A Riemannian structure on the space of conformal metrics

M. Gursky (Notre Dame)
(joint with J. Streets, UC - Irvine)
Conference on Differential Geometry
In Honor of Claude LeBrun
Centre de Recherches Mathématiques

$$
\text { July 6, } 2016
$$

Overview

- Main idea: given a conformal class of metrics [g], we want to define a Riemannian metric on this (infinite-dimensional) space.

Overview

- Main idea: given a conformal class of metrics [g], we want to define a Riemannian metric on this (infinite-dimensional) space.
- Our metric will be defined for conformal classes on even-dimensional manifolds. Moreover, we will need to restrict to conformal metrics satisfying an 'admissibility' condition.

Overview

- Main idea: given a conformal class of metrics [g], we want to define a Riemannian metric on this (infinite-dimensional) space.
- Our metric will be defined for conformal classes on even-dimensional manifolds. Moreover, we will need to restrict to conformal metrics satisfying an 'admissibility' condition.
- Our main focus will be some results in four dimensions, where there are applications to a natural geometric variational problem. In the case of surfaces, it will correspond to the Mabuchi-Donaldson-Semmes metric for the natural Kähler class.

The case of surfaces

- Assume (M, g) is a closed Riemannian surface (of genus $\neq 1$), and let $[g]$ denote the conformal class of g. Define

The case of surfaces

- Assume (M, g) is a closed Riemannian surface (of genus $\neq 1$), and let $[g]$ denote the conformal class of g. Define

$$
\begin{aligned}
& \mathcal{C}^{+}=\left\{g_{u}=e^{2 u} g \in[g] \mid K_{u}>0\right\}, \\
& \mathcal{C}^{-}=\left\{g_{u}=e^{2 u} g \in[g] \mid K_{u}<0\right\} .
\end{aligned}
$$

The case of surfaces

- Assume (M, g) is a closed Riemannian surface (of genus $\neq 1$), and let $[g]$ denote the conformal class of g. Define

$$
\begin{aligned}
& \mathcal{C}^{+}=\left\{g_{u}=e^{2 u} g \in[g] \mid K_{u}>0\right\}, \\
& \mathcal{C}^{-}=\left\{g_{u}=e^{2 u} g \in[g] \mid K_{u}<0\right\} .
\end{aligned}
$$

- Note

$$
\begin{aligned}
\mathcal{C}^{+} \neq \emptyset & \Leftrightarrow \int_{M} K_{g} d A_{g}>0 \\
\mathcal{C}^{+} \neq \emptyset & \Leftrightarrow \int_{M} K_{g} d A_{g}<0 .
\end{aligned}
$$

The inner product

- Note

$$
T_{u} \mathcal{C}^{ \pm} \cong C^{\infty}(M)
$$

i.e., tangent vectors a point (= conformal metric) are just functions.

The inner product

- Note

$$
T_{u} \mathcal{C}^{ \pm} \cong C^{\infty}(M)
$$

i.e., tangent vectors a point (= conformal metric) are just functions.

Definition

For $\alpha, \beta \in T_{\mu} \mathcal{C}^{+} \cong C^{\infty}$, we define

$$
\langle\alpha, \beta\rangle_{u}=\int \alpha \beta K_{u} d A_{u}
$$

and for $\alpha, \beta \in T_{\mu} \mathcal{C}^{-} \cong C^{\infty}$ we define

$$
\langle\alpha, \beta\rangle_{u}=\int \alpha \beta\left(-K_{u}\right) d A_{u}
$$

The inner product, cont.

- If $g_{u}=e^{2 u} g_{0}$, then the Gauss curvature and volume forms of g_{u} and g_{0} are related by

$$
K_{u}=e^{-2 u}\left(K_{0}-\Delta_{0} u\right), \quad d A_{u}=e^{2 u} d A_{0},
$$

The inner product, cont.

- If $g_{u}=e^{2 u} g_{0}$, then the Gauss curvature and volume forms of g_{u} and g_{0} are related by

$$
K_{u}=e^{-2 u}\left(K_{0}-\Delta_{0} u\right), \quad d A_{u}=e^{2 u} d A_{0},
$$

hence we can also express the inner product as

$$
\langle\alpha, \beta\rangle_{u}=\int \alpha \beta\left(K_{0}-\Delta_{0} u\right) d A_{0}
$$

This is the same as the inner product on the space of volume forms defined by Donaldson ('07).

The inner product, cont.

