Holomorphic discs, null geodesic and gravitational scattering

L.J.Mason
The Mathematical Institute, Oxford
lmason@maths.ox.ac.uk
Lebrunfest, 7 July 2016

Based on Math.DG/0806.3761, Math Res. Lett., 16, p291 (2009), Math.DG/1002.2993, Comm. Anal. \& Geom., (2011) joint with Claude Le Brun.
\&
With David Skinner arxiv:1311.2564 and Yvonne Geyer \&
Arthur Lipstein 1404.6219. [cf. also Berkovits, Witten, Roiban Spradin \& Volovich 2003/4,
Skinner 2012, Cachazo, He, Yuan 2013]
Slides at: http://people.maths.ox.ac.uk/Imason/lebrunfest.pdf

Null geodesics and scattering

Let $\left(M^{d}, g\right)$ be manifold with Lorentzian metric g such that

- it is Globally hyperbolic, asymptotically flat/de Sitter
- has conformal compactification $M=M \cup \mathscr{I}^{+} \cup \mathscr{I}^{-}$,
- null geodesics end on \mathscr{I}^{-}in past and \mathscr{J}^{+}in future.

Scattering thru M gives symplectic maps for

- null geodesics $T^{*} \mathscr{I}^{-} \rightarrow T^{*} \mathscr{I}^{+}$
- Gravitational field data on \mathscr{I}^{-}to data at \mathscr{I}^{+}.

Can we relate null geodesic scattering to gravitational field?

- With integrability can obtain precise fully nonlinear results.
- Strings suggest geometric connection without integrability.

Asymptotically de Sitter

Asymptotically Flat

Einstein-Weyl geometry

Definition (An Einstein-Weyl space)

is a smooth 3-manifold M with

- conformal metric [g]
- torsion-free connection, ∇ compatible with $[g], \nabla[g] \in[g]$.
- with $\operatorname{Sym}_{0} \operatorname{Ricci}(\nabla)=0$.

Cartan (1943):

- The Einstein-Weyl equations determine evolution from initial data (4 free functions of 2 variables).
- If $\exists g \in[g]$ with $\nabla g=0$, metric is flat or (anti-) de Sitter.

Theorem

Einstein-Weyl equations $\Leftrightarrow \exists$ totally geodesic null two-surfaces, Minitwistors, orthogonal to each null covector at each point.
This is a 'Lax pair' \rightarrow equations are 'integrable'.

Main theorem

Theorem (LeBrun \& M.)
There is a natural 1:1 correspondence between

- Lorentzian Einstein-Weyl spaces $(\mathcal{M},[g], \nabla)$ that are

1. globally hyperbolic, C^{∞},
2. space and time oriented
3. conformally compact (asymptotically de Sitter), and

- orientation reversing diffeomorphisms $\psi: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ up to Mobius tranformations.

Forwards: $\psi: \mathscr{I}^{-} \rightarrow \mathscr{I}^{+}$from null geodesic scattering.
For de Sitter, ψ is the antipodal map

$$
\zeta \rightarrow-1 / \bar{\zeta} .
$$

Conformal compactification \& infinity

Definition
($\mathcal{M},[g], \nabla$) is conformally compact (asymptotically de Sitter) if

- \exists manifold with boundary \widetilde{M} with C^{∞} Lorentzian metric \hat{g}
- \hat{g} is nondegenerate at $\partial \widetilde{M}$,
- \exists diffeomorphism $\Phi: \mathcal{M} \simeq \widetilde{M}-\partial \widetilde{M}$ and $\left[\phi^{*} \hat{g}\right]=[g]$
- For u a nondegenerate defining function for $\partial \widetilde{M}$ and $\nabla \hat{g}=\alpha \otimes \hat{g}$, then $\alpha-2 u^{-1} \mathrm{~d} u$ is C^{∞} on \widetilde{M}.

