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Overview

@ Main idea: given a conformal class of metrics [g], we want to define a
Riemannian metric on this (infinite-dimensional) space.
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Overview

@ Main idea: given a conformal class of metrics [g], we want to define a
Riemannian metric on this (infinite-dimensional) space.

@ Our metric will be defined for conformal classes on even-dimensional
manifolds. Moreover, we will need to restrict to conformal metrics
satisfying an ‘admissibility’ condition.

@ Our main focus will be some results in four dimensions, where there
are applications to a natural geometric variational problem. In the
case of surfaces, it will correspond to the
Mabuchi-Donaldson-Semmes metric for the natural Kahler class.
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The case of surfaces

e Assume (M, g) is a closed Riemannian surface (of genus # 1), and let
[g] denote the conformal class of g. Define
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The case of surfaces

e Assume (M, g) is a closed Riemannian surface (of genus # 1), and let
[g] denote the conformal class of g. Define

Ct={g.=e*g € [g] | K, >0},

C” ={gu=ege[g]| K. <0}
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The case of surfaces

e Assume (M, g) is a closed Riemannian surface (of genus # 1), and let
[g] denote the conformal class of g. Define

Ct={g.=e*g € [g] | K, >0},

C” ={gu=ege[g]| K. <0}
e Note

CT#0 / KydAg > 0,
M

CT#0 & / Ky dA; < 0.
M
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The inner product

e Note
T.CE = C®(M)

i.e., tangent vectors a point (= conformal metric) are just functions.
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The inner product

e Note
T.CE = C°°(M)

i.e., tangent vectors a point (= conformal metric) are just functions.

For o, B € T,CT = C*> , we define

(o, B)y = /aﬂKu dA,

and for o, 8 € T,C~ = C* we define

<O‘aﬁ>u :/O‘B(_Ku) dA,
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The inner product, cont.

o If g, = e?“gy, then the Gauss curvature and volume forms of g, and gp
are related by

Ky = e 2" (Ko — Dou), dA, = e*"dAo,
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The inner product, cont.

o If g, = e?“gy, then the Gauss curvature and volume forms of g, and gp
are related by

Ky = e 2" (Ko — Dou), dA, = e*"dAo,
hence we can also express the inner product as

(o, B)u = /aB(KO — Aou) dA.

This is the same as the inner product on the space of volume forms
defined by Donaldson ('07).
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The inner product, cont.

o If g, = e?“gy, then the Gauss curvature and volume forms of g, and gp
are related by

Ky = e 2" (Ko — Dou), dA, = e*"dAo,
hence we can also express the inner product as

(o, B)u = /aB(KO — Aou) dA.

This is the same as the inner product on the space of volume forms
defined by Donaldson ('07).

e To motivate our results in dimension four, we want to point out some
geometric properties of (C*, (-,-)), beginning with geodesics.
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The geodesic equation

e Let u:[a,b] — C* be a curve (i.e., e?“g € C*). We can use the inner
product to define the length of a path:

wi= [C1%0ae= [ [ (rian) e
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The geodesic equation

e Let u:[a,b] — C* be a curve (i.e., e?“g € C*). We can use the inner
product to define the length of a path:

wi= [C1%0ae= [ [ (rian) e

e Taking a first variation, we find the geodesic equation:

[Vuu? _
K,

Ugt +
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The geodesic equation

e Let u:[a,b] — C* be a curve (i.e., e?“g € C*). We can use the inner
product to define the length of a path:

wi= [C1%0ae= [ [ (rian) e

e Taking a first variation, we find the geodesic equation:

[Vuu? _
K,

Ugt +

e Chen-He ('08) proved partial regularity (C!) of solutions.
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The regularized determinant

o Let
Flu] = / (|IVul® +2Ku) dA — (/KdA) Iog][ez”dA.

the normalized Liouville energy.
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o Let
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the normalized Liouville energy.

e A metric g, = e?!g is a critical point of F < it has constant Gauss

curvature.
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The regularized determinant

o Let
Flu] = / (|IVul® +2Ku) dA — (/KdA) |og][e2“dA.

the normalized Liouville energy.

e A metric g, = e?!g is a critical point of F < it has constant Gauss
curvature.

e Polyakov ('81) showed that if g, = e?“g have the same area, then

det(—A,) 1
SR T2 Flu).
%8 Get(Ca,) T 1or L]
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Geodesic convexity

F : C* — R is geodesically convex.
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Geodesic convexity
F : C* — R is geodesically convex.

