
A Riemannian structure on the space of conformal
metrics

M. Gursky (Notre Dame)
(joint with J. Streets, UC - Irvine)

Conference on Differential Geometry
In Honor of Claude LeBrun

Centre de Recherches Mathématiques
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Overview

Main idea: given a conformal class of metrics [g ], we want to define a
Riemannian metric on this (infinite-dimensional) space.

Our metric will be defined for conformal classes on even-dimensional
manifolds. Moreover, we will need to restrict to conformal metrics
satisfying an ‘admissibility’ condition.

Our main focus will be some results in four dimensions, where there
are applications to a natural geometric variational problem. In the
case of surfaces, it will correspond to the
Mabuchi-Donaldson-Semmes metric for the natural Kähler class.
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The case of surfaces

• Assume (M, g) is a closed Riemannian surface (of genus 6= 1), and let
[g ] denote the conformal class of g . Define

C+ = {gu = e2ug ∈ [g ] | Ku > 0},

C− = {gu = e2ug ∈ [g ] | Ku < 0}.

• Note

C+ 6= ∅ ⇔
ˆ
M
KgdAg > 0,

C+ 6= ∅ ⇔
ˆ
M
Kg dAg < 0.
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The inner product

• Note
TuC± ∼= C∞(M)

i.e., tangent vectors a point (= conformal metric) are just functions.

Definition

For α, β ∈ TuC+ ∼= C∞ , we define

〈α, β〉u =

ˆ
αβKu dAu

and for α, β ∈ TuC− ∼= C∞ we define

〈α, β〉u =

ˆ
αβ(−Ku) dAu
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The inner product, cont.

• If gu = e2ug0, then the Gauss curvature and volume forms of gu and g0

are related by

Ku = e−2u
(
K0 −∆0u

)
, dAu = e2udA0,

hence we can also express the inner product as

〈α, β〉u =

ˆ
αβ
(
K0 −∆0u

)
dA0.

This is the same as the inner product on the space of volume forms
defined by Donaldson (’07).

• To motivate our results in dimension four, we want to point out some
geometric properties of (C±, 〈·, ·〉), beginning with geodesics.
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The geodesic equation

• Let u : [a, b]→ C+ be a curve (i.e., e2ug ∈ C+). We can use the inner
product to define the length of a path:

L[u] =

ˆ b

a
‖∂u
∂t
‖dt =

ˆ b

a

{ˆ
M

(∂u
∂t

)2
KudAu

}1/2
dt.

• Taking a first variation, we find the geodesic equation:

utt +
|∇uut |2

Ku
= 0.

• Chen-He (’08) proved partial regularity (C 1,1) of solutions.
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The regularized determinant

• Let

F [u] =

ˆ (
|∇u|2 + 2Ku

)
dA−

( ˆ
KdA

)
log

 
e2udA.

the normalized Liouville energy.

• A metric gu = e2ug is a critical point of F ⇔ it has constant Gauss
curvature.

• Polyakov (’81) showed that if gu = e2ug have the same area, then

log
det(−∆u)

det(−∆g )
= − 1

12π
F [u].
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Geodesic convexity

Claim

F : C± → R is geodesically convex.

Proof. Let u = u(x , t) denote a geodesic in C+. Then

d

dt
F [u] = 2

ˆ
ut
(
Ku − Ku

)
dAu,

d2

dt2
F [u] = 2Ku

{ˆ |∇ut |2
Ku

dAu − 2
[ˆ

u2
t dAu −

1

Au

(ˆ
utdAu

)2
]}
.

To get a sign, we need a kind of “curvature-weighted Poincaré inequality”.
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Geodesic convexity

Claim

F : C± → R is geodesically convex.

Proof. Let u = u(x , t) denote a geodesic in C+. Then

d

dt
F [u] = 2

ˆ
ut
(
Ku − Ku

)
dAu,

d2

dt2
F [u] = 2Ku

{ˆ |∇ut |2
Ku

dAu − 2
[ˆ

u2
t dAu −

1

Au

(ˆ
utdAu

)2
]}
.

To get a sign, we need a kind of “curvature-weighted Poincaré inequality”.
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Andrews’ inequality

Theorem

(B. Andrews, unpublished) Assume (M, g) has Ric > 0.

If
´
φdV = 0,

then
n

n − 1

ˆ
φ2 dV ≤

ˆ
(Ric)−1(∇φ,∇φ) dV ,

with equality ⇔ φ ≡ 0 or (M, g) = (Sn, g0) and φ is a fist order spherical
harmonic.

• When n = 2, (Ricu)−1 = 1
Ku

gu, and Andrews’ inequality applied to

φ = ut − ūt implies d2

dt2F ≥ 0.
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Convexity, cont.

