M

σA(x , ξ) dµL

∣∣∣∣2 = 0

for every A ∈ Ψ0(M). For a density one subsequence we have

〈Aϕkj , ϕkj 〉 →
∫
S∗M

σA(x , ξ) dµL
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Spherical harmonics

Specialize to (M, g) = (S2, round metric)

Let ∂
∂θ generate z-axis rotation

The standard spherical harmonics (YLMs) are joint
eigenfunctions of the Laplacian ∆ = ∆S2 and the
z-component of the angular momentum operator:∆Y k

N = −N(N + 1)Y k
N ,

1

i

∂

∂θ
Y k
N = kY k

N , −N ≤ k ≤ N

The standard spherical harmonics are not QE

But random spherical harmonics are QE almost surely
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Random spherical harmonics

Eigenspaces HN := span{Y k
N : − N ≤ k ≤ N}

dimHN = 2N + 1 =: dN

A random change-of-basis matrix(
uN,k(α)

)
−N≤k,α≤N ∈ (U(dN),HaarN)

defines a random basis for HN :

ψN,k =
∑

−N≤α≤N
uN,k(α)Y α

N , −N ≤ k ≤ N

A random basis for L2(S2) =
⊕

N≥0HN is thus an element of
the product probability space∏

N≥0
(U(dN),HaarN)
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QE of random bases

Theorem (Zelditch ’92)

A random orthonormal basis of spherical harmonics (as described
in the previously slide) for L2(S2) is almost surely QE.

VanderKam ’97: QUE of random bases for S2

General M with additional hypotheses on the subspaces HN :

Zelditch ’12: QE of random bases for sequences of eigenspaces
with dimensions dN →∞
Maples ’13: QUE of random bases for sequences of
eigenspaces with dimensions dN > CNε for ε > 0

Chatterjee and Galkowski ’16: QE for random small
perturbations of the Laplacian

Goal of talk: QE of a more general class of “random” bases
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Generalized Wigner matrices

Definition

Generalized Wigner H = (hjk)−N≤j ,k≤N ∈ Herm(dN) satisfies

hjk independent for j ≤ k.

Normalization: Mean zero, variances satisfy
∑N

j=−N σ
2
jk = 1

Non-degeneracy: ∃c1, c2 > 0 independent of N such that

c−11 ≤ dNσ
2
jk ≤ c1 and E(h∗jkhjk) ≥ c2d

−1
N

in the sense of inequality between 2× 2 positive matrices.
Here hjk = (Re hjk , Im hjk).

Bounded moments: ∀p ∈ N ∃Cp > 0 such that

E
∣∣∣√dNhjk

∣∣∣p < Cp for all j , k ,N.
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Induced measure

Let H̃ ∈ Herm(dN) be a GUE matrix, i.e., upper triangular
entries are iid N(0, 1)C, and diagonal entries are iid N(0, 1)R

Consider the decomposition H̃ = UΛU∗, where U ∈ U(dN)
and Λ = diag(λ1, . . . , λdN )

Decomposition is unique up to ordering of the λj ’s and a
diagonal unitary matrix

The distribution

νH̃ = cN

∏
i<j

e−|h̃ij |
2

(∏
i

e−|h̃ii |
2/2

)
dH̃

of the GUE matrix H̃ defines a continuous probability measure
on Herm(dN) (here dH̃ = Lebesgue measure).
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Induced measure

Can rewrite the distribution function as

νH̃ = cNe
− tr(H̃2)/2 dH̃

From the unitary invariance of the above line, see that νH̃
induces the invariant Haar measure on U(dN) under the
decomposition H̃ = UΛU∗

Now let H ∈ Herm(dN) be a generalized Wigner matrix, νH
its distribution

Denote by µN the induced measure on U(dN), that is, if
π : H 7→ U, then

µN := π∗νH .
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Asymptotic normality of Wigner eigenvectors

Let
(
uN,k(α)

)
−N≤α≤N be eigenvectors of {HN}

Then uN,k(α) are asymptotically Gaussian random variables:√
dNuN,k(α)→ N (1) + iN (2)

Theorem (Bourgade-Yau ’13)

Given any polynomial Q in 2m variables, there exists ε = ε(Q)
such that for all N sufficiently large

sup
J⊂[−N,...,N]
|J|=m

k∈[−N,N]

∣∣∣EQ(√dN(e iωuN,k(α), e−iωuN,k(α))α∈J
)

−EQ
(
(N (1)

j + iN (2)
j ,N (1)

j − iN (2)
j )mj=1

)∣∣∣ ≤ d−εN .