Proof. Let u = u(x, t) denote a geodesic in C*. Then

d _
EF[U] :2/Ut(Ku—Ku)dAu7
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Geodesic convexity
F : C* — R is geodesically convex.

Proof. Let u = u(x, t) denote a geodesic in C*. Then

d _
EF[U] :2/Ut(Ku—Ku)dAu7

C‘l’;F[u] :2KU{/ |v;:‘2dAu—2[/ufdAu— /ju(/utdAu)z}}.
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Geodesic convexity
F : C* — R is geodesically convex.

Proof. Let u = u(x,t) denote a geodesic in C*. Then

d _
EF[U] :2/Ut(Ku—Ku)dAu7

C‘l’;F[u] :2KU{/ |v;:‘2dAu—2[/ufdAu— ju(/utdAu)z}}.

To get a sign, we need a kind of “curvature-weighted Poincaré inequality” .
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Andrews’ inequality

(B. Andrews, unpublished) Assume (M, g) has Ric > 0.
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Andrews’ inequality

(B. Andrews, unpublished) Assume (M, g) has Ric > 0. If [ ¢dV =0,
then

d / @2 dV < / (Ric)"}(V, V) dV,

n—1
with equality < ¢ =0 or (M, g) = (5", g0) and ¢ is a fist order spherical
harmonic. )
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Andrews’ inequality

Theorem

(B. Andrews, unpublished) Assume (M, g) has Ric > 0. If [ ¢dV =0,
then

n

/ $% dV < / (Ric)"Y(V¢, V) dV,

with equality < ¢ =0 or (M, g) = (5", g0) and ¢ is a fist order spherical
harmonic.

n—1

e When n =2, (Ric,)™ ! = K%gu' and Andrews’ inequality applied to
¢ = uy — iy implies j—;F > 0.
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Convexity, cont.

e In C~, we have strict convexity of F and uniqueness of critical points
(i.e., metrics of curvature —1):

o
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Convexity, cont.

e In C*, the Moebius group leads to non-uniqueness (and equality in
Andrews' inequality):
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Convexity, cont.

e In C*, the Moebius group leads to non-uniqueness (and equality in
Andrews' inequality): Let o : S?\ {N} — R? denote the stereographic
projection map, where N = north pole of S2.
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Convexity, cont.

e In C*, the Moebius group leads to non-uniqueness (and equality in
Andrews' inequality): Let o : S?\ {N} — R? denote the stereographic
projection map, where N = north pole of S?. Let &, : x — o~ 1x denote
dilation on R2, where a > 0.
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Convexity, cont.

e In C*, the Moebius group leads to non-uniqueness (and equality in
Andrews' inequality): Let o : S?\ {N} — R? denote the stereographic
projection map, where N = north pole of S?. Let &, : x — o~ 1x denote
dilation on R2, where o > 0. Then

Yo=0to0b,00:5% 5 §?

defines a 1-parameter family of conformal maps:

2Wq

Yngo = e go.
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Convexity, cont.

e In C*, the Moebius group leads to non-uniqueness (and equality in
Andrews' inequality): Let o : S?\ {N} — R? denote the stereographic
projection map, where N = north pole of S?. Let &, : x — o~ 1x denote
dilation on R2, where o > 0. Then

Yo=0to0b,00:5% 5 §?
defines a 1-parameter family of conformal maps:
Vg0 = €™ go.

Then
u(x, t) = wet(x)

is a geodesic in CT.
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Convexity, cont.

Con}( 9,)

C+
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Four dimensions

e Schematic description of the inner product in 4-d:
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Four dimensions

e Schematic description of the inner product in 4-d:

n=2:{(a,p) = /aﬂKdA,

2mx (M) = / KdA,
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Four dimensions

e Schematic description of the inner product in 4-d:

n=2:{(a,p) = /aﬂKdA,

2mx (M) = / KdA,

n=4: 8r’y(M (—7|RIC|2—|— R2 dV+/|W| av,

1 L1,
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Schouten tensor

e Let n =4, and denote the Schouten tensor by

1, . 1
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Schouten tensor

e Let n =4, and denote the Schouten tensor by

1, . 1

o Let 02(A) = >_,_; Ai(A)Aj(A), the second symmetric function. Then
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Schouten tensor

e Let n =4, and denote the Schouten tensor by
1, 1
o Let 02(A) = >_,_; Ai(A)Aj(A), the second symmetric function. Then

