A Riemannian structure on the space of conformal metrics

M. Gursky (Notre Dame) (joint with J. Streets, UC - Irvine)

Conference on Differential Geometry In Honor of Claude LeBrun Centre de Recherches Mathématiques

July 6, 2016

• Main idea: given a conformal class of metrics [g], we want to define a Riemannian metric on this (infinite-dimensional) space.

- Main idea: given a conformal class of metrics [g], we want to define a Riemannian metric on this (infinite-dimensional) space.
- Our metric will be defined for conformal classes on even-dimensional manifolds. Moreover, we will need to restrict to conformal metrics satisfying an 'admissibility' condition.

- Main idea: given a conformal class of metrics [g], we want to define a Riemannian metric on this (infinite-dimensional) space.
- Our metric will be defined for conformal classes on even-dimensional manifolds. Moreover, we will need to restrict to conformal metrics satisfying an 'admissibility' condition.
- Our main focus will be some results in four dimensions, where there are applications to a natural geometric variational problem. In the case of surfaces, it will correspond to the Mabuchi-Donaldson-Semmes metric for the natural Kähler class.

The case of surfaces

• Assume (M, g) is a closed Riemannian surface (of genus $\neq 1$), and let [g] denote the conformal class of g. Define

The case of surfaces

• Assume (M, g) is a closed Riemannian surface (of genus $\neq 1$), and let [g] denote the conformal class of g. Define

$$\mathcal{C}^+ = \{g_u = e^{2u}g \in [g] \mid K_u > 0\},\$$

$$\mathcal{C}^{-} = \{g_u = e^{2u}g \in [g] \mid K_u < 0\}.$$

The case of surfaces

• Assume (M, g) is a closed Riemannian surface (of genus $\neq 1$), and let [g] denote the conformal class of g. Define

$$\mathcal{C}^+ = \{g_u = e^{2u}g \in [g] \mid K_u > 0\},\$$

$$\mathcal{C}^- = \{g_u = e^{2u}g \in [g] \mid K_u < 0\}.$$

Note

$$\mathcal{C}^+
eq \emptyset \iff \int_M K_g \, dA_g > 0,$$

 $\mathcal{C}^+
eq \emptyset \iff \int_M K_g \, dA_g < 0.$

The inner product

• Note

$$T_u \mathcal{C}^{\pm} \cong \mathcal{C}^{\infty}(M)$$

i.e., tangent vectors a point (= conformal metric) are just functions.

The inner product

Note

$$T_u \mathcal{C}^{\pm} \cong \mathcal{C}^{\infty}(M)$$

i.e., tangent vectors a point (= conformal metric) are just functions.

Definition

For $\alpha, \beta \in T_u \mathcal{C}^+ \cong \mathcal{C}^\infty$, we define

$$\langle lpha, eta
angle_{u} = \int lpha eta K_{u} \, dA_{u}$$

and for $\alpha, \beta \in T_u \mathcal{C}^- \cong \mathcal{C}^\infty$ we define

$$\langle \alpha, \beta \rangle_u = \int \alpha \beta (-K_u) \, dA_u$$

The inner product, cont.

• If $g_u = e^{2u}g_0$, then the Gauss curvature and volume forms of g_u and g_0 are related by

$$K_u = e^{-2u} \big(K_0 - \Delta_0 u \big), \quad dA_u = e^{2u} dA_0,$$

• If $g_u = e^{2u}g_0$, then the Gauss curvature and volume forms of g_u and g_0 are related by

$$K_u = e^{-2u} \big(K_0 - \Delta_0 u \big), \quad dA_u = e^{2u} dA_0,$$

hence we can also express the inner product as

$$\langle \alpha, \beta \rangle_{u} = \int \alpha \beta (K_{0} - \Delta_{0} u) dA_{0}.$$

This is the same as the inner product on the space of volume forms defined by Donaldson ('07).

• If $g_u = e^{2u}g_0$, then the Gauss curvature and volume forms of g_u and g_0 are related by

$$K_u = e^{-2u} \big(K_0 - \Delta_0 u \big), \quad dA_u = e^{2u} dA_0,$$

hence we can also express the inner product as

$$\langle \alpha, \beta \rangle_{u} = \int \alpha \beta (K_{0} - \Delta_{0} u) dA_{0}.$$

This is the same as the inner product on the space of volume forms defined by Donaldson ('07).

