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Null geodesics and scattering
Let (M9, g) be manifold with Lorentzian metric g such that
» it is Globally hyperbolic, asymptotically flat/de Sitter
» has conformal compactificaton M = MU . T U ¥,
» null geodesics end on .# ~ in past and .# T in future.
Scattering thru M gives symplectic maps for
» null geodesics T*.9~ — T* 7+
» Gravitational field data on .# ~ to data at .# .
Can we relate null geodesic scattering to gravitational field?
» With integrability can obtain precise fully nonlinear results.

Asymptotically de Sitter

Asvmptotically Flat



Einstein-Weyl geometry

Definition (An Einstein-Weyl space)

is a smooth 3-manifold M with
» conformal metric [g]
» torsion-free connection, V compatible with [g], V9] € [g].
» with Symg Ricci(V) =0.

Cartan (1943):
» The Einstein-Weyl equations determine evolution from
initial data (4 free functions of 2 variables).
» If 3g € [g] with Vg = 0, metric is flat or (anti-) de Sitter.

Theorem
Einstein-Weyl equations < 3 totally geodesic null two-surfaces,
Minitwistors, orthogonal to each null covector at each point.

This is a ‘Lax pair’ ~» equations are ‘integrable’.



Main theorem

Theorem (LeBrun & M.)
There is a natural 1:1 correspondence between
» Lorentzian Einstein-Weyl spaces (M, [g], V) that are

1. globally hyperbolic, C*°,
2. space and time oriented
3. conformally compact (asymptotically de Sitter),

and
» orientation reversing diffeomorphisms v : CP' — CP' up to
Mobius tranformations.

Forwards: ¢ : .#— — .#* from null geodesic scattering.
For de Sitter, v is the antipodal map

¢— —1/C.



Conformal compactification & infinity

Definition

(M, [9], V) is conformally compact (asymptotically de Sitter) if
3 manifold with boundary M with C>= Lorentzian metric g
g is nondegenerate at oM,
3 diffeomorphism ® : M ~ M — M and [¢*§] = [g]

For u a nondegenerate defining function for &M and
Vi=a®g,thena—2u~'du is C> on M.

v

v

v

v

Globally hyperbolic and space & time oriented gives
M=% x[-1,1]

with t € [-1, 1] time and X space, but with t = +1 being
future/past infinity .#* resp., so

M=stus", IE~y.



From Einstein-Weyl to Scattering map
Let Tr be the 2-dim space of Cartan’s null 2-surfaces ¥ ;.
Lemma
The X7, Z € T, are lightcones of points of € .7 *.
As .~ is approached, each 2-surface, ¥ 7, focuses on some
point p € .#~ and refocuses at a unique point g € .7 .
Corollary

J+ ~ 82 = Tgr. By assumption, conformal structure on .#=* is
non-degenerate, so .+ ~ CP'.

Definition
Thus, identification along lightrays « : %~ — " is well
defined and defines the Scattering map

¢ : CP' — CP’

a diffeo defined up to Mobius transformations.
For de Sitter, v is the antipodal map.



Einstein-Weyl space from scattering map

Definition
The twistor space T := .# x .~ = CP' x CP'.
We have:

» The graph of the scattering map in CP' x CP' defines Tx
as a totally real submanifold of T.

» Away from T, points of T < to timelike geodesics.

» Each x € M corresponds to a holomorphic disc Dy C T
with boundary 0Dy C Ty via the timelike geodesics thru x.

Example For de Sitter, discs are images of unit disc |¢| < 1
under b 3
ai+b —d¢—-c
— =] .
¢ <CC +d’ b¢+a >

This realizes de Sitter as the quotient SL(2,C)/SL(2, R).
Here, the boundaries of the discs are the round circles in Tg.




Recovering M from embedded Tz C T

Let M = moduli space of hol. discs D c T with 9D C Tg.

>

Finding such holomorphic discs is a Fredholm problem of
index 3.

The discs are stable under deformations.

Energy estimates ~» existence & Gromov compactness.
Gives compact 3d moduli space M with boundary.

X € M := M — OM + a holomorphic disc Dy, whereas

OM <« generators of CP' x CP'.

X € M «» dDx C T topological circles that shrink down to
a point as x — oM.

That the above define bona fide [g], V follows by standard
twistor methods (uses Liouville’s theorem).



Other twistor constructions using holomorphic discs

LeBrun & M, math.DG/0211021, J. Diff. Geom. 61, 2002:
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M, math-ph/0505039, Crelle:

global self-dual  U(n) Hol. Vector bundle
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signature on S2 x S2, H on E|gps

LeBrun, Twistors, Holomorphic Disks, and Riemann Surfaces
with Boundary, arxiv:imath/0508038, Proc CRM.