872y (M) :/|W|2+4/a2(A)dV,

and

(a, B)g :/aﬁa2(Ag)dVg.
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Definition.
Let

ct = {gu = e%g o1(Ay) > 0, o2(Ay) > 0},
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Definition.
Let

ct = {gu = e%g o1(Ay) > 0, o2(Ay) > 0},

€ ={@m= e?g : 01(A)) <0, 02(Ay) > 0},
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Definition.
Let
Ct = {gu =e%g : a1(A) >0, 02(A,) > 0},
€ ={@m= e?g : 01(A)) <0, 02(Ay) > 0},
e Note that

()= ¢

)

where R is the scalar curvature.
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Definition.
Let
Ct = {gu =e%g : a1(A) >0, 02(A,) > 0},
€ ={@m= e?g : 01(A)) <0, 02(Ay) > 0},
e Note that

where R is the scalar curvature.

(For reasons we'll touch on later, we will only consider C.)

July 6, 2016
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Question: When is CT # ()7
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Question: When is CT # ()7

e In analogy with two dimensions, we have

(Chang-G-Yang, '96) If [ o2(A)dV >0, R > 0, then C* # ). \
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The o-Yamabe problem

The ox-Yamabe problem:(J. Viaclovsky)

Given [g], find g € [g] such that

ok(Ag) = const.
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The o-Yamabe problem

The ox-Yamabe problem:(J. Viaclovsky)

Given [g], find g € [g] such that

ok(Ag) = const.

e When k = 1, this corresponds to the Yamabe problem.
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The o-Yamabe problem

The ox-Yamabe problem:(J. Viaclovsky)

Given [g], find g € [g] such that

ok(Ag) = const.

e When k = 1, this corresponds to the Yamabe problem.

e When k > 2 this equation fully nonlinear, and elliptic if
Cf={gclg] : oj(Az) >0, 1<j<k}#0

(or with A replaced by —A).

M. Gursky (Notre Dame) (joint with J. Str July 6, 2016 17 /29



Existence theory for the o,-Yamabe problem
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Existence theory for the o,-Yamabe problem

e C1: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li,
Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang,
Chen, etc.)
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Existence theory for the o,-Yamabe problem

e C1: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li,
Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang,
Chen, etc.) In particular: when n =4 and k = 2, existence proved by
Chang-G-Yang.
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Existence theory for the o,-Yamabe problem

e C1: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li,
Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang,
Chen, etc.) In particular: when n =4 and k = 2, existence proved by
Chang-G-Yang.

o (C:
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Existence theory for the o,-Yamabe problem

e C1: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li,
Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang,
Chen, etc.) In particular: when n =4 and k = 2, existence proved by
Chang-G-Yang.

e C7: Once k > 2, essentially nothing...
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Existence theory for the o,-Yamabe problem

e C1: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li,
Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang,
Chen, etc.) In particular: when n =4 and k = 2, existence proved by
Chang-G-Yang.

e C~: Once k > 2, essentially nothing... Viaclovsky: C°, Cl-estimates for

solutions; Sheng-Trudinger-Wang: Counterexample to (local)
C?-estimates. Also, when k = n, connection to optimal transport.
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Existence theory for the o,-Yamabe problem

e C1: Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li,
Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang,
Chen, etc.) In particular: when n =4 and k = 2, existence proved by
Chang-G-Yang.

e C~: Once k > 2, essentially nothing... Viaclovsky: C°, Cl-estimates for
solutions; Sheng-Trudinger-Wang: Counterexample to (local)
C?-estimates. Also, when k = n, connection to optimal transport.

e Non-uniqueness for solutions of the Yamabe problem is well known;
Schoen constructed explicit examples on S” x S'. Viaclovsky generalized
Schoen’s construction to the fully nonlinear Yamabe problem when

k < nj2.
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The functional

Back to n = 4.

M. Gursky (Notre Dame) (joint with J. Str July 6, 2016 19 /29



The functional

Back to n = 4.

Question: What corresponds to the Liouville energy?
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The functional

Back to n = 4.