- If $g_{u}=e^{2 u} g_{0}$, then the Gauss curvature and volume forms of g_{u} and g_{0} are related by

$$
K_{u}=e^{-2 u}\left(K_{0}-\Delta_{0} u\right), \quad d A_{u}=e^{2 u} d A_{0}
$$

hence we can also express the inner product as

$$
\langle\alpha, \beta\rangle_{u}=\int \alpha \beta\left(K_{0}-\Delta_{0} u\right) d A_{0}
$$

This is the same as the inner product on the space of volume forms defined by Donaldson ('07).

- To motivate our results in dimension four, we want to point out some geometric properties of $\left(\mathcal{C}^{ \pm},\langle\cdot, \cdot\rangle\right)$, beginning with geodesics.

The geodesic equation

- Let $u:[a, b] \rightarrow \mathcal{C}^{+}$be a curve (i.e., $e^{2 u} g \in \mathcal{C}^{+}$). We can use the inner product to define the length of a path:

$$
L[u]=\int_{a}^{b}\left\|\frac{\partial u}{\partial t}\right\| d t=\int_{a}^{b}\left\{\int_{M}\left(\frac{\partial u}{\partial t}\right)^{2} K_{u} d A_{u}\right\}^{1 / 2} d t
$$

The geodesic equation

- Let $u:[a, b] \rightarrow \mathcal{C}^{+}$be a curve (i.e., $e^{2 u} g \in \mathcal{C}^{+}$). We can use the inner product to define the length of a path:

$$
L[u]=\int_{a}^{b}\left\|\frac{\partial u}{\partial t}\right\| d t=\int_{a}^{b}\left\{\int_{M}\left(\frac{\partial u}{\partial t}\right)^{2} K_{u} d A_{u}\right\}^{1 / 2} d t
$$

- Taking a first variation, we find the geodesic equation:

$$
u_{t t}+\frac{\left|\nabla_{u} u_{t}\right|^{2}}{K_{u}}=0
$$

The geodesic equation

- Let $u:[a, b] \rightarrow \mathcal{C}^{+}$be a curve (i.e., $e^{2 u} g \in \mathcal{C}^{+}$). We can use the inner product to define the length of a path:

$$
L[u]=\int_{a}^{b}\left\|\frac{\partial u}{\partial t}\right\| d t=\int_{a}^{b}\left\{\int_{M}\left(\frac{\partial u}{\partial t}\right)^{2} K_{u} d A_{u}\right\}^{1 / 2} d t
$$

- Taking a first variation, we find the geodesic equation:

$$
u_{t t}+\frac{\left|\nabla_{u} u_{t}\right|^{2}}{K_{u}}=0
$$

- Chen-He ('08) proved partial regularity $\left(C^{1,1}\right)$ of solutions.

The regularized determinant

- Let

$$
F[u]=\int\left(|\nabla u|^{2}+2 K u\right) d A-\left(\int K d A\right) \log f e^{2 u} d A .
$$

the normalized Liouville energy.

The regularized determinant

- Let

$$
F[u]=\int\left(|\nabla u|^{2}+2 K u\right) d A-\left(\int K d A\right) \log f e^{2 u} d A .
$$

the normalized Liouville energy.

- A metric $g_{u}=e^{2 u} g$ is a critical point of $F \Leftrightarrow$ it has constant Gauss curvature.

The regularized determinant

- Let

$$
F[u]=\int\left(|\nabla u|^{2}+2 K u\right) d A-\left(\int K d A\right) \log f e^{2 u} d A .
$$

the normalized Liouville energy.

- A metric $g_{u}=e^{2 u} g$ is a critical point of $F \Leftrightarrow$ it has constant Gauss curvature.
- Polyakov ('81) showed that if $g_{u}=e^{2 u} g$ have the same area, then

$$
\log \frac{\operatorname{det}\left(-\Delta_{u}\right)}{\operatorname{det}\left(-\Delta_{g}\right)}=-\frac{1}{12 \pi} F[u] .
$$

Geodesic convexity

Claim
 $F: \mathcal{C}^{ \pm} \rightarrow \mathbb{R}$ is geodesically convex.

Geodesic convexity

Claim

$F: \mathcal{C}^{ \pm} \rightarrow \mathbb{R}$ is geodesically convex.

Proof. Let $u=u(x, t)$ denote a geodesic in \mathcal{C}^{+}. Then

$$
\frac{d}{d t} F[u]=2 \int u_{t}\left(K_{u}-\bar{K}_{u}\right) d A_{u}
$$

Geodesic convexity

Claim

$F: \mathcal{C}^{ \pm} \rightarrow \mathbb{R}$ is geodesically convex.