Globally hyperbolic and space \& time oriented gives

$$
\widetilde{M}=\Sigma \times[-1,1]
$$

with $t \in[-1,1]$ time and Σ space, but with $t= \pm 1$ being future/past infinity $\mathscr{I}^{ \pm}$resp., so

$$
\partial \widetilde{M}=\mathscr{I}^{+} \cup \mathscr{I}^{-}, \quad \mathscr{I}^{ \pm} \simeq \Sigma .
$$

From Einstein-Weyl to Scattering map

Let $\mathbb{T}_{\mathbb{R}}$ be the 2-dim space of Cartan's null 2-surfaces Σ_{z}.
Lemma
The $\Sigma_{Z}, Z \in \mathbb{T}_{\mathbb{R}}$, are lightcones of points of $\in \mathscr{I}^{ \pm}$.
As \mathscr{I}^{-}is approached, each 2 -surface, Σ_{Z}, focuses on some point $p \in \mathscr{I}^{-}$and refocuses at a unique point $q \in \mathscr{I}^{+}$.
Corollary
$\mathscr{I}^{ \pm} \simeq S^{2}=\mathbb{T}_{\mathbb{R}}$. By assumption, conformal structure on $\mathscr{I}^{ \pm}$is non-degenerate, so $\mathscr{I}^{ \pm} \simeq \mathbb{C P} \mathbb{P}^{1}$.

Definition
Thus, identification along lightrays $\psi: \mathscr{I}^{-} \rightarrow \mathscr{I}^{+}$is well defined and defines the Scattering map

$$
\psi: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}
$$

a diffeo defined up to Mobius transformations.
For de Sitter, ψ is the antipodal map.

Einstein-Weyl space from scattering map

Definition
The twistor space $\mathbb{T}:=\mathscr{I}^{+} \times \mathscr{I}^{-}=\mathbb{C P} \mathbb{P}^{1} \times \mathbb{C P}^{1}$.
We have:

- The graph of the scattering map in $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ defines $\mathbb{T}_{\mathbb{R}}$ as a totally real submanifold of \mathbb{T}.
- Away from $\mathbb{T}_{\mathbb{R}}$, points of $\mathbb{T} \leftrightarrow$ to timelike geodesics.
- Each $x \in \mathcal{M}$ corresponds to a holomorphic disc $D_{x} \subset \mathbb{T}$ with boundary $\partial D_{x} \subset \mathbb{T}_{\mathbb{R}}$ via the timelike geodesics thru x.
Example For de Sitter, discs are images of unit disc $|\zeta| \leq 1$ under

$$
\zeta \rightarrow\left(\frac{a \zeta+b}{c \zeta+d}, \frac{-\bar{d} \zeta-\bar{c}}{\bar{b} \zeta+\bar{a}}\right) .
$$

This realizes de Sitter as the quotient $S L(2, \mathbb{C}) / S L(2, \mathbb{R})$. Here, the boundaries of the discs are the round circles in $\mathbb{T}_{\mathbb{R}}$.

Recovering \widetilde{M} from embedded $\mathbb{T}_{\mathbb{R}} \subset \mathbb{T}$

Let $\widetilde{M}=$ moduli space of hol. discs $D \subset \mathbb{T}$ with $\partial D \subset \mathbb{T}_{\mathbb{R}}$.

- Finding such holomorphic discs is a Fredholm problem of index 3.
- The discs are stable under deformations.
- Energy estimates \sim existence \& Gromov compactness.
- Gives compact 3d moduli space \widetilde{M} with boundary.
- $x \in M:=\widetilde{M}-\partial \widetilde{M} \leftrightarrow$ a holomorphic disc D_{x}, whereas $\partial \widetilde{M} \leftrightarrow$ generators of $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$.
- $x \in \mathcal{M} \leftrightarrow \partial \mathrm{D}_{x} \subset \mathbb{T}_{\mathbb{R}}$ topological circles that shrink down to a point as $x \rightarrow \partial M$.
- That the above define bona fide [g], ∇ follows by standard twistor methods (uses Liouville's theorem).