• In C−, we have strict convexity of F and uniqueness of critical points
(i.e., metrics of curvature −1):
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Convexity, cont.

• In C+, the Moebius group leads to non-uniqueness (and equality in
Andrews’ inequality):

Let σ : S2 \ {N} → R2 denote the stereographic
projection map, where N = north pole of S2. Let δα : x 7→ α−1x denote
dilation on R2, where α > 0. Then

ψα = σ−1 ◦ δα ◦ σ : S2 → S2

defines a 1-parameter family of conformal maps:

ψ∗αg0 = e2wαg0.

Then
u(x , t) = wet (x)

is a geodesic in C+.
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Convexity, cont.
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Four dimensions

• Schematic description of the inner product in 4-d:

n = 2 : 〈α, β〉 =

ˆ
αβKdA,

2πχ(M) =

ˆ
KdA,

n = 4 : 8π2χ(M) =

ˆ (
− 1

2
|Ric |2 +

1

6
R2
)
dV +

ˆ
|W |2dV ,

〈α, β〉 =
1

4

ˆ
αβ
(
− 1

2
|Ric |2 +

1

6
R2
)
dV .
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Schouten tensor

• Let n = 4, and denote the Schouten tensor by

A =
1

2

(
Ric − 1

6
Rg
)
.

• Let σ2(A) =
∑

i<j λi (A)λj(A), the second symmetric function. Then

8π2χ(M) =

ˆ
|W |2 + 4

ˆ
σ2(A)dV ,

and

〈α, β〉g =

ˆ
αβσ2(Ag )dVg .
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The spaces

Definition.

Let
C+ =

{
gu = e2ug : σ1(Au) > 0, σ2(Au) > 0

}
,

C− =
{
gu = e2ug : σ1(Au) < 0, σ2(Au) > 0

}
,

• Note that

σ1(A) =
R

6
,

where R is the scalar curvature.

(For reasons we’ll touch on later, we will only consider C+.)
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C+

Question: When is C+ 6= ∅?

• In analogy with two dimensions, we have

Theorem.

(Chang-G-Yang, ’96) If
´
σ2(A)dV > 0, R > 0, then C+ 6= ∅.
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The σk-Yamabe problem

The σk -Yamabe problem:(J. Viaclovsky)

Given [g ], find g̃ ∈ [g ] such that

σk(Ag̃ ) = const.

• When k = 1, this corresponds to the Yamabe problem.

• When k ≥ 2 this equation fully nonlinear, and elliptic if

C+
k = {g̃ ∈ [g ] : σj(Ag̃ ) > 0, 1 ≤ j ≤ k} 6= ∅

(or with A replaced by −A).
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Existence theory for the σk-Yamabe problem

• C+: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li,
Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang,
Chen, etc.) In particular: when n = 4 and k = 2, existence proved by
Chang-G-Yang.

• C−: Once k ≥ 2, essentially nothing... Viaclovsky: C 0, C 1-estimates for
solutions; Sheng-Trudinger-Wang: Counterexample to (local)
C 2-estimates. Also, when k = n, connection to optimal transport.

• Non-uniqueness for solutions of the Yamabe problem is well known;
Schoen constructed explicit examples on Sn × S1. Viaclovsky generalized
Schoen’s construction to the fully nonlinear Yamabe problem when
k < n/2.
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Existence theory for the σk-Yamabe problem

• C+: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li,
Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang,
Chen, etc.) In particular: when n = 4 and k = 2, existence proved by
Chang-G-Yang.

• C−: Once k ≥ 2, essentially nothing...

Viaclovsky: C 0, C 1-estimates for
solutions; Sheng-Trudinger-Wang: Counterexample to (local)
C 2-estimates. Also, when k = n, connection to optimal transport.

• Non-uniqueness for solutions of the Yamabe problem is well known;
Schoen constructed explicit examples on Sn × S1. Viaclovsky generalized
Schoen’s construction to the fully nonlinear Yamabe problem when
k < n/2.

M. Gursky (Notre Dame) (joint with J. Streets, UC - Irvine) (Conference on Differential Geometry In Honor of Claude LeBrun Centre de Recherches Mathématiques)July 6, 2016 18 / 29
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The functional

Back to n = 4.

Question: What corresponds to the Liouville energy?

• Define

FCY [u] =

ˆ {
2∆u|∇u|2 − |∇u|4 − 2Ric(∇u,∇u) + R|∇u|2

− 8uσ2(Ag )
}
dVg − 2

( ˆ
σ2(Ag )dV

)
log
( 

e−4udV
)
.

This formula is due to Branson-Orsted/Chang-Yang.
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The functional

• u is a critical point of FCY ⇔ the conformal metric gu = e−2ug satisfies

σ2(Au) ≡ const.