Proof. Let $u=u(x, t)$ denote a geodesic in \mathcal{C}^{+}. Then

$$
\begin{gathered}
\frac{d}{d t} F[u]=2 \int u_{t}\left(K_{u}-\bar{K}_{u}\right) d A_{u} \\
\frac{d^{2}}{d t^{2}} F[u]=2 \bar{K}_{u}\left\{\int \frac{\left|\nabla u_{t}\right|^{2}}{K_{u}} d A_{u}-2\left[\int u_{t}^{2} d A_{u}-\frac{1}{A_{u}}\left(\int u_{t} d A_{u}\right)^{2}\right]\right\} .
\end{gathered}
$$

Geodesic convexity

Claim

$F: \mathcal{C}^{ \pm} \rightarrow \mathbb{R}$ is geodesically convex.

Proof. Let $u=u(x, t)$ denote a geodesic in \mathcal{C}^{+}. Then

$$
\begin{gathered}
\frac{d}{d t} F[u]=2 \int u_{t}\left(K_{u}-\bar{K}_{u}\right) d A_{u} \\
\frac{d^{2}}{d t^{2}} F[u]=2 \bar{K}_{u}\left\{\int \frac{\left|\nabla u_{t}\right|^{2}}{K_{u}} d A_{u}-2\left[\int u_{t}^{2} d A_{u}-\frac{1}{A_{u}}\left(\int u_{t} d A_{u}\right)^{2}\right]\right\} .
\end{gathered}
$$

To get a sign, we need a kind of "curvature-weighted Poincaré inequality".

Andrews' inequality

Theorem

(B. Andrews, unpublished) Assume (M, g) has Ric >0.

Andrews' inequality

Theorem

(B. Andrews, unpublished) Assume (M, g) has Ric >0. If $\int \phi d V=0$, then

$$
\frac{n}{n-1} \int \phi^{2} d V \leq \int(R i c)^{-1}(\nabla \phi, \nabla \phi) d V
$$

with equality $\Leftrightarrow \phi \equiv 0$ or $(M, g)=\left(S^{n}, g_{0}\right)$ and ϕ is a fist order spherical harmonic.

Andrews' inequality

Theorem

(B. Andrews, unpublished) Assume (M, g) has Ric >0. If $\int \phi d V=0$, then

$$
\frac{n}{n-1} \int \phi^{2} d V \leq \int(R i c)^{-1}(\nabla \phi, \nabla \phi) d V
$$

with equality $\Leftrightarrow \phi \equiv 0$ or $(M, g)=\left(S^{n}, g_{0}\right)$ and ϕ is a fist order spherical harmonic.

- When $n=2,\left(\operatorname{Ric}_{u}\right)^{-1}=\frac{1}{K_{u}} g_{u}$, and Andrews' inequality applied to $\phi=u_{t}-\bar{u}_{t}$ implies $\frac{d^{2}}{d t^{2}} F \geq 0$.

Convexity, cont.

- In \mathcal{C}^{-}, we have strict convexity of F and uniqueness of critical points (i.e., metrics of curvature -1):

e^{-}

Convexity, cont.

- In \mathcal{C}^{+}, the Moebius group leads to non-uniqueness (and equality in Andrews' inequality):

Convexity, cont.

- In \mathcal{C}^{+}, the Moebius group leads to non-uniqueness (and equality in Andrews' inequality): Let $\sigma: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ denote the stereographic projection map, where $N=$ north pole of S^{2}.

Convexity, cont.

- In \mathcal{C}^{+}, the Moebius group leads to non-uniqueness (and equality in Andrews' inequality): Let $\sigma: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ denote the stereographic projection map, where $N=$ north pole of S^{2}. Let $\delta_{\alpha}: x \mapsto \alpha^{-1} x$ denote dilation on \mathbb{R}^{2}, where $\alpha>0$.

Convexity, cont.

- In \mathcal{C}^{+}, the Moebius group leads to non-uniqueness (and equality in Andrews' inequality): Let $\sigma: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ denote the stereographic projection map, where $N=$ north pole of S^{2}. Let $\delta_{\alpha}: x \mapsto \alpha^{-1} x$ denote dilation on \mathbb{R}^{2}, where $\alpha>0$. Then

$$
\psi_{\alpha}=\sigma^{-1} \circ \delta_{\alpha} \circ \sigma: S^{2} \rightarrow S^{2}
$$

defines a 1-parameter family of conformal maps:

$$
\psi_{\alpha}^{*} g_{0}=e^{2 w_{\alpha}} g_{0}
$$

Convexity, cont.