Here ω is independent of HN and uniform on (0, 2π).
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Probabilistic local QUE

Let aN : {−N, . . . ,N} → [−1, 1] be functions

Assume
∑N

α=−N aN(α) = 0

Let |aN | := #{α : aN(α) 6= 0} denote the size of the support

Theorem (Bourgade-Yau ’13)

Let {HN} be a sequence of generalized Wigner matrices. Then
there exists ε > 0 such that for any δ > 0, there exists C > 0 so

P

(∣∣∣∣∣ dN|aN |∑α aN(α)|uN,k(α)|2
∣∣∣∣∣ > δ

)
≤ C (d−εN + |aN |−1)

for all sequences of functions aN as above.
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QE of Wigner induced random bases

Define a (Wigner induced) random basis for HN by

ψN,k =
∑

−N≤α≤N
uN,k(α)Y α

N , −N ≤ k ≤ N

Here,
(
uN,k(α)

)N
α=−N are eigenvectors of some Wigner matrix;

Or equivalently, the unitary matrix
(
uN,k(α)

)
−N≤k,α≤N is a

random element of (U(dN), µN)

Theorem (C ’16)

A Wigner induced random orthonormal basis of spherical
harmonics is almost surely QE.
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QE of Wigner induced random bases

Define random variables

XN :=
1

dN

N∑
k=−N

∣∣∣∣〈AψN,k , ψN,k〉 −
∫
S∗M

σA dµL

∣∣∣∣2
The following implies QE:

Theorem

EXN = O(d−εN ) and EX 2
N = O(d−ε

′

N ).

Kolmogorov’s convergence criterion allows us to apply SLLN
to the XN ’s

SLLN implies 1
M

∑M
N=0 XN → 0 a.s.
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Weingarten formula

Theorem (Weingarten ’78)

Let
(
uN,k(α)

)
k,α
∈ U(dN) be a unitary matrix;

Let kj , k
′
j , αj , α

′
j ∈ [−N,N] be indices for 1 ≤ j ≤ m;

Then the integral

IN(m) :=

∫
U(dN)

uN,k1(α1) · · · uN,km(αm)

× uN,k ′1(α′1) · · · uN,k ′m(α′) dHaarN

is asymptotically

d−mN

∑
δk1,k ′j1

δα1,α′j1
· · · δkm,k ′jm δαm,α′jm

+ O(d−m−1N ),

where the sum is over all choices j1, · · · , jm as a permutation of
1, . . . ,m.
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Weingarten formula for Wigner eigenvectors

Proposition

Let
(
uN,k(α)

)
k,α
∈ U(dN) be a unitary matrix;

Let kj , k
′
j , αj , α

′
j ∈ [−N,N] be indices for 1 ≤ j ≤ m;

Then the integral

E
[
uN,k1(α1) · · · uN,km(αm)uN,k ′1(α′1) · · · uN,k ′m(α′m)

]
is asymptotically

d−mN

∑
δk1,k ′j1

δα1,α′j1
· · · δkm,k ′jm δαm,α′jm

+ O(d−m−εN ),

where the sum is over all choices j1, · · · , jm as a permutation of
1, . . . ,m.
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Rotationally invariant case

Assume
∫
S∗M σAdµL = 0 and assume A ∈ Ψ0(S2) is invariant

with respect to z-axis rotation, then

〈AY α
N ,Y

β
N 〉 =

{
〈AY α

N ,Y
α
N 〉 if α = β

0 if α 6= β.

Using the definition of random bases ψN,k =
∑

α uN,k(α)Y α
N ,

XN =
1

dN

N∑
k=−N

|〈AψN,k , ψN,k〉|2

=
1

dN

N∑
k=−N

∣∣∣∣∣∣
N∑

α,β=−N
〈AY α

N ,Y
β
N 〉uN,k(α)uN,k(β)

∣∣∣∣∣∣
2
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Rotationally invariant case

Using rotational invariance and expanding the square gives

XN =
1

dN

∑
k

∑
α,β

〈AY α
N ,Y

α
N 〉〈AY

β
N ,Y

β
N 〉|uN,k(α)|2|uN,k(β)|2

Compute the expected value using Weingarten:

E
(
|uN,k(α)|2|uN,k(β)|2

)
= d−2N (1 + δαβ) + O(d−2−εN )

Hence

EXN =

(
1

dN

∑
α

〈AY α
N ,Y

α
N 〉︸ ︷︷ ︸

=O(d−1
N )

)2

+
1

d2
N

∑
α

〈AY α
N ,Y

α
N 〉2︸ ︷︷ ︸

=O(d−1
N )

+O(d−εN )
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General case

Proposition

Fix A ∈ Ψ0(S2). Then for n ∈ Z there exist Â(n) ∈ Ψ0(S2) with∥∥A−∑|n|≤K Â(n)
∥∥
L2→L2

→ 0

For n 6= 0, have ‖Â(n)‖L2→L2 = O(n−`) for every ` ≥ 1∫
S∗M

σÂ(n) dµL =


∫
S∗M

σA dµL if n = 0

0 if n 6= 0

The matrix elements of A and Â(n) are related by

〈Â(n)Y α
N ,Y

β
N 〉 =

{
〈AY α

N ,Y
α−n
N 〉 if α = β + n

0 if α 6= β + n

simultaneously for all N ≥ 0
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General case

Approximate operator A by a finite sum of Â(n)

Equivalently, approximate

XN =
1

dN

N∑
k=−N

∣∣∣∣∣∣
N∑

α,β=−N
〈AY α

N ,Y
β
N 〉|uN,k(α)uN,k(β)

∣∣∣∣∣∣
2

by a finite sum of

Yn,m,N :=
1

dN

N∑
k=−N

∑
α,β

〈AY α
N ,Y

α−n
N 〉uN,k(α)uN,k(α− n)

× 〈AY β
N ,Y

β−m
N 〉uN,k(β)uN,k(β −m)

Compute (as before) expectation/variance for each of Yn,m,N
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