Holomorphic discs, null geodesic and gravitational scattering

L.J.Mason

The Mathematical Institute, Oxford lmason@maths.ox.ac.uk

Lebrunfest, 7 July 2016

Based on Math.DG/0806.3761, Math Res. Lett., 16, p291 (2009), Math.DG/1002.2993, Comm. Anal. & Geom., (2011) joint with Claude Le Brun.

&

With David Skinner arxiv:1311.2564 and Yvonne Geyer & Arthur Lipstein 1404.6219. [Cf. also Berkovits, Witten, Roiban Spradlin & Volovich 2003/4,

Skinner 2012, Cachazo, He, Yuan 2013]

Slides at: http://people.maths.ox.ac.uk/lmason/lebrunfest.pdf

Null geodesics and scattering

Let (M^d, g) be manifold with Lorentzian metric g such that

- it is Globally hyperbolic, asymptotically flat/de Sitter
- ▶ has conformal compactification $\widetilde{M} = M \cup \mathscr{I}^+ \cup \mathscr{I}^-$,
- ▶ null geodesics end on \mathscr{I}^- in past and \mathscr{I}^+ in future.

Scattering thru M gives symplectic maps for

- ▶ null geodesics $T^*\mathscr{I}^- \to T^*\mathscr{I}^+$
- ▶ Gravitational field data on \mathscr{I}^- to data at \mathscr{I}^+ .

Can we relate null geodesic scattering to gravitational field?

- With integrability can obtain precise fully nonlinear results.
- Strings suggest geometric connection without integrability.

Asymptotically de Sitter

Einstein-Weyl geometry

Definition (An Einstein-Weyl space)

is a smooth 3-manifold M with

- conformal metric [g]
- ▶ torsion-free connection, ∇ compatible with [g], $\nabla[g] \in [g]$.
- with $Sym_0 \operatorname{Ricci}(\nabla) = 0$.

Cartan (1943):

- ► The Einstein-Weyl equations determine evolution from initial data (4 free functions of 2 variables).
- ▶ If $\exists g \in [g]$ with $\nabla g = 0$, metric is flat or (anti-) de Sitter.

Theorem

Einstein-Weyl equations $\Leftrightarrow \exists$ totally geodesic null two-surfaces, Minitwistors, orthogonal to each null covector at each point.

This is a 'Lax pair' → equations are 'integrable'.

Main theorem

Theorem (LeBrun & M.)

There is a natural 1:1 correspondence between

- ▶ Lorentzian Einstein-Weyl spaces $(\mathcal{M}, [g], \nabla)$ that are
 - 1. globally hyperbolic, C^{∞} ,
 - 2. space and time oriented
 - 3. conformally compact (asymptotically de Sitter),

and

• orientation reversing diffeomorphisms $\psi: \mathbb{CP}^1 \to \mathbb{CP}^1$ up to Mobius tranformations.

Forwards: $\psi: \mathscr{I}^- \to \mathscr{I}^+$ from null geodesic scattering. For de Sitter, ψ is the antipodal map

$$\zeta \to -1/\overline{\zeta}$$
.

Conformal compactification & infinity

Definition

 $(\mathcal{M},[g],
abla)$ is conformally compact (asymptotically de Sitter) if

- $ightharpoonup \exists$ manifold with boundary \widetilde{M} with C^{∞} Lorentzian metric \hat{g}
- \hat{g} is nondegenerate at ∂M ,
- ▶ \exists diffeomorphism $\Phi: \mathcal{M} \simeq \widetilde{\textit{M}} \partial \widetilde{\textit{M}}$ and $[\Phi^*\hat{g}] = [g]$
- For u a nondegenerate defining function for $\partial \widetilde{M}$ and $\nabla \hat{g} = \alpha \otimes \hat{g}$, then $\alpha 2u^{-1} du$ is C^{∞} on \widetilde{M} .

Globally hyperbolic and space & time oriented gives

$$\widetilde{M} = \Sigma \times [-1, 1]$$

with $t \in [-1, 1]$ time and Σ space, but with $t = \pm 1$ being future/past infinity \mathscr{I}^{\pm} resp., so

$$\partial \widetilde{M} = \mathscr{I}^+ \cup \mathscr{I}^-, \qquad \mathscr{I}^{\pm} \simeq \Sigma.$$

From Einstein-Weyl to Scattering map

Let $\mathbb{T}_{\mathbb{R}}$ be the 2-dim space of Cartan's null 2-surfaces Σ_Z .

Lemma

The Σ_Z , $Z \in \mathbb{T}_{\mathbb{R}}$, are lightcones of points of $\in \mathscr{I}^{\pm}$.

As \mathscr{I}^- is approached, each 2-surface, Σ_Z , focuses on some point $p \in \mathscr{I}^-$ and refocuses at a unique point $q \in \mathscr{I}^+$.