• FCY can be expressed as a linear combination of regularized
determinants.

• When (M, g) = (S4, gS4), Chang-Yang showed that F
∣∣
C+ ≥ 0, with

equality given precisely by the image of the round metric under the
conformal group.
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Geodesics

• As in the case of surfaces, many of the geometric properties of the space
(C+, 〈·, ·〉) depend on the existence/regularity of geodesics.

• A path u : [0, 1]→ C+ is a geodesic ⇔

utt =

(
− Au + σ1(Au)gu

)
(∇ut ,∇ut)

σ2(Au)
.

There is a more convenient way to write this: let

Eu = uttAu −∇ut ⊗∇ut ,

then the geodesic equation can be written

σ2(Eu) = 0.
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Geodesics

• This is a degenerate elliptic, fully nonlinear equation. We regularize by
letting

E εu = (1 + ε)uttAu −∇ut ⊗∇ut ,

and for f > 0, solve

σ2(E εu) = futt .

• Unlike the surface case, estimates for the regularized geodesic equation
degenerate at the C 2-level: given endpoints u0, u1 ∈ C+ and ε > 0, we can
prove the existence of a solution of the regularized equation connecting u0

and u1 with

|uε|+ |(uε)t |+ |∇uε|+ ε
{
|∇2uε|+ |(uε)tt |+ |∇(uε)t |

}
≤ C .
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Main Results

Theorem 1

(C+, 〈·, ·〉) has non-positive sectional curvature.

Theorem 2

The functional FCY is geodesically convex.

• The proof of Theorem 2 also depends on a version of Andrews’
unequality, but in a very non-obvious way.
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Main Results, cont.

The most surprising result:

Theorem 3

If C+ 6= ∅ and (M, g) is not conformally equivalent to the sphere, then
there is a unique metric g̃ ∈ C+ which minimizes FCY , and is therefore a
solution of

σ2(Ag̃ ) ≡ 3

2
.

Also,
(i) Vol(g̃) < Vol(S4),

and

(ii) 0 < Ric(g̃) <
1

2
Rg̃ g̃ .
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Some Remarks about Theorem 3

• The gap between Vol(g̃) and the volume of the round sphere is an
interesting (conformal) invariant. In some cases it can be (sharply)
estimated:

♦ (Poon, ’86): If M = CP2, then Vol(g̃) ≤ 2π2, with equality iff g̃ = gFS .

♦ (G - ’98): If b+ > 0, then Vol(g̃) ≤ 2
9π

2
(
2χ(M) + 3τ(M)

)
, with

equality iff g̃ is K-E.
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The proof of Theorem 3, cont.

• The uniqueness claim of Theorem 3 would follow from Theorem 2
(geodesic convexity of FCY ) if we could connect any two metrics in C+ by
a sufficiently regular geodesic.

However, in view of our estimates above, as
the regularizing parameter ε→ 0, we lose C 2-bounds.

• Consequently, we need to smooth the approximate geodesics, without
changing the value of FCY too much.

• The idea is to use the flow introduced by Guan-Wang:

∂u

∂t
= log σ2(Au).
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The proof of Theorem 3, cont.

• The uniqueness claim of Theorem 3 would follow from Theorem 2
(geodesic convexity of FCY ) if we could connect any two metrics in C+ by
a sufficiently regular geodesic. However, in view of our estimates above, as
the regularizing parameter ε→ 0, we lose C 2-bounds.

• Consequently, we need to smooth the approximate geodesics, without
changing the value of FCY too much.

• The idea is to use the flow introduced by Guan-Wang:

∂u

∂t
= log σ2(Au).

M. Gursky (Notre Dame) (joint with J. Streets, UC - Irvine) (Conference on Differential Geometry In Honor of Claude LeBrun Centre de Recherches Mathématiques)July 6, 2016 26 / 29



The Proof, in a Picture:

u0

u1

1) u(x , t, ε)

- regularized

geodesic

2) v(x , t, ε)

- smoothed

reg. geod.

3) v(x , t) =

limε→0 v(x , t, ε)

u0 and u1

lie in the

space of F -

minimizers
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Dimension n ≥ 6

• In higher dimensions there are two ways to proceed. One way is to define

〈α, β〉gu =

ˆ
αβ σn/2(Au)dVu.

However, once the dimensions n ≥ 6 one needs to impose an additional
condition (local conformal flatness) in order to have a reasonable notion of
the connection, geodesic, etc.

• There is an alternate definition which has many nice formal properties,
in which one replaces σn/2(Au) with the ‘renormalized volume coefficient’
(cf. Chang-Fang, Chang-Fang-Graham). The associated formulas become
quite complicated, though.
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Happy Birthday, et Bonne Anniversaire, Claude!
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