Conclusions and generalization

» Asymptotically de Sitter Einstein-Weyl spaces are 1:1 with
orientation reversing diffeos ) : CP' — CP'.

» Relies on integrability:
null geodesic scattering PT*.# ~ — PT*.# " is function of
3-variables, but lifted from ¢ : .#— — #7 a function of 2.

But:

» Holomorphic discs suggest being tied to 3d where
projective lightcone is 1d.

» Integrability means trivial gravitational scattering!

Can we say something for general space-times in arbitrary
dimensions, perhaps Einstein, but with non-trivial scattering?

» Yes with ‘Ambitwistors’.



Ambitwistors in 4d
Ambitwistor spaces: spaces of complex null geodesics A.
» Extends Penrose/Ward’s gravity/Yang-Mills
twistor constructions to non-self-dual fields.
> Yang-Mills witten and 1senberg, et. al. 1978, 1985.

» Conformal and Einstein gravity tesrun [1983,1991]

Baston & M. [1987] .
Ambitwistor Strings:
» Twistor-string for N = 4 Yang-Mills witen, Roiban, Spradin, Volovich, 2003/4].
» N = 8 supergravity [cachazo-Geyer, Cachazo-Skinner, CMS, 2012], [Skinner, 2013]
» Tree S-Matrices in all dimensions for gravity, YM etc. (chv
» From strings in ambitwistor space . a skinner 1311.2564]
» Place original twistor-string in multi-dimensional context.
» In4d, A = T*PT = T*PT* ~ ambidextrous version. Geyer,

Lipstein & M 1404.6219.]

Provide string theories at o’ = 0 for field theory amplitudes.



Geometry of ambitwistor space
Holomorphic category, i.e. (M, g) complexification of (Mg, gr).
» A := space of complex null geodesics with scale of P.
A =T*M|pze_o/{Do} where Dy := P -V = geodesic spray.
Do has Hamiltonian P? wrt symplectic form w = dP,, A dx*.
Symplectic potential § = P, dx*, w = df, descend to A.

v vy

Projectivise: PA := space of unscaled complex light rays.
» On PA, 0 € Q},, @ Lis a holomorphic contact structure.

Theorem (LeBrun 1983)

The complex structure on PA determines M and conformal
metric g. The correspondence is stable under arbitrary
deformations of the complex structure of PA that preserve 6.

Space-time Ambitwistors
S X
por
\/ /X/ N /.
L



Linearized LeBrun correspondence
6 determines complex structure on PA via 6 A d#92. So:

Deformations of complex structure <« [§6] € H(%(PA, L).
Analyze with double fibration

PT*M|P2:0

q. Do N
Pisg M.

Key example: On flat space-time, set 6g,,, = e**¢,, then

- : , 1
= . Ik.X N v = —_—
60 = (k- P)e*Xe,, PP, 3(2) =5

» Dolbeault form of Penrose’s scattering Hamiltonian for null
geodesics from .#~ to ./ .

» Supporton k - P = 0 = the scattering equations.



Ambitwistors in 4 dimensions
» In 4d, can solve P? = 0 with 2 cpt spinors:

Pad:AQS\dy a:0,1, 0420,1

Replace x*“ by (u®, i)

v

pd = —ixN\,, % = ix“N

constant under x®¢ — x@& 4 G \¥\&,

> Set . y
Z=Aa,p*) €T, W=(i%N)eT

where Z - W := A\, i® + u®\4 and incidence ~ Z - W = 0.
Thus:

A={(ZW)eTxT|Z - W=0}/{Z-07— W-dw}.

v

v

Symplectic potential

©=P-dx=iW-dZ —iZ-dW.



Field equations on 4d ambitwistor space

Define formal neighbourhoods PA of PA C PT x PT* to
extend objects off PA to O((Z - W)k+1) into ambient PT x PT*.

» 1. Off-shell YM fields «++ hol vector bundle E — PA.
2. YM equs < E extends to E — PA[g] Isenberg, Green & Yasskin (1978)

» 1. Conformal gravity equs <> PA admits extension to PAs.
2. Einstein > extension to PA g, Baston & M. 1986, LeBrun 1991

Witten’s (1978) approach:
» Can naturally super-symmetrize by extending T = C*V.
» Formal neighbourhoods <« susy via PA[q < N = k.
» Yang-Mills field equs in terms of 3N = 3 SUSY for YM

[Harnad, Hurtubise & Schnider 1986].

» Story unfinished for gravity.