• To motivate our results in dimension four, we want to point out some geometric properties of $(\mathcal{C}^{\pm}, \langle \cdot, \cdot \rangle)$, beginning with geodesics.

The geodesic equation

• Let $u : [a, b] \to C^+$ be a curve (i.e., $e^{2u}g \in C^+$). We can use the inner product to define the length of a path:

$$L[u] = \int_{a}^{b} \left\| \frac{\partial u}{\partial t} \right\| dt = \int_{a}^{b} \left\{ \int_{M} \left(\frac{\partial u}{\partial t} \right)^{2} K_{u} dA_{u} \right\}^{1/2} dt.$$

The geodesic equation

• Let $u : [a, b] \to C^+$ be a curve (i.e., $e^{2u}g \in C^+$). We can use the inner product to define the length of a path:

$$L[u] = \int_{a}^{b} \left\| \frac{\partial u}{\partial t} \right\| dt = \int_{a}^{b} \left\{ \int_{M} \left(\frac{\partial u}{\partial t} \right)^{2} \mathcal{K}_{u} dA_{u} \right\}^{1/2} dt.$$

• Taking a first variation, we find the geodesic equation:

$$u_{tt} + \frac{|\nabla_u u_t|^2}{K_u} = 0$$

The geodesic equation

• Let $u : [a, b] \to C^+$ be a curve (i.e., $e^{2u}g \in C^+$). We can use the inner product to define the length of a path:

$$L[u] = \int_{a}^{b} \left\| \frac{\partial u}{\partial t} \right\| dt = \int_{a}^{b} \left\{ \int_{M} \left(\frac{\partial u}{\partial t} \right)^{2} \mathcal{K}_{u} dA_{u} \right\}^{1/2} dt.$$

• Taking a first variation, we find the geodesic equation:

$$u_{tt} + \frac{|\nabla_u u_t|^2}{K_u} = 0.$$

• Chen-He ('08) proved partial regularity $(C^{1,1})$ of solutions.

The regularized determinant

• Let

$$F[u] = \int (|\nabla u|^2 + 2Ku) dA - (\int KdA) \log \oint e^{2u} dA.$$

the normalized Liouville energy.

Let

$$F[u] = \int \left(|\nabla u|^2 + 2Ku \right) dA - \left(\int K dA \right) \log \int e^{2u} dA.$$

the normalized Liouville energy.

• A metric $g_u = e^{2u}g$ is a critical point of $F \Leftrightarrow$ it has constant Gauss curvature.

Let

$$F[u] = \int \left(|\nabla u|^2 + 2Ku \right) dA - \left(\int K dA \right) \log \int e^{2u} dA.$$

the normalized Liouville energy.

- A metric $g_u = e^{2u}g$ is a critical point of $F \Leftrightarrow$ it has constant Gauss curvature.
- Polyakov ('81) showed that if $g_u = e^{2u}g$ have the same area, then

$$\log \frac{\det(-\Delta_u)}{\det(-\Delta_g)} = -\frac{1}{12\pi}F[u].$$

Geodesic convexity

Claim

 ${\it F}:{\mathcal C}^\pm\to{\mathbb R}$ is geodesically convex.

< ロ > < 同 > < 回 > <

Claim

 $F: \mathcal{C}^{\pm} \to \mathbb{R}$ is geodesically convex.

Proof. Let u = u(x, t) denote a geodesic in C^+ . Then

$$\frac{d}{dt}F[u]=2\int u_t\big(K_u-\overline{K}_u\big)dA_u,$$

M. Gursky (Notre Dame) (joint with J. Str

Claim

 $F: \mathcal{C}^{\pm} \to \mathbb{R}$ is geodesically convex.

Proof. Let u = u(x, t) denote a geodesic in C^+ . Then

$$\frac{d}{dt}F[u]=2\int u_t\big(K_u-\overline{K}_u\big)dA_u,$$

$$\frac{d^2}{dt^2}F[u] = 2\overline{K}_u \Big\{ \int \frac{|\nabla u_t|^2}{K_u} dA_u - 2\Big[\int u_t^2 dA_u - \frac{1}{A_u} \big(\int u_t dA_u \big)^2 \Big] \Big\}.$$

Claim

 $F: \mathcal{C}^{\pm} \to \mathbb{R}$ is geodesically convex.