Question: What corresponds to the Liouville energy?

e Define

Feylu] :/{2Au|vuy2 — |Vul* = 2Ric(Vu, Vu) + R|Vu|]?
_ 8u02(Ag)}dVg - 2(/02(Ag)dV) log (][e““dv).

This formula is due to Branson-Orsted/Chang-Yang.

M. Gursky (Notre Dame) (joint with J. Str July 6, 2016 19 /29



The functional

e u is a critical point of Fcy < the conformal metric g, = e 2“g satisfies

o2(Ay) = const.
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The functional

e u is a critical point of Fcy < the conformal metric g, = e 2“g satisfies

o2(Ay) = const.

e Fcy can be expressed as a linear combination of regularized
determinants.
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The functional

e u is a critical point of Fcy < the conformal metric g, = e 2“g satisfies

o2(Ay) = const.

e Fcy can be expressed as a linear combination of regularized
determinants.

e When (M, g) = (5%, gs4), Chang-Yang showed that F‘c+ >0, with

equality given precisely by the image of the round metric under the
conformal group.
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Geodesics

e As in the case of surfaces, many of the geometric properties of the space
(CT, (-,-)) depend on the existence/regularity of geodesics.
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Geodesics

e As in the case of surfaces, many of the geometric properties of the space
(CT, (-,-)) depend on the existence/regularity of geodesics.

e A path u:[0,1] — C" is a geodesic <

( — A+ Ul(Au)gu)(Vut, Vut)
02(Au) '

Uit =

M. Gursky (Notre Dame) (joint with J. Str July 6, 2016 21 /29



Geodesics

e As in the case of surfaces, many of the geometric properties of the space
(CT, (-,-)) depend on the existence/regularity of geodesics.

e A path u:[0,1] — C" is a geodesic <

( — A+ Ul(Au)gu)(Vut, Vut)
02(Au) '

There is a more convenient way to write this:

Uit =
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Geodesics

e As in the case of surfaces, many of the geometric properties of the space
(CT, (-,-)) depend on the existence/regularity of geodesics.

e A path u:[0,1] — C" is a geodesic <

( — A+ Ul(Au)gu)(Vut, Vut)
02(Au) '

Uit =

There is a more convenient way to write this: let
E, = uyAy — Vur @ Vg,
then the geodesic equation can be written

o2(Ey) = 0.
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Geodesics

e This is a degenerate elliptic, fully nonlinear equation. We regularize by
letting
EE = (1 + E)UttAu - VUt (%9 VUt,

and for f > 0, solve

0.2(E6) = futt.

u
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Geodesics

e This is a degenerate elliptic, fully nonlinear equation. We regularize by
letting
EE = (1 + E)UttAu - VUt (%9 VUt,

and for f > 0, solve

UQ(EG) = futt.

u

e Unlike the surface case, estimates for the regularized geodesic equation
degenerate at the C2-level:
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Geodesics

e This is a degenerate elliptic, fully nonlinear equation. We regularize by

letting
EE = (1 + E)UttAu - VUt (%9 VUt,

and for f > 0, solve

UQ(EG) = futt.

u

e Unlike the surface case, estimates for the regularized geodesic equation
degenerate at the C2-level: given endpoints ug, u; € C* and € > 0, we can
prove the existence of a solution of the regularized equation connecting ug
and u; with

el + [(ue)e| + Vel + e{[V2ue| + [(ue)ee| + [V (ue)el} < C.
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Main Results

(C*, (-,-)) has non-positive sectional curvature.
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Main Results

(C*, (-,-)) has non-positive sectional curvature.

The functional Fcy is geodesically convex.
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Main Results

(C*, (-,-)) has non-positive sectional curvature.

The functional Fcy is geodesically convex.

e The proof of Theorem 2 also depends on a version of Andrews’
unequality, but in a very non-obvious way.
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Main Results, cont.

The most surprising result:
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Main Results, cont.

The most surprising result:

If CT # () and (M, g) is not conformally equivalent to the sphere, then
there is a unique metric @ € C™ which minimizes Fcy, and is therefore a
solution of

3
02(Ag) = 5
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Main Results, cont.

The most surprising result:

Theorem 3

If CT # () and (M, g) is not conformally equivalent to the sphere, then
there is a unique metric @ € C™ which minimizes Fcy, and is therefore a
solution of

0-2(A§) =

N W

Also,
(i) Vol(g) < Vol(S%),
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Main Results, cont.