Other twistor constructions using holomorphic discs

LeBrun \& M, math.DG/0211021, J. Diff. Geom. 61, 2002:
$\left\{\begin{array}{l}\text { Zoll projective structures } \\ \text { on } S^{2}\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{l}\text { Deformations of embedding } \\ \mathbb{R P}^{2} \subset \mathbb{C P}^{2}\end{array}\right\}$
LeBrun \& M, Zoll Metrics, Branched Covers, and Holomorphic Disks, arxiv:1002.2993, Comm. Anal. Geom..
LeBrun \& M, math.DG/0504582, Duke:
$\left\{\begin{array}{l}\text { Self-dual conformal } \\ \text { structures on } S^{2} \times S^{2}\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{l}\text { Deformations of embedding } \\ \mathbb{R P}^{3} \subset \mathbb{C P}^{3}\end{array}\right\}$
M, math-ph/0505039, Crelle:
$\left\{\begin{array}{l}\text { global self-dual } U(n) \\ \text { Yang-Mills fields in split } \\ \text { signature on } S^{2} \times S^{2},\end{array}\right\} \stackrel{\text { 1:1 }}{\longleftrightarrow}\left\{\begin{array}{l}\text { Hol. Vector bundle } \\ E \rightarrow \mathbb{C P}^{3} \& \text { hermitian metric } \\ H \text { on }\left.E\right|_{\mathbb{R} P^{3}}\end{array}\right\}$
LeBrun, Twistors, Holomorphic Disks, and Riemann Surfaces with Boundary, arxiv:math/0508038, Proc CRM.

Conclusions and generalization

- Asymptotically de Sitter Einstein-Weyl spaces are 1:1 with orientation reversing diffeos $\psi: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$.
- Relies on integrability: null geodesic scattering $P T^{*} \mathscr{I}^{-} \rightarrow P T^{*} \mathscr{I}^{+}$is function of 3-variables, but lifted from $\psi: \mathscr{I}^{-} \rightarrow \mathscr{I}^{+}$a function of 2.
But:
- Holomorphic discs suggest being tied to 3d where projective lightcone is 1d.
- Integrability means trivial gravitational scattering!

Can we say something for general space-times in arbitrary dimensions, perhaps Einstein, but with non-trivial scattering?

- Yes with 'Ambitwistors'.

Ambitwistors in 4d

Ambitwistor spaces: spaces of complex null geodesics \mathbb{A}.

- Extends Penrose/Ward's gravity/Yang-Mills twistor constructions to non-self-dual fields.
- Yang-Mills witten and Isenberg, et. al. 1978, 1985.
- Conformal and Einstein gravity LeBrun [1983,1991] Baston \& M. [1987] .

Ambitwistor Strings:

- Twistor-string for $N=4$ Yang-Mills [witten, Roiban, Spradili, Volovich, 2003/4].
- $N=8$ supergravity [Cachazo-Geyer, Cachazo-Skinner, Cms, 2012], [Skinner, 2013]
- Tree S-Matrices in all dimensions for gravity, YM etc. [CHY]
- From strings in ambitwistor space [m. \& Skinner 1311.2564]
- Place original twistor-string in multi-dimensional context.
- In $4 \mathrm{~d}, \mathbb{A}=T^{*} \mathbb{P} \mathbb{T}=T^{*} \mathbb{P T}^{*} \leadsto$ ambidextrous version. [Geyer, Lipstein \& M 1404.6219.]
Provide string theories at $\alpha^{\prime}=0$ for field theory amplitudes.

Geometry of ambitwistor space

Holomorphic category, i.e. (M, g) complexification of $\left(M_{\mathbb{R}}, g_{\mathbb{R}}\right)$.

- $\mathbb{A}:=$ space of complex null geodesics with scale of P.
- $\mathbb{A}=\left.T^{*} M\right|_{P^{2}=0} /\left\{D_{0}\right\}$ where $D_{0}:=P \cdot \nabla=$ geodesic spray.
- D_{0} has Hamiltonian P^{2} wrt symplectic form $\omega=d P_{\mu} \wedge d x^{\mu}$.
- Symplectic potential $\theta=P_{\mu} d x^{\mu}, \omega=d \theta$, descend to \mathbb{A}.