Proof. Let u = u(x, t) denote a geodesic in C^+ . Then

$$\frac{d}{dt}F[u]=2\int u_t\big(K_u-\overline{K}_u\big)dA_u,$$

$$\frac{d^2}{dt^2}F[u] = 2\overline{K}_u \bigg\{ \int \frac{|\nabla u_t|^2}{K_u} dA_u - 2\bigg[\int u_t^2 dA_u - \frac{1}{A_u} \big(\int u_t dA_u \big)^2 \bigg] \bigg\}.$$

To get a sign, we need a kind of "curvature-weighted Poincaré inequality".

Theorem

(B. Andrews, unpublished) Assume (M, g) has Ric > 0.

< □ > < 同

Theorem

(B. Andrews, unpublished) Assume (M,g) has Ric > 0. If $\int \phi dV = 0$, then

$$\frac{n}{n-1}\int \phi^2 \ dV \leq \int (Ric)^{-1}(\nabla\phi,\nabla\phi) \ dV,$$

with equality $\Leftrightarrow \phi \equiv 0$ or $(M, g) = (S^n, g_0)$ and ϕ is a fist order spherical harmonic.

Theorem

(B. Andrews, unpublished) Assume (M,g) has Ric > 0. If $\int \phi dV = 0$, then

$$\frac{n}{n-1}\int \phi^2 \ dV \leq \int (Ric)^{-1}(\nabla\phi,\nabla\phi) \ dV,$$

with equality $\Leftrightarrow \phi \equiv 0$ or $(M, g) = (S^n, g_0)$ and ϕ is a fist order spherical harmonic.

• When n = 2, $(Ric_u)^{-1} = \frac{1}{K_u}g_u$, and Andrews' inequality applied to $\phi = u_t - \bar{u_t}$ implies $\frac{d^2}{dt^2}F \ge 0$.

Convexity, cont.

• In C^- , we have strict convexity of F and uniqueness of critical points (i.e., metrics of curvature -1):

 \bullet In $\mathcal{C}^+,$ the Moebius group leads to non-uniqueness (and equality in Andrews' inequality):

• In C^+ , the Moebius group leads to non-uniqueness (and equality in Andrews' inequality): Let $\sigma : S^2 \setminus \{N\} \to \mathbb{R}^2$ denote the stereographic projection map, where N = north pole of S^2 .

• In \mathcal{C}^+ , the Moebius group leads to non-uniqueness (and equality in Andrews' inequality): Let $\sigma: S^2 \setminus \{N\} \to \mathbb{R}^2$ denote the stereographic projection map, where N = north pole of S^2 . Let $\delta_{\alpha}: x \mapsto \alpha^{-1}x$ denote dilation on \mathbb{R}^2 , where $\alpha > 0$.

• In \mathcal{C}^+ , the Moebius group leads to non-uniqueness (and equality in Andrews' inequality): Let $\sigma: S^2 \setminus \{N\} \to \mathbb{R}^2$ denote the stereographic projection map, where N = north pole of S^2 . Let $\delta_{\alpha}: x \mapsto \alpha^{-1}x$ denote dilation on \mathbb{R}^2 , where $\alpha > 0$. Then

$$\psi_{lpha} = \sigma^{-1} \circ \delta_{lpha} \circ \sigma : S^2 \to S^2$$

defines a 1-parameter family of conformal maps:

$$\psi_{\alpha}^*g_0=e^{2w_{\alpha}}g_0.$$

• In \mathcal{C}^+ , the Moebius group leads to non-uniqueness (and equality in Andrews' inequality): Let $\sigma: S^2 \setminus \{N\} \to \mathbb{R}^2$ denote the stereographic projection map, where N = north pole of S^2 . Let $\delta_{\alpha}: x \mapsto \alpha^{-1}x$ denote dilation on \mathbb{R}^2 , where $\alpha > 0$. Then

$$\psi_{\alpha} = \sigma^{-1} \circ \delta_{\alpha} \circ \sigma : S^2 \to S^2$$

defines a 1-parameter family of conformal maps:

$$\psi_{\alpha}^*g_0=e^{2w_{\alpha}}g_0.$$

Then

$$u(x,t) = w_{e^t}(x)$$

is a geodesic in C^+ .

Convexity, cont.