Null geodesics and ambitwistor strings

Complexify: (Mg, gr) real space-time dim. d, ~ (M, g).
Let > be a Riemann surface.

Ambitwistor string action:
»let X XM PeKe X T*M

S:/P-éx—epz/z.

with e € Q%' @ T, where K = Q1% and 7 = T'0%.
> e ~ P2 = 0,
» gauge: §(X, P, e) = (aP,0,20a).

Solutions mod gauge are holomorphic maps to A,
Ambitwistor space: A = T*M|p2_q/{gauge}.



Conformal scattering and the tree S-matrix
» Pose asymptotic data g,:
resp. + frequency at .7+,

» Solve for g on M s.t. £ freq.
parts at .#* agree with g,.

» S-matrix is functional of g,

1
S[gin] = Senlg] = 2 /M R d vol+bdy term.

» generating fn g¥| ,+ = dS/dg:.

Usually evaluate S-matrix perturbatively

» Pose data gi» = >, €igi|.», and solve for g on M.
» (tree) S-matrix is

M(g1,...,9n) = Coeffof []; € in Senlg]

[Usually use Fourier modes for gj: g, = &,&e™.]



Strings and the S-matrix
Key proposal field theory S-matrix
Slan] = [ DIXPIHh:

The miracle is that (perturbatively at least) the RHS is
computed directly from gi, = >, €igi

Jin  _ Q9fiat § . .
Sstring - Sstring + € / V/
i

Where V; are vertex operators represented here e.g. by
60 = 5(k - P)e**¢,, PFPY. Thus

iqflat

M(g'],...,gn):/\D[XP...]V']...Vne’ssmng = <V1Vn>



Twistor and 4d ambitwistor strings

with Yvonne Geyer & Arthur Lipstein arxiv:1404.6219
Contact structure © on PA gives action

S:i/ W.-0Z—-Z-0W+aZ-W.
X

» alagrange multiplier ~ Z - W = 0, gauge quotients phase.
» At N = 4 similar to Witten/Berkovits twistor-string.

Now consider ambidextrous model perhaps with N < 4
» Take Z, W € K'/2, (reduce to Z - W = 0 globally).
» Use wave fns from both PT and PT* ~» YM vertex ops

v — /mzw't,-, e H'(PT,0)
Y

V, = /?,-(W)J-t,-, f e H'(PT*,0)
pN

J being worldsheet current algebra and t; € g Lie algebra.



New Amplitude formulae in 4d
NKMHV amplitude

Ad,...on) = (Vi UVt ... V)
= /D[ZW]V1...Vka+1...Vne’S.

» For momentum eigenstates k; = \;\; take:

V,' = /?52(/\,' — S/)\(U/))eis’[uxi]J- f
]
Vo= [ R0 s g
» Take exponentials intol action to give:
S[z,w] = /z W-éai siluAilo? (o—0)+ Z Se(fi Ar)d2(o—0r)

i=1 r=k+1
Gives sources

O\ = Z SeA62(0 — 0y), I\ = Z siAio2(o — o;)
r i



with solutions = i = 0 and

» For Yang-Mills obtain amplitude

n 2 k n
dco; -~ -
A1,...,n=/ ’ 2 (Ni—No 52(Ni—\(o;
(om = [ oy TG )),-:111 (A=A(07))
» Essentially the formula obtained by Witten (2005).

» The delta functions = scattering equations refined by the
MHV degree.



Gravity
Adapt Skinner model:
» Introduce skew infinity twistors

(Z1Zo) = 1np 20 2], Wy Wa = 1°F Wy, Way .
include Fermions (p, p) € T x T* spinors on .

gauge currents from an SL(1|2).
Vertex ops from h € H'(PT, O(2)) and conjugates are

v vy

Vo= [W,0lh+p-0[p,0lh,  Vy=(Z,8)h+p-0(p,0)h.
Amplitude formulae: replace [] 7y by det' #
(ip .. = il

v

H; = - I, §k7 H;; TR ia'>k7
d (i)) / T3i)) !
H O
Hlj = <0 ﬁ) 5 Hﬁ = - ;#i: Hil :

n k n
M(1,...,n):/det’%Hdzo,HSZ(x,—X(o)) IR
=1 =1

i=k+1



Summary

» Formulae proved by recursion.

» Valid for any amount of SUSY unlike original
twistor-strings.

» Higher dimensional analogues yield 10d supergravities

» successfully compute loop effects.

» Suggest surprising new structures: Colour/Kinematic
dualities.

» String field theory should be a geometric formulation of
(super-)gravities in ambitwistor space.



The end

Happy Birthday CIud!