Projectivise: $P \mathbb{A}:=$ space of unscaled complex light rays.

- On $P \mathbb{A}, \theta \in \Omega_{P \mathbb{A}}^{1} \otimes L$ is a holomorphic contact structure.

Theorem (LeBrun 1983)

The complex structure on $P \mathbb{A}$ determines M and conformal metric g. The correspondence is stable under arbitrary deformations of the complex structure of $P \mathbb{A}$ that preserve θ.

Ambitwistors

Linearized LeBrun correspondence

θ determines complex structure on $P \mathbb{A}$ via $\theta \wedge d \theta^{d-2}$. So:
Deformations of complex structure $\leftrightarrow[\delta \theta] \in H_{\bar{\partial}}^{1}(P \mathbb{A}, L)$.
Analyze with double fibration

$$
\left.P T^{*} M\right|_{P^{2}=0}
$$

$$
\begin{array}{ll}
q \swarrow D_{0} \\
P \mathbb{A}_{S}
\end{array} \quad \searrow_{M .} \quad{ }^{2}
$$

Key example: On flat space-time, set $\delta g_{\mu \nu}=\mathrm{e}^{i k \cdot x} \epsilon_{\mu \nu}$ then

$$
\delta \theta=\bar{\delta}(k \cdot P) \mathrm{e}^{i k \cdot X} \epsilon_{\mu \nu} P^{\mu} P^{\nu}, \quad \bar{\delta}(z)=\bar{\partial} \frac{1}{2 \pi i z}
$$

- Dolbeault form of Penrose's scattering Hamiltonian for null geodesics from \mathscr{I}^{-}to \mathscr{I}^{+}.
- Support on $k \cdot P=0 \Rightarrow$ the scattering equations.

Ambitwistors in 4 dimensions

- In 4d, can solve $P^{2}=0$ with 2 cpt spinors:

$$
P_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}, \quad \alpha=0,1, \quad \dot{\alpha}=\dot{0}, \dot{1} .
$$

- Replace $x^{\alpha \dot{\alpha}}$ by $\left(\mu^{\alpha}, \tilde{\mu}^{\dot{\alpha}}\right)$

$$
\mu^{\dot{\alpha}}=-i x^{\alpha \dot{\alpha}} \lambda_{\alpha}, \quad \tilde{\mu}^{\alpha}=i x^{\alpha \dot{\alpha}} \tilde{\lambda}_{\dot{\alpha}}
$$

constant under $\boldsymbol{x}^{\alpha \dot{\alpha}} \rightarrow \boldsymbol{X}^{\alpha \dot{\alpha}}+\alpha \lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}}$.

- Set

$$
Z=\left(\lambda_{\alpha}, \mu^{\dot{\alpha}}\right) \in \mathbb{T}, \quad W=\left(\tilde{\mu}^{\alpha}, \tilde{\lambda}_{\dot{\alpha}}\right) \in \mathbb{T}^{*}
$$

where $Z \cdot W:=\lambda_{\alpha} \tilde{\mu}^{\alpha}+\mu^{\dot{\alpha}} \tilde{\lambda}_{\dot{\alpha}}$ and incidence $\leadsto \boldsymbol{Z} \cdot \boldsymbol{W}=0$.

- Thus:

$$
\mathbb{A}=\left\{(Z, W) \in \mathbb{T} \times \mathbb{T}^{*} \mid Z \cdot W=0\right\} /\left\{Z \cdot \partial_{Z}-W \cdot \partial_{W}\right\}
$$

- Symplectic potential

$$
\Theta:=P \cdot d x=i W \cdot \mathrm{~d} Z-i Z \cdot \mathrm{~d} W
$$

Field equations on 4d ambitwistor space

Define formal neighbourhoods $\mathbb{P A}_{[k]}$ of $\mathbb{P A} \subset \mathbb{P T} \times \mathbb{P T}^{*}$ to extend objects off $\mathbb{P A}$ to $O\left((Z \cdot W)^{k+1}\right)$ into ambient $\mathbb{P T} \times \mathbb{P T}^{*}$.