M. Gursky (Notre Dame) (joint with J. Str

Image: A mathematical states and a mathem

Four dimensions

• Schematic description of the inner product in 4-d:

Four dimensions

• Schematic description of the inner product in 4-d:

$$m{n} = 2: \langle lpha, eta
angle = \int lpha eta K dA,$$

 $2\pi \chi(M) = \int K dA,$

• Schematic description of the inner product in 4-d:

$$m{n} = 2: \langle lpha, eta
angle = \int lpha eta K dA,$$

 $2\pi \chi(M) = \int K dA,$

$$n = 4: \quad 8\pi^2 \chi(M) = \int \left(-\frac{1}{2} |Ric|^2 + \frac{1}{6} R^2 \right) dV + \int |W|^2 dV,$$
$$\langle \alpha, \beta \rangle = \frac{1}{4} \int \alpha \beta \left(-\frac{1}{2} |Ric|^2 + \frac{1}{6} R^2 \right) dV.$$

• Let n = 4, and denote the *Schouten tensor* by

$$A = \frac{1}{2} \big(\textit{Ric} - \frac{1}{6} \textit{Rg} \big).$$
• Let n = 4, and denote the *Schouten tensor* by

$$A = \frac{1}{2} \big(\text{Ric} - \frac{1}{6} \text{Rg} \big).$$

• Let $\sigma_2(A) = \sum_{i < j} \lambda_i(A) \lambda_j(A)$, the second symmetric function. Then

• Let n = 4, and denote the *Schouten tensor* by

$$A=\frac{1}{2}\big(\textit{Ric}-\frac{1}{6}\textit{Rg}\big).$$

• Let $\sigma_2(A) = \sum_{i < j} \lambda_i(A) \lambda_j(A)$, the second symmetric function. Then

$$8\pi^2\chi(M)=\int |W|^2+4\int \sigma_2(A)dV,$$

and

$$\langle \alpha, \beta \rangle_{g} = \int \alpha \beta \sigma_{2}(A_{g}) dV_{g}.$$

Definition.

Let

$$\mathcal{C}^+ = \left\{ g_u = e^{2u}g : \sigma_1(A_u) > 0, \ \sigma_2(A_u) > 0 \right\}$$

э

Image: A math a math

Definition.

Let

$$\mathcal{C}^+ = \{g_u = e^{2u}g : \sigma_1(A_u) > 0, \sigma_2(A_u) > 0\},\$$

$$\mathcal{C}^{-} = \{g_u = e^{2u}g : \sigma_1(A_u) < 0, \sigma_2(A_u) > 0\},\$$

э

(日)

Definition.

Let

$$\mathcal{C}^+ = \{g_u = e^{2u}g : \sigma_1(A_u) > 0, \sigma_2(A_u) > 0\},\$$

$$\mathcal{C}^{-} = \{g_u = e^{2u}g : \sigma_1(A_u) < 0, \sigma_2(A_u) > 0\},\$$

Note that

$$\sigma_1(A)=\frac{R}{6},$$

where R is the scalar curvature.

Definition.

Let

$$\mathcal{C}^+ = \{g_u = e^{2u}g : \sigma_1(A_u) > 0, \sigma_2(A_u) > 0\},\$$

$$\mathcal{C}^{-} = \{g_u = e^{2u}g : \sigma_1(A_u) < 0, \sigma_2(A_u) > 0\},\$$

Note that

$$\sigma_1(A)=\frac{R}{6},$$

where R is the scalar curvature.

(For reasons we'll touch on later, we will only consider C^+ .)

Question: When is $C^+ \neq \emptyset$?

=

Image: A mathematical states and a mathem

Question: When is $C^+ \neq \emptyset$?

• In analogy with two dimensions, we have

Theorem.

(Chang-G-Yang, '96) If $\int \sigma_2(A) dV > 0$, R > 0, then $\mathcal{C}^+ \neq \emptyset$.

The σ_k -Yamabe problem:(J. Viaclovsky)

Given [g], find $\tilde{g} \in [g]$ such that

 $\sigma_k(A_{\tilde{g}}) = const.$

July 6, 2016

17 / 29

M. Gursky (Notre Dame) (joint with J. Str

The σ_k -Yamabe problem:(J. Viaclovsky)

Given [g], find $\tilde{g} \in [g]$ such that

 $\sigma_k(A_{\tilde{g}}) = const.$

• When k = 1, this corresponds to the Yamabe problem.