- In \mathcal{C}^{+}, the Moebius group leads to non-uniqueness (and equality in Andrews' inequality): Let $\sigma: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ denote the stereographic projection map, where $N=$ north pole of S^{2}. Let $\delta_{\alpha}: x \mapsto \alpha^{-1} x$ denote dilation on \mathbb{R}^{2}, where $\alpha>0$. Then

$$
\psi_{\alpha}=\sigma^{-1} \circ \delta_{\alpha} \circ \sigma: S^{2} \rightarrow S^{2}
$$

defines a 1-parameter family of conformal maps:

$$
\psi_{\alpha}^{*} g_{0}=e^{2 w_{\alpha}} g_{0}
$$

Then

$$
u(x, t)=w_{e^{t}}(x)
$$

is a geodesic in \mathcal{C}^{+}.

Convexity, cont.

Four dimensions

- Schematic description of the inner product in 4-d:

Four dimensions

- Schematic description of the inner product in 4-d:

$$
\begin{aligned}
n=2:\langle\alpha, \beta\rangle & =\int \alpha \beta K d A, \\
2 \pi \chi(M) & =\int K d A,
\end{aligned}
$$

Four dimensions

- Schematic description of the inner product in 4-d:

$$
\begin{gathered}
n=2:\langle\alpha, \beta\rangle=\int \alpha \beta K d A \\
2 \pi \chi(M)=\int K d A \\
n=4: 8 \pi^{2} \chi(M)=\int\left(-\frac{1}{2}|R i c|^{2}+\frac{1}{6} R^{2}\right) d V+\int|W|^{2} d V \\
\langle\alpha, \beta\rangle=\frac{1}{4} \int \alpha \beta\left(-\frac{1}{2}|R i c|^{2}+\frac{1}{6} R^{2}\right) d V
\end{gathered}
$$

Schouten tensor

- Let $n=4$, and denote the Schouten tensor by

$$
A=\frac{1}{2}\left(R i c-\frac{1}{6} R g\right) .
$$

Schouten tensor

- Let $n=4$, and denote the Schouten tensor by

$$
A=\frac{1}{2}\left(R i c-\frac{1}{6} R g\right) .
$$

- Let $\sigma_{2}(A)=\sum_{i<j} \lambda_{i}(A) \lambda_{j}(A)$, the second symmetric function. Then

Schouten tensor

- Let $n=4$, and denote the Schouten tensor by

$$
A=\frac{1}{2}\left(R i c-\frac{1}{6} R g\right) .
$$

- Let $\sigma_{2}(A)=\sum_{i<j} \lambda_{i}(A) \lambda_{j}(A)$, the second symmetric function. Then

$$
8 \pi^{2} \chi(M)=\int|W|^{2}+4 \int \sigma_{2}(A) d V
$$

and

$$
\langle\alpha, \beta\rangle_{g}=\int \alpha \beta \sigma_{2}\left(A_{g}\right) d V_{g}
$$

The spaces

Definition.

Let

$$
\mathcal{C}^{+}=\left\{g_{u}=e^{2 u} g: \sigma_{1}\left(A_{u}\right)>0, \sigma_{2}\left(A_{u}\right)>0\right\}
$$

The spaces

Definition.

Let

$$
\begin{aligned}
& \mathcal{C}^{+}=\left\{g_{u}=e^{2 u} g: \sigma_{1}\left(A_{u}\right)>0, \sigma_{2}\left(A_{u}\right)>0\right\}, \\
& \mathcal{C}^{-}=\left\{g_{u}=e^{2 u} g: \sigma_{1}\left(A_{u}\right)<0, \sigma_{2}\left(A_{u}\right)>0\right\},
\end{aligned}
$$

The spaces

Definition.

Let

$$
\begin{aligned}
& \mathcal{C}^{+}=\left\{g_{u}=e^{2 u} g: \sigma_{1}\left(A_{u}\right)>0, \sigma_{2}\left(A_{u}\right)>0\right\}, \\
& \mathcal{C}^{-}=\left\{g_{u}=e^{2 u} g: \sigma_{1}\left(A_{u}\right)<0, \sigma_{2}\left(A_{u}\right)>0\right\},
\end{aligned}
$$

- Note that

$$
\sigma_{1}(A)=\frac{R}{6}
$$

where R is the scalar curvature.

Definition.