- 1. Off-shell YM fields \leftrightarrow hol vector bundle $E \rightarrow \mathbb{P A}$.

2. YM equs $\leftrightarrow E$ extends to $E \rightarrow \mathbb{P A}_{[3]}$. Isenberg, Green \& Yasskin (1978)

- 1. Conformal gravity equs $\leftrightarrow \mathbb{P A}$ admits extension to $\mathbb{P A}_{[5]}$.

2. Einstein \leftrightarrow extension to $\mathbb{P A}_{[6]}$, Baston \& M. 1986, LeBrun 1991

Witten's (1978) approach:

- Can naturally super-symmetrize by extending $\mathbb{T}=\mathbb{C}^{4 \mid \mathcal{N}}$.
- Formal neighbourhoods \leftrightarrow susy via $\mathbb{P A}_{[k]} \leftrightarrow \mathcal{N}=k$.
- Yang-Mills field equs in terms of $\exists \mathcal{N}=3$ SUSY for YM
[Harnad, Hurtubise \& Schnider 1986].
- Story unfinished for gravity.

Null geodesics and ambitwistor strings

Complexify: $\left(M_{\mathbb{R}}, g_{\mathbb{R}}\right)$ real space-time $\operatorname{dim} . d, \sim(M, g)$.
Let Σ be a Riemann surface.

Ambitwistor string action:

- Let $X: \Sigma \rightarrow M, P \in K \otimes X^{*} T^{*} M$

$$
S=\int P \cdot \bar{\partial} X-e P^{2} / 2
$$

with $e \in \Omega^{0,1} \otimes T$, where $K=\Omega_{\Sigma}^{1,0}$ and $T=T^{1,0} \Sigma$.

- $e \leadsto P^{2}=0$,
- gauge: $\delta(X, P, e)=(\alpha P, 0,2 \bar{\partial} \alpha)$.

Solutions mod gauge are holomorphic maps to \mathbb{A}, Ambitwistor space: $\mathbb{A}=\left.T^{*} M\right|_{P^{2}=0} /\{$ gauge $\}$.

Conformal scattering and the tree S-matrix

- Pose asymptotic data $g_{i n}$: resp. \pm frequency at $\mathscr{I}^{ \pm}$.
- Solve for g on M s.t. \pm freq. parts at $\mathscr{I}^{ \pm}$agree with $g_{\text {in }}$.
- S-matrix is functional of $g_{\text {in }}$

$$
\mathcal{S}\left[g_{i n}\right]=S_{E H}[g]:=\frac{1}{\kappa^{2}} \int_{M} R d \text { vol }+ \text { bdy term }
$$

- generating fn $\left.g^{\mp}\right|_{\mathscr{I}_{ \pm}}=\partial \mathcal{S} / \partial g_{\mathrm{in}}^{ \pm}$.

Usually evaluate S-matrix perturbatively

- Pose data $g_{\text {in }}=\left.\sum_{i=1}^{n} \epsilon_{i} g_{i}\right|_{\mathscr{I}}$, and solve for g on M.
- (tree) S-matrix is

$$
\mathcal{M}\left(g_{1}, \ldots, g_{n}\right)=\text { Coeff of } \prod_{i} \epsilon_{i} \text { in } S_{E H}[g]
$$

[Usually use Fourier modes for $\left.g_{j}: g_{j \mu \nu}=\xi_{j \mu} \xi_{j \nu} \mathrm{e}^{i k_{j} \cdot x} \cdot\right]$

Strings and the S-matrix

Key proposal field theory S-matrix

$$
\mathcal{S}\left[g_{i n}\right]=\int D[X P] \mathrm{e}^{i S_{\text {string }}^{g_{i n}}}
$$

The miracle is that (perturbatively at least) the RHS is computed directly from $g_{i n}=\sum_{i} \epsilon_{i} g_{i}$

$$
S_{\text {string }}^{g_{i n}}=S_{\text {string }}^{g_{\text {flat }}}+\sum_{i} \epsilon_{i} \int V_{i}
$$