The σ_k -Yamabe problem:(J. Viaclovsky)

Given [g], find $\tilde{g} \in [g]$ such that

 $\sigma_k(A_{\tilde{g}}) = const.$

- When k = 1, this corresponds to the Yamabe problem.
- When $k \ge 2$ this equation fully nonlinear, and elliptic if

$$\mathcal{C}_k^+ = \{ \widetilde{g} \in [g] : \sigma_j(A_{\widetilde{g}}) > 0, \ 1 \leq j \leq k \} \neq \emptyset$$

(or with A replaced by -A).

M. Gursky (Notre Dame) (joint with J. Str

July 6, 2016 18 / 29

• C^+ : Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.)

• C^+ : Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when n = 4 and k = 2, existence proved by Chang-G-Yang.

• C^+ : Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when n = 4 and k = 2, existence proved by Chang-G-Yang.

• C^- :

- C^+ : Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when n = 4 and k = 2, existence proved by Chang-G-Yang.
- C^- : Once $k \ge 2$, essentially nothing...

• C^+ : Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when n = 4 and k = 2, existence proved by Chang-G-Yang.

• C^- : Once $k \ge 2$, essentially nothing... Viaclovsky: C^0 , C^1 -estimates for solutions; Sheng-Trudinger-Wang: Counterexample to (local) C^2 -estimates. Also, when k = n, connection to optimal transport.

• C^+ : Extensive (Chang-G-Yang, G-Viaclovsky, Y.Y. Li-A. Li, Han-Li, Sheng-Trudinger-Wang, Trudinger-Wang, Guan-Wang, Guan-Lin-Wang, Chen, etc.) In particular: when n = 4 and k = 2, existence proved by Chang-G-Yang.

• C^- : Once $k \ge 2$, essentially nothing... Viaclovsky: C^0 , C^1 -estimates for solutions; Sheng-Trudinger-Wang: Counterexample to (local) C^2 -estimates. Also, when k = n, connection to optimal transport.

• Non-uniqueness for solutions of the Yamabe problem is well known; Schoen constructed explicit examples on $S^n \times S^1$. Viaclovsky generalized Schoen's construction to the fully nonlinear Yamabe problem when k < n/2.

The functional

Back to n = 4.

M. Gursky (Notre Dame) (joint with J. Str

=

< □ > < 同 >

Back to n = 4.

Question: What corresponds to the Liouville energy?

Back to n = 4.

Question: What corresponds to the Liouville energy?

• Define

$$F_{CY}[u] = \int \left\{ 2\Delta u |\nabla u|^2 - |\nabla u|^4 - 2Ric(\nabla u, \nabla u) + R|\nabla u|^2 - 8u\sigma_2(A_g) \right\} dV_g - 2\left(\int \sigma_2(A_g)dV\right)\log\left(\int e^{-4u}dV\right).$$

This formula is due to Branson-Orsted/Chang-Yang.

• *u* is a critical point of F_{CY} \Leftrightarrow the conformal metric $g_u = e^{-2u}g$ satisfies

 $\sigma_2(A_u) \equiv const.$

• *u* is a critical point of F_{CY} \Leftrightarrow the conformal metric $g_u = e^{-2u}g$ satisfies

 $\sigma_2(A_u) \equiv const.$

• F_{CY} can be expressed as a linear combination of regularized determinants.

• *u* is a critical point of F_{CY} \Leftrightarrow the conformal metric $g_u = e^{-2u}g$ satisfies

$$\sigma_2(A_u) \equiv const.$$

• F_{CY} can be expressed as a linear combination of regularized determinants.

• When $(M,g) = (S^4, g_{S^4})$, Chang-Yang showed that $F|_{C^+} \ge 0$, with equality given precisely by the image of the round metric under the conformal group.

• As in the case of surfaces, many of the geometric properties of the space $(\mathcal{C}^+, \langle \cdot, \cdot \rangle)$ depend on the existence/regularity of geodesics.