Let

$$
\begin{aligned}
& \mathcal{C}^{+}=\left\{g_{u}=e^{2 u} g: \sigma_{1}\left(A_{u}\right)>0, \sigma_{2}\left(A_{u}\right)>0\right\}, \\
& \mathcal{C}^{-}=\left\{g_{u}=e^{2 u} g: \sigma_{1}\left(A_{u}\right)<0, \sigma_{2}\left(A_{u}\right)>0\right\},
\end{aligned}
$$

- Note that

$$
\sigma_{1}(A)=\frac{R}{6}
$$

where R is the scalar curvature.
(For reasons we'll touch on later, we will only consider \mathcal{C}^{+}.)

Question: When is $\mathcal{C}^{+} \neq \emptyset$?

Question: When is $\mathcal{C}^{+} \neq \emptyset$?

- In analogy with two dimensions, we have

Theorem.

(Chang-G-Yang, '96) If $\int \sigma_{2}(A) d V>0, R>0$, then $\mathcal{C}^{+} \neq \emptyset$.

The σ_{k}-Yamabe problem

The σ_{k}-Yamabe problem:(J. Viaclovsky)
Given $[g]$, find $\tilde{g} \in[g]$ such that

$$
\sigma_{k}\left(A_{\tilde{g}}\right)=\text { const } .
$$

The σ_{k}-Yamabe problem

The σ_{k}-Yamabe problem:(J. Viaclovsky)
Given $[g]$, find $\tilde{g} \in[g]$ such that

$$
\sigma_{k}\left(A_{\tilde{g}}\right)=\text { const } .
$$

- When $k=1$, this corresponds to the Yamabe problem.

The σ_{k}-Yamabe problem

The σ_{k}-Yamabe problem:(J. Viaclovsky)
Given $[g]$, find $\tilde{g} \in[g]$ such that

$$
\sigma_{k}\left(A_{\tilde{g}}\right)=\text { const } .
$$

- When $k=1$, this corresponds to the Yamabe problem.
- When $k \geq 2$ this equation fully nonlinear, and elliptic if

$$
\mathcal{C}_{k}^{+}=\left\{\tilde{g} \in[g]: \sigma_{j}\left(A_{\tilde{g}}\right)>0,1 \leq j \leq k\right\} \neq \emptyset
$$

(or with A replaced by $-A$).

Existence theory for the σ_{k}-Yamabe problem

Existence theory for the σ_{k}-Yamabe problem

- \mathcal{C}^{+}: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.)

Existence theory for the σ_{k}-Yamabe problem

- \mathcal{C}^{+}: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when $n=4$ and $k=2$, existence proved by Chang-G-Yang.

Existence theory for the σ_{k}-Yamabe problem

- \mathcal{C}^{+}: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when $n=4$ and $k=2$, existence proved by Chang-G-Yang.
- \mathcal{C}^{-}:

Existence theory for the $\sigma_{k}-$ Yamabe problem

- \mathcal{C}^{+}: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when $n=4$ and $k=2$, existence proved by Chang-G-Yang.
- \mathcal{C}^{-}: Once $k \geq 2$, essentially nothing...

Existence theory for the σ_{k}-Yamabe problem

- \mathcal{C}^{+}: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when $n=4$ and $k=2$, existence proved by Chang-G-Yang.
- \mathcal{C}^{-}: Once $k \geq 2$, essentially nothing... Viaclovsky: C^{0}, C^{1}-estimates for solutions; Sheng-Trudinger-Wang: Counterexample to (local)
C^{2}-estimates. Also, when $k=n$, connection to optimal transport.

Existence theory for the σ_{k}-Yamabe problem

- \mathcal{C}^{+}: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when $n=4$ and $k=2$, existence proved by Chang-G-Yang.
- \mathcal{C}^{-}: Once $k \geq 2$, essentially nothing... Viaclovsky: C^{0}, C^{1}-estimates for solutions; Sheng-Trudinger-Wang: Counterexample to (local) C^{2}-estimates. Also, when $k=n$, connection to optimal transport.
- Non-uniqueness for solutions of the Yamabe problem is well known; Schoen constructed explicit examples on $S^{n} \times S^{1}$. Viaclovsky generalized Schoen's construction to the fully nonlinear Yamabe problem when $k<n / 2$.

The functional

Back to $n=4$.

The functional

Back to $n=4$.
Question: What corresponds to the Liouville energy?

The functional

Back to $n=4$.
Question: What corresponds to the Liouville energy?