Where V_{i} are vertex operators represented here e.g. by $\delta \theta=\bar{\delta}(k \cdot P) \mathrm{e}^{i k \cdot x} \epsilon_{\mu \nu} P^{\mu} P^{\nu}$. Thus

$$
\mathcal{M}\left(g_{1}, \ldots, g_{n}\right)=\int D[X P \ldots] V_{1} \ldots V_{n} \mathrm{e}^{i S_{s t r i n g}^{f l a t}}=:\left\langle V_{1} \ldots V_{n}\right\rangle
$$

Twistor and 4d ambitwistor strings

with Yvonne Geyer \& Arthur Lipstein arxiv:1404.6219
Contact structure Θ on $\mathbb{P} \mathbb{A}$ gives action

$$
S=i \int_{\Sigma} W \cdot \bar{\partial} Z-Z \cdot \bar{\partial} W+a Z \cdot W .
$$

- a Lagrange multiplier $\leadsto Z \cdot W=0$, gauge quotients phase.
- At $\mathcal{N}=4$ similar to Witten/Berkovits twistor-string.

Now consider ambidextrous model perhaps with $\mathcal{N}<4$

- Take $Z, W \in K^{1 / 2}$, (reduce to $Z \cdot W=0$ globally).
- Use wave fns from both $\mathbb{P T}$ and $\mathbb{P T}^{*} \leadsto Y M$ vertex ops

$$
\begin{array}{rlrl}
V_{i} & =\int_{\Sigma} f_{i}(Z) J \cdot t_{i}, & & f_{i} \in H^{1}(\mathbb{P T}, \mathcal{O}) \\
\widetilde{V}_{i} & =\int_{\Sigma} \tilde{f}_{i}(W) J \cdot t_{i}, & \tilde{f}_{i} \in H^{1}\left(\mathbb{P} \mathbb{T}^{*}, \mathcal{O}\right)
\end{array}
$$

J being worldsheet current algebra and $t_{i} \in \mathfrak{g}$ Lie algebra.

New Amplitude formulae in 4d

$\mathrm{N}^{k} \mathrm{MHV}$ amplitude

$$
\begin{aligned}
\mathcal{A}(1, \ldots, n) & =\left\langle V_{1} \ldots \tilde{V}_{k} V_{k+1} \ldots V_{n}\right\rangle \\
& =\int D[Z W] \tilde{V}_{1} \ldots \tilde{V}_{k} V_{k+1} \ldots V_{n} \mathrm{e}^{i S} .
\end{aligned}
$$

- For momentum eigenstates $k_{i}=\lambda_{i} \tilde{\lambda}_{i}$ take:

$$
\begin{aligned}
V_{i} & =\int \frac{\mathrm{d} s_{i}}{s_{i}} \bar{\delta}^{2}\left(\lambda_{i}-s_{i} \lambda\left(\sigma_{i}\right)\right) \mathrm{e}^{i s_{i}\left[\mu \tilde{\lambda}_{i}\right]} J \cdot t_{i} \\
\widetilde{V}_{i} & =\int \frac{\mathrm{d} s_{i}}{s_{i}} \bar{\delta}^{2}\left(\tilde{\lambda}_{i}-s_{i} \tilde{\lambda}\left(\sigma_{i}\right)\right) \mathrm{e}^{i s_{i}\left(\tilde{\mu} \lambda_{i}\right\rangle} J \cdot t_{i}
\end{aligned}
$$

- Take exponentials into action to give:

$$
S[Z, W]=\int_{\Sigma} W \cdot \bar{\partial} Z+\sum_{i=1}^{k} s_{i}\left[\mu \tilde{\lambda}_{i}\right] \delta^{2}\left(\sigma-\sigma_{i}\right)+\sum_{r=k+1}^{n} s_{r}\left\langle\tilde{\mu} \lambda_{r}\right\rangle \delta^{2}\left(\sigma-\sigma_{r}\right)
$$