Geodesics

- As in the case of surfaces, many of the geometric properties of the space $(\mathcal{C}^+, \langle \cdot, \cdot \rangle)$ depend on the existence/regularity of geodesics.
- A path $u: [0,1] \rightarrow \mathcal{C}^+$ is a geodesic \Leftrightarrow

$$u_{tt} = \frac{\left(-A_u + \sigma_1(A_u)g_u\right)(\nabla u_t, \nabla u_t)}{\sigma_2(A_u)}.$$

Geodesics

- As in the case of surfaces, many of the geometric properties of the space $(\mathcal{C}^+, \langle \cdot, \cdot \rangle)$ depend on the existence/regularity of geodesics.
- A path $u: [0,1] \rightarrow \mathcal{C}^+$ is a geodesic \Leftrightarrow

$$u_{tt} = \frac{\left(-A_u + \sigma_1(A_u)g_u\right)(\nabla u_t, \nabla u_t)}{\sigma_2(A_u)}.$$

There is a more convenient way to write this:

Geodesics

- As in the case of surfaces, many of the geometric properties of the space $(\mathcal{C}^+, \langle \cdot, \cdot \rangle)$ depend on the existence/regularity of geodesics.
- A path $u: [0,1] \rightarrow \mathcal{C}^+$ is a geodesic \Leftrightarrow

$$u_{tt} = \frac{(-A_u + \sigma_1(A_u)g_u)(\nabla u_t, \nabla u_t)}{\sigma_2(A_u)}$$

There is a more convenient way to write this: let

$$E_u = u_{tt}A_u - \nabla u_t \otimes \nabla u_t,$$

then the geodesic equation can be written

$$\sigma_2(E_u)=0.$$

• This is a degenerate elliptic, fully nonlinear equation. We regularize by letting

$$E_u^{\epsilon} = (1+\epsilon)u_{tt}A_u - \nabla u_t \otimes \nabla u_t,$$

and for f > 0, solve

 $\sigma_2(E_u^{\epsilon})=fu_{tt}.$

• This is a degenerate elliptic, fully nonlinear equation. We regularize by letting

$$E_u^{\epsilon} = (1+\epsilon)u_{tt}A_u - \nabla u_t \otimes \nabla u_t,$$

and for f > 0, solve

$$\sigma_2(E_u^\epsilon)=fu_{tt}.$$

• Unlike the surface case, estimates for the regularized geodesic equation degenerate at the C^2 -level:

• This is a degenerate elliptic, fully nonlinear equation. We regularize by letting

$$E_u^{\epsilon} = (1+\epsilon)u_{tt}A_u - \nabla u_t \otimes \nabla u_t,$$

and for f > 0, solve

$$\sigma_2(E_u^\epsilon)=fu_{tt}.$$

• Unlike the surface case, estimates for the regularized geodesic equation degenerate at the C^2 -level: given endpoints $u_0, u_1 \in C^+$ and $\epsilon > 0$, we can prove the existence of a solution of the regularized equation connecting u_0 and u_1 with

$$|u_{\epsilon}|+|(u_{\epsilon})_{t}|+|\nabla u_{\epsilon}|+\epsilon\{|\nabla^{2}u_{\epsilon}|+|(u_{\epsilon})_{tt}|+|\nabla(u_{\epsilon})_{t}|\}\leq C.$$

Theorem 1

 $(\mathcal{C}^+, \langle \cdot, \cdot
angle)$ has non-positive sectional curvature.

< □ > < 同 > < 回 >

Theorem 1

 $(\mathcal{C}^+, \langle \cdot, \cdot \rangle)$ has non-positive sectional curvature.

Theorem 2

The functional F_{CY} is geodesically convex.

(日)

Theorem 1

 $(\mathcal{C}^+, \langle \cdot, \cdot \rangle)$ has non-positive sectional curvature.

Theorem 2

The functional F_{CY} is geodesically convex.

• The proof of Theorem 2 also depends on a version of Andrews' unequality, but in a very non-obvious way.

July 6, 2016

23 / 29

Main Results, cont.

The most surprising result:

The most surprising result:

Theorem 3

If $C^+ \neq \emptyset$ and (M, g) is not conformally equivalent to the sphere, then there is a **unique** metric $\tilde{g} \in C^+$ which minimizes F_{CY} , and is therefore a solution of

$$\sigma_2(A_{\tilde{g}})\equiv \frac{3}{2}.$$
The most surprising result:

Theorem 3

If $C^+ \neq \emptyset$ and (M, g) is not conformally equivalent to the sphere, then there is a **unique** metric $\tilde{g} \in C^+$ which minimizes F_{CY} , and is therefore a solution of

$$\sigma_2(A_{\tilde{g}})\equiv \frac{3}{2}.$$

Also,

(i) $Vol(\tilde{g}) < Vol(S^4)$,

The most surprising result:

Theorem 3

If $C^+ \neq \emptyset$ and (M, g) is not conformally equivalent to the sphere, then there is a **unique** metric $\tilde{g} \in C^+$ which minimizes F_{CY} , and is therefore a solution of

$$\sigma_2(A_{\tilde{g}})\equiv \frac{3}{2}.$$

Also,

(i) $Vol(\tilde{g}) < Vol(S^4)$,

and

(ii)
$$0 < Ric(\tilde{g}) < \frac{1}{2}R_{\tilde{g}}\tilde{g}.$$

 \diamond (Poon, '86): If $M = \mathbb{CP}^2$, then $Vol(\tilde{g}) \leq 2\pi^2$, with equality iff $\tilde{g} = g_{FS}$.

July 6, 2016

25 / 29

 \diamond (Poon, '86): If $M = \mathbb{CP}^2$, then $Vol(\tilde{g}) \leq 2\pi^2$, with equality iff $\tilde{g} = g_{FS}$.

 \diamond (G - '98): If $b^+ > 0$, then $Vol(\tilde{g}) \le \frac{2}{9}\pi^2(2\chi(M) + 3\tau(M))$, with equality iff \tilde{g} is K-E.

 \diamond (Poon, '86): If $M = \mathbb{CP}^2$, then $Vol(\tilde{g}) \leq 2\pi^2$, with equality iff $\tilde{g} = g_{FS}$.

 \diamond (G - '98): If $b^+ > 0$, then $Vol(\tilde{g}) \le \frac{2}{9}\pi^2(2\chi(M) + 3\tau(M))$, with equality iff \tilde{g} is K-E.

• The uniqueness claim of Theorem 3 would follow from Theorem 2 (geodesic convexity of F_{CY}) if we could connect any two metrics in C^+ by a sufficiently regular geodesic.

• The uniqueness claim of Theorem 3 would follow from Theorem 2 (geodesic convexity of F_{CY}) if we could connect any two metrics in C^+ by a sufficiently regular geodesic. However, in view of our estimates above, as the regularizing parameter $\epsilon \to 0$, we lose C^2 -bounds.

• The uniqueness claim of Theorem 3 would follow from Theorem 2 (geodesic convexity of F_{CY}) if we could connect any two metrics in C^+ by a sufficiently regular geodesic. However, in view of our estimates above, as the regularizing parameter $\epsilon \to 0$, we lose C^2 -bounds.

• Consequently, we need to smooth the approximate geodesics, without changing the value of F_{CY} too much.

• The uniqueness claim of Theorem 3 would follow from Theorem 2 (geodesic convexity of F_{CY}) if we could connect any two metrics in C^+ by a sufficiently regular geodesic. However, in view of our estimates above, as the regularizing parameter $\epsilon \to 0$, we lose C^2 -bounds.

• Consequently, we need to smooth the approximate geodesics, without changing the value of F_{CY} too much.

• The idea is to use the flow introduced by Guan-Wang:

$$\frac{\partial u}{\partial t} = \log \sigma_2(A_u).$$

The Proof, in a Picture:

• In higher dimensions there are two ways to proceed. One way is to define

$$\langle \alpha, \beta \rangle_{g_u} = \int \alpha \beta \ \sigma_{n/2}(A_u) dV_u.$$

However, once the dimensions $n \ge 6$ one needs to impose an additional condition (local conformal flatness) in order to have a reasonable notion of the connection, geodesic, etc.

• In higher dimensions there are two ways to proceed. One way is to define

$$\langle lpha, eta
angle_{g_u} = \int lpha eta \ \sigma_{n/2}(A_u) dV_u.$$

However, once the dimensions $n \ge 6$ one needs to impose an additional condition (local conformal flatness) in order to have a reasonable notion of the connection, geodesic, etc.

• There is an alternate definition which has many nice formal properties, in which one replaces $\sigma_{n/2}(A_u)$ with the 'renormalized volume coefficient' (cf. Chang-Fang, Chang-Fang-Graham). The associated formulas become quite complicated, though.

Happy Birthday, et Bonne Anniversaire, Claude!

July 6, 2016

29 / 29

M. Gursky (Notre Dame) (joint with J. Str