- Define

$$
\begin{aligned}
F_{C Y}[u]= & \int\left\{2 \Delta u|\nabla u|^{2}-|\nabla u|^{4}-2 R i c(\nabla u, \nabla u)+R|\nabla u|^{2}\right. \\
& \left.-8 u \sigma_{2}\left(A_{g}\right)\right\} d V_{g}-2\left(\int \sigma_{2}\left(A_{g}\right) d V\right) \log \left(f e^{-4 u} d V\right)
\end{aligned}
$$

This formula is due to Branson-Orsted/Chang-Yang.

The functional

- u is a critical point of $F_{C Y} \Leftrightarrow$ the conformal metric $g_{u}=e^{-2 u} g$ satisfies

$$
\sigma_{2}\left(A_{u}\right) \equiv \text { const } .
$$

The functional

- u is a critical point of $F_{C Y} \Leftrightarrow$ the conformal metric $g_{u}=e^{-2 u} g$ satisfies

$$
\sigma_{2}\left(A_{u}\right) \equiv \text { const. }
$$

- $F_{C Y}$ can be expressed as a linear combination of regularized determinants.

The functional

- u is a critical point of $F_{C Y} \Leftrightarrow$ the conformal metric $g_{u}=e^{-2 u} g$ satisfies

$$
\sigma_{2}\left(A_{u}\right) \equiv \text { const } .
$$

- $F_{C Y}$ can be expressed as a linear combination of regularized determinants.
- When $(M, g)=\left(S^{4}, g_{S^{4}}\right)$, Chang-Yang showed that $\left.F\right|_{\mathcal{C}^{+}} \geq 0$, with equality given precisely by the image of the round metric under the conformal group.

Geodesics

- As in the case of surfaces, many of the geometric properties of the space $\left(\mathcal{C}^{+},\langle\cdot, \cdot\rangle\right)$ depend on the existence/regularity of geodesics.

Geodesics

- As in the case of surfaces, many of the geometric properties of the space $\left(\mathcal{C}^{+},\langle\cdot, \cdot\rangle\right)$ depend on the existence/regularity of geodesics.
- A path $u:[0,1] \rightarrow \mathcal{C}^{+}$is a geodesic \Leftrightarrow

$$
u_{t t}=\frac{\left(-A_{u}+\sigma_{1}\left(A_{u}\right) g_{u}\right)\left(\nabla u_{t}, \nabla u_{t}\right)}{\sigma_{2}\left(A_{u}\right)} .
$$

Geodesics

- As in the case of surfaces, many of the geometric properties of the space $\left(\mathcal{C}^{+},\langle\cdot, \cdot\rangle\right)$ depend on the existence/regularity of geodesics.
- A path $u:[0,1] \rightarrow \mathcal{C}^{+}$is a geodesic \Leftrightarrow

$$
u_{t t}=\frac{\left(-A_{u}+\sigma_{1}\left(A_{u}\right) g_{u}\right)\left(\nabla u_{t}, \nabla u_{t}\right)}{\sigma_{2}\left(A_{u}\right)} .
$$

There is a more convenient way to write this:

Geodesics

- As in the case of surfaces, many of the geometric properties of the space $\left(\mathcal{C}^{+},\langle\cdot, \cdot\rangle\right)$ depend on the existence/regularity of geodesics.
- A path $u:[0,1] \rightarrow \mathcal{C}^{+}$is a geodesic \Leftrightarrow

$$
u_{t t}=\frac{\left(-A_{u}+\sigma_{1}\left(A_{u}\right) g_{u}\right)\left(\nabla u_{t}, \nabla u_{t}\right)}{\sigma_{2}\left(A_{u}\right)} .
$$

There is a more convenient way to write this: let

$$
E_{u}=u_{t t} A_{u}-\nabla u_{t} \otimes \nabla u_{t}
$$

then the geodesic equation can be written

$$
\sigma_{2}\left(E_{u}\right)=0
$$

Geodesics

- This is a degenerate elliptic, fully nonlinear equation. We regularize by letting

$$
E_{u}^{\epsilon}=(1+\epsilon) u_{t t} A_{u}-\nabla u_{t} \otimes \nabla u_{t}
$$

and for $f>0$, solve

$$
\sigma_{2}\left(E_{u}^{\epsilon}\right)=f u_{t t} .
$$

Geodesics

- This is a degenerate elliptic, fully nonlinear equation. We regularize by letting

$$
E_{u}^{\epsilon}=(1+\epsilon) u_{t t} A_{u}-\nabla u_{t} \otimes \nabla u_{t}
$$

and for $f>0$, solve

$$
\sigma_{2}\left(E_{u}^{\epsilon}\right)=f u_{t t} .
$$

- Unlike the surface case, estimates for the regularized geodesic equation degenerate at the C^{2}-level:

Geodesics

- This is a degenerate elliptic, fully nonlinear equation. We regularize by letting

$$
E_{u}^{\epsilon}=(1+\epsilon) u_{t t} A_{u}-\nabla u_{t} \otimes \nabla u_{t}
$$

and for $f>0$, solve

$$
\sigma_{2}\left(E_{u}^{\epsilon}\right)=f u_{t t} .
$$

- Unlike the surface case, estimates for the regularized geodesic equation degenerate at the C^{2}-level: given endpoints $u_{0}, u_{1} \in \mathcal{C}^{+}$and $\epsilon>0$, we can prove the existence of a solution of the regularized equation connecting u_{0} and u_{1} with

$$
\left|u_{\epsilon}\right|+\left|\left(u_{\epsilon}\right)_{t}\right|+\left|\nabla u_{\epsilon}\right|+\epsilon\left\{\left|\nabla^{2} u_{\epsilon}\right|+\left|\left(u_{\epsilon}\right)_{t t}\right|+\left|\nabla\left(u_{\epsilon}\right)_{t}\right|\right\} \leq C
$$

Main Results

Theorem 1

$\left(\mathcal{C}^{+},\langle\cdot, \cdot\rangle\right)$ has non-positive sectional curvature.

Main Results

Theorem 1

$\left(\mathcal{C}^{+},\langle\cdot, \cdot\rangle\right)$ has non-positive sectional curvature.

Theorem 2

The functional $F_{C Y}$ is geodesically convex.

Main Results

Theorem 1

$\left(\mathcal{C}^{+},\langle\cdot, \cdot\rangle\right)$ has non-positive sectional curvature.

Theorem 2

The functional $F_{C Y}$ is geodesically convex.

- The proof of Theorem 2 also depends on a version of Andrews' unequality, but in a very non-obvious way.

Main Results, cont.

The most surprising result:

Main Results, cont.

The most surprising result:

Theorem 3

If $\mathcal{C}^{+} \neq \emptyset$ and (M, g) is not conformally equivalent to the sphere, then there is a unique metric $\tilde{g} \in \mathcal{C}^{+}$which minimizes $F_{C Y}$, and is therefore a solution of

$$
\sigma_{2}\left(A_{\tilde{g}}\right) \equiv \frac{3}{2}
$$

Main Results, cont.

The most surprising result:

Theorem 3

If $\mathcal{C}^{+} \neq \emptyset$ and (M, g) is not conformally equivalent to the sphere, then there is a unique metric $\tilde{g} \in \mathcal{C}^{+}$which minimizes $F_{C Y}$, and is therefore a solution of

$$
\sigma_{2}\left(A_{\tilde{g}}\right) \equiv \frac{3}{2}
$$

Also,
(i) $\operatorname{Vol}(\tilde{g})<\operatorname{Vol}\left(S^{4}\right)$,

Main Results, cont.

The most surprising result:

Theorem 3

If $\mathcal{C}^{+} \neq \emptyset$ and (M, g) is not conformally equivalent to the sphere, then there is a unique metric $\tilde{g} \in \mathcal{C}^{+}$which minimizes $F_{C Y}$, and is therefore a solution of

$$
\sigma_{2}\left(A_{\tilde{g}}\right) \equiv \frac{3}{2}
$$

Also,

$$
\text { (i) } \operatorname{Vol}(\tilde{g})<\operatorname{Vol}\left(S^{4}\right)
$$

and

$$
\text { (ii) } 0<\operatorname{Ric}(\tilde{g})<\frac{1}{2} R_{\tilde{g}} \tilde{g} .
$$

Some Remarks about Theorem 3

- The gap between $\operatorname{Vol}(\tilde{g})$ and the volume of the round sphere is an interesting (conformal) invariant. In some cases it can be (sharply) estimated:

Some Remarks about Theorem 3

- The gap between $\operatorname{Vol}(\tilde{g})$ and the volume of the round sphere is an interesting (conformal) invariant. In some cases it can be (sharply) estimated:
$\diamond\left(\right.$ Poon, '86): If $M=\mathbb{C P}^{2}$, then $\operatorname{Vol}(\tilde{g}) \leq 2 \pi^{2}$, with equality iff $\tilde{g}=g_{F S}$.