Gives sources

$$
\bar{\partial} \lambda=\sum_{r} s_{r} \lambda_{r} \delta^{2}\left(\sigma-\sigma_{r}\right), \quad \bar{\partial} \tilde{\lambda}=\sum_{i} s_{i} \tilde{\lambda}_{i} \delta^{2}\left(\sigma-\sigma_{i}\right)
$$

with solutions $\mu=\tilde{\mu}=0$ and

$$
\lambda(\sigma)=\sum_{r=k+1}^{n} \frac{\lambda_{r}}{\left(\sigma \sigma_{r}\right)}, \quad \tilde{\lambda}(\sigma)=\sum_{i=1}^{k} \frac{\tilde{\lambda}_{i}}{\left(\sigma \sigma_{i}\right)}, \quad \sigma_{\alpha}=\frac{1}{s}(1, \sigma)
$$

- For Yang-Mills obtain amplitude

$$
\mathcal{A}(1, \ldots, n)=\int \prod_{i=1}^{n} \frac{\mathrm{~d}^{2} \sigma_{i}}{\left(\sigma_{i} \sigma_{i+1}\right)} \prod_{i=1}^{k} \bar{\delta}^{2}\left(\tilde{\lambda}_{i}-\tilde{\lambda}(\sigma)\right) \prod_{i=k+1}^{n} \bar{\delta}^{2}\left(\lambda_{i}-\lambda\left(\sigma_{i}\right)\right)
$$

- Essentially the formula obtained by Witten (2005).
- The delta functions \Rightarrow scattering equations refined by the MHV degree.

Gravity

Adapt Skinner model:

- Introduce skew infinity twistors

$$
\left\langle Z_{1} Z_{2}\right\rangle=I_{\alpha \beta} Z_{1}^{\alpha} Z_{2}^{\beta}, \quad\left[W_{1} W_{2}\right]=I^{\alpha \beta} W_{1 \alpha} W_{2 \beta} .
$$

- include Fermions $(\rho, \tilde{\rho}) \in \mathbb{T} \times \mathbb{T}^{*}$ spinors on Σ.
- gauge currents from an $S L(1 \mid 2)$.
- Vertex ops from $h \in H^{1}(\mathbb{P T}, \mathcal{O}(2))$ and conjugates are

$$
V_{h}=[W, \partial] h+\rho \cdot \partial[\tilde{\rho}, \partial] h, \quad \widetilde{V}_{\tilde{h}}=\langle Z, \tilde{\partial}\rangle \tilde{h}+\tilde{\rho} \cdot \tilde{\partial}\langle\rho, \tilde{\partial}\rangle \tilde{h} .
$$

- Amplitude formulae: replace $\prod_{\frac{1}{(i i+1)}}$ by $\operatorname{det}^{\prime} \mathcal{H}$

$$
\begin{gathered}
\mathbb{H}_{i j}=\frac{\langle i j\rangle}{(i j)}, \quad i, j \leq k, \quad \tilde{\mathbb{H}}_{i j}=\frac{[i j]}{(i j)}, \quad i, j>k, \\
\mathcal{H}_{i j}=\left(\begin{array}{cc}
\mathbb{H} & 0 \\
0 & \widetilde{\mathbb{H}}
\end{array}\right), \quad \mathcal{H}_{i i}=-\sum_{l \neq i} \mathcal{H}_{i l} . \\
\mathcal{M}(1, \ldots, n)=\int \operatorname{det}^{\prime} \mathcal{H} \prod_{i=1}^{n} \mathrm{~d}^{2} \sigma_{i} \prod_{i=1}^{k} \bar{\delta}^{2}\left(\tilde{\lambda}_{i}-\tilde{\lambda}(\sigma)\right) \prod_{i=k+1}^{n} \bar{\delta}^{2}\left(\lambda_{i}-\lambda\left(\sigma_{i}\right)\right.
\end{gathered}
$$

Summary

- Formulae proved by recursion.
- Valid for any amount of SUSY unlike original twistor-strings.
- Higher dimensional analogues yield 10d supergravities
- successfully compute loop effects.
- Suggest surprising new structures: Colour/Kinematic dualities.
- String field theory should be a geometric formulation of (super-)gravities in ambitwistor space.

The end

Happy Birthday Claude!