The most surprising result:

Theorem 3

If CT # () and (M, g) is not conformally equivalent to the sphere, then
there is a unique metric @ € C™ which minimizes Fcy, and is therefore a
solution of

3
02(Ag) = 5
Also,
(i) Vol(g) < Vol(S*),
and

1
(i) 0 < Ric(g) < ERgg‘.
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Some Remarks about Theorem 3

e The gap between Vo/(g) and the volume of the round sphere is an
interesting (conformal) invariant. In some cases it can be (sharply)
estimated:
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Some Remarks about Theorem 3

e The gap between Vo/(g) and the volume of the round sphere is an
interesting (conformal) invariant. In some cases it can be (sharply)
estimated:

¢ (Poon, '86): If M = CP?, then Vol(g) < 22, with equality iff & = grs.
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Some Remarks about Theorem 3

e The gap between Vo/(g) and the volume of the round sphere is an
interesting (conformal) invariant. In some cases it can be (sharply)
estimated:

¢ (Poon, '86): If M = CP?, then Vol(g) < 22, with equality iff & = grs.

& (G -'98): If bT >0, then VoI(g) < 57%(2x(M) + 37(M)), with
equality iff g is K-E.
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Some Remarks about Theorem 3

e The gap between Vo/(g) and the volume of the round sphere is an
interesting (conformal) invariant. In some cases it can be (sharply)
estimated:

¢ (Poon, '86): If M = CP?, then Vol(g) < 22, with equality iff & = grs.

& (G -'98): If bT >0, then VoI(g) < 57%(2x(M) + 37(M)), with
equality iff g is K-E.
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The proof of Theorem 3, cont.

e The uniqueness claim of Theorem 3 would follow from Theorem 2
(geodesic convexity of Fcy) if we could connect any two metrics in C* by

a sufficiently regular geodesic.
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The proof of Theorem 3, cont.

e The uniqueness claim of Theorem 3 would follow from Theorem 2
(geodesic convexity of Fcy) if we could connect any two metrics in C* by
a sufficiently regular geodesic. However, in view of our estimates above, as
the regularizing parameter ¢ — 0, we lose C?-bounds.
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The proof of Theorem 3, cont.

e The uniqueness claim of Theorem 3 would follow from Theorem 2
(geodesic convexity of Fcy) if we could connect any two metrics in C* by
a sufficiently regular geodesic. However, in view of our estimates above, as
the regularizing parameter ¢ — 0, we lose C?-bounds.

e Consequently, we need to smooth the approximate geodesics, without
changing the value of Fcy too much.
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The proof of Theorem 3, cont.

e The uniqueness claim of Theorem 3 would follow from Theorem 2
(geodesic convexity of Fcy) if we could connect any two metrics in C* by
a sufficiently regular geodesic. However, in view of our estimates above, as
the regularizing parameter ¢ — 0, we lose C?-bounds.

e Consequently, we need to smooth the approximate geodesics, without
changing the value of Fcy too much.
e The idea is to use the flow introduced by Guan-Wang:

ou

= Au).
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The Proof, in a Picture:

1) u(x, t,€)
- regularized
geodesic

ug and uq
lie in the
space of F-
minimizers

2) v(x,t,€)
- smoothed
reg. geod.

M. Gursky (Notre Dame) (joint with J. Str

3) v(x,t) =

lime_o v(x,t,¢

July 6, 2016

)
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e In higher dimensions there are two ways to proceed. One way is to define

(0, B) g, = / af Tuya(A)dVs.

However, once the dimensions n > 6 one needs to impose an additional
condition (local conformal flatness) in order to have a reasonable notion of
the connection, geodesic, etc.
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e In higher dimensions there are two ways to proceed. One way is to define

(0, B) g, = / af Tuya(A)dVs.

However, once the dimensions n > 6 one needs to impose an additional
condition (local conformal flatness) in order to have a reasonable notion of
the connection, geodesic, etc.

e There is an alternate definition which has many nice formal properties,

in which one replaces o,,/5(Ay) with the ‘renormalized volume coefficient’
(cf. Chang-Fang, Chang-Fang-Graham). The associated formulas become
quite complicated, though.
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Happy Birthday, et Bonne Anniversaire, Claude!
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