Some Remarks about Theorem 3

- The gap between $\operatorname{Vol}(\tilde{g})$ and the volume of the round sphere is an interesting (conformal) invariant. In some cases it can be (sharply) estimated:
\diamond (Poon, '86): If $M=\mathbb{C P}^{2}$, then $\operatorname{Vol}(\tilde{g}) \leq 2 \pi^{2}$, with equality iff $\tilde{g}=g_{F S}$.
$\diamond(\mathrm{G}-98)$: If $b^{+}>0$, then $\operatorname{Vol}(\tilde{g}) \leq \frac{2}{9} \pi^{2}(2 \chi(M)+3 \tau(M))$, with equality iff \tilde{g} is $\mathrm{K}-\mathrm{E}$.

Some Remarks about Theorem 3

- The gap between $\operatorname{Vol}(\tilde{g})$ and the volume of the round sphere is an interesting (conformal) invariant. In some cases it can be (sharply) estimated:
\diamond (Poon, '86): If $M=\mathbb{C P}^{2}$, then $\operatorname{Vol}(\tilde{g}) \leq 2 \pi^{2}$, with equality iff $\tilde{g}=g_{F S}$.
$\diamond(\mathrm{G}-98)$: If $b^{+}>0$, then $\operatorname{Vol}(\tilde{g}) \leq \frac{2}{9} \pi^{2}(2 \chi(M)+3 \tau(M))$, with equality iff \tilde{g} is $\mathrm{K}-\mathrm{E}$.

The proof of Theorem 3, cont.

- The uniqueness claim of Theorem 3 would follow from Theorem 2 (geodesic convexity of $F_{C Y}$) if we could connect any two metrics in \mathcal{C}^{+}by a sufficiently regular geodesic.

The proof of Theorem 3, cont.

- The uniqueness claim of Theorem 3 would follow from Theorem 2 (geodesic convexity of $F_{C Y}$) if we could connect any two metrics in \mathcal{C}^{+}by a sufficiently regular geodesic. However, in view of our estimates above, as the regularizing parameter $\epsilon \rightarrow 0$, we lose C^{2}-bounds.

The proof of Theorem 3, cont.

- The uniqueness claim of Theorem 3 would follow from Theorem 2 (geodesic convexity of $F_{C Y}$) if we could connect any two metrics in \mathcal{C}^{+}by a sufficiently regular geodesic. However, in view of our estimates above, as the regularizing parameter $\epsilon \rightarrow 0$, we lose C^{2}-bounds.
- Consequently, we need to smooth the approximate geodesics, without changing the value of $F_{C Y}$ too much.

The proof of Theorem 3, cont.

- The uniqueness claim of Theorem 3 would follow from Theorem 2 (geodesic convexity of $F_{C Y}$) if we could connect any two metrics in \mathcal{C}^{+}by a sufficiently regular geodesic. However, in view of our estimates above, as the regularizing parameter $\epsilon \rightarrow 0$, we lose C^{2}-bounds.
- Consequently, we need to smooth the approximate geodesics, without changing the value of $F_{C Y}$ too much.
- The idea is to use the flow introduced by Guan-Wang:

$$
\frac{\partial u}{\partial t}=\log \sigma_{2}\left(A_{u}\right)
$$

The Proof, in a Picture:

$$
\begin{aligned}
& \text { 3) } v(x, t)= \\
& \lim _{\epsilon \rightarrow 0} v(x, t, \oint)
\end{aligned}
$$

Dimension $n \geq 6$

- In higher dimensions there are two ways to proceed. One way is to define

$$
\langle\alpha, \beta\rangle_{g_{u}}=\int \alpha \beta \sigma_{n / 2}\left(A_{u}\right) d V_{u}
$$

However, once the dimensions $n \geq 6$ one needs to impose an additional condition (local conformal flatness) in order to have a reasonable notion of the connection, geodesic, etc.

Dimension $n \geq 6$

- In higher dimensions there are two ways to proceed. One way is to define

$$
\langle\alpha, \beta\rangle_{g_{u}}=\int \alpha \beta \sigma_{n / 2}\left(A_{u}\right) d V_{u}
$$

However, once the dimensions $n \geq 6$ one needs to impose an additional condition (local conformal flatness) in order to have a reasonable notion of the connection, geodesic, etc.

- There is an alternate definition which has many nice formal properties, in which one replaces $\sigma_{n / 2}\left(A_{u}\right)$ with the 'renormalized volume coefficient' (cf. Chang-Fang, Chang-Fang-Graham). The associated formulas become quite complicated, though.

Happy Birthday, et Bonne Anniversaire, Claude!