Corollary

 $\mathscr{I}^{\pm}\simeq S^2=\mathbb{T}_{\mathbb{R}}.$ By assumption, conformal structure on \mathscr{I}^{\pm} is non-degenerate, so $\mathscr{I}^{\pm}\simeq\mathbb{CP}^1.$

Definition

Thus, identification along lightrays $\psi: \mathscr{I}^- \to \mathscr{I}^+$ is well defined and defines the Scattering map

$$\psi: \mathbb{CP}^1 \to \mathbb{CP}^1$$

a diffeo defined up to Mobius transformations.

For de Sitter, ψ is the antipodal map.

Einstein-Weyl space from scattering map

Definition

The twistor space $\mathbb{T} := \mathscr{I}^+ \times \mathscr{I}^- = \mathbb{CP}^1 \times \mathbb{CP}^1$.

We have:

- ▶ The graph of the scattering map in $\mathbb{CP}^1 \times \mathbb{CP}^1$ defines $\mathbb{T}_{\mathbb{R}}$ as a totally real submanifold of \mathbb{T} .
- ▶ Away from $\mathbb{T}_{\mathbb{R}}$, points of $\mathbb{T} \leftrightarrow$ to timelike geodesics.
- ▶ Each $x \in \mathcal{M}$ corresponds to a holomorphic disc $D_x \subset \mathbb{T}$ with boundary $\partial D_x \subset \mathbb{T}_{\mathbb{R}}$ via the timelike geodesics thru x.

Example For de Sitter, discs are images of unit disc $|\zeta| \le 1$ under

$$\zeta
ightarrow \left(rac{a\zeta+b}{c\zeta+d},rac{-ar{d}\zeta-ar{c}}{ar{b}\zeta+ar{a}}
ight)\,.$$

This realizes de Sitter as the quotient $SL(2,\mathbb{C})/SL(2,\mathbb{R})$. Here, the boundaries of the discs are the round circles in $\mathbb{T}_{\mathbb{R}}$.

Recovering M from embedded $\mathbb{T}_{\mathbb{R}} \subset \mathbb{T}$

Let $\widetilde{M} = \text{moduli space of hol. discs } D \subset \mathbb{T} \text{ with } \partial D \subset \mathbb{T}_{\mathbb{R}}$.

- Finding such holomorphic discs is a Fredholm problem of index 3.
- The discs are stable under deformations.
- ► Energy estimates ~ existence & Gromov compactness.
- ▶ Gives compact 3d moduli space M with boundary.
- ▶ $x \in M := \widetilde{M} \partial \widetilde{M} \leftrightarrow$ a holomorphic disc D_x , whereas $\partial \widetilde{M} \leftrightarrow$ generators of $\mathbb{CP}^1 \times \mathbb{CP}^1$.
- ▶ $x \in \mathcal{M} \leftrightarrow \partial D_x \subset \mathbb{T}_{\mathbb{R}}$ topological circles that shrink down to a point as $x \to \partial \widetilde{M}$.
- ▶ That the above define bona fide [g], ∇ follows by standard twistor methods (uses Liouville's theorem).

Other twistor constructions using holomorphic discs

LeBrun & M, Zoll Metrics, Branched Covers, and Holomorphic Disks, arxiv:1002.2993, Comm. Anal. Geom..

LeBrun & M, math.DG/0504582, Duke:

$$\left\{ \begin{array}{ll} \text{Self-dual} & \text{conformal} \\ \text{structures on} \ S^2 \times S^2 \end{array} \right\} \stackrel{\text{1:1}}{\longleftrightarrow} \left\{ \begin{array}{ll} \text{Deformations} & \text{of} & \text{embedding} \\ \mathbb{RP}^3 \subset \mathbb{CP}^3 \end{array} \right\}$$

M, math-ph/0505039, Crelle:

$$\left\{ \begin{array}{ll} \text{global self-dual } U(n) \\ \text{Yang-Mills fields in split} \\ \text{signature on } S^2 \times S^2, \end{array} \right\} \overset{1:1}{\longleftrightarrow} \left\{ \begin{array}{ll} \text{Hol. Vector bundle} \\ E \to \mathbb{CP}^3 \text{ \& hermitian metric} \\ H \text{ on } E|_{\mathbb{RP}^3} \end{array} \right\} .$$

LeBrun, Twistors, Holomorphic Disks, and Riemann Surfaces with Boundary, arxiv:math/0508038, Proc CRM.

Conclusions and generalization

- ▶ Asymptotically de Sitter Einstein-Weyl spaces are 1:1 with orientation reversing diffeos $\psi : \mathbb{CP}^1 \to \mathbb{CP}^1$.
- Relies on integrability: null geodesic scattering PT* 𝒯⁻ → PT*𝒯⁺ is function of 3-variables, but lifted from ψ : 𝒯⁻ → 𝒯⁺ a function of 2.

But:

- Holomorphic discs suggest being tied to 3d where projective lightcone is 1d.
- Integrability means trivial gravitational scattering!

Can we say something for general space-times in arbitrary dimensions, perhaps Einstein, but with non-trivial scattering?

Yes with 'Ambitwistors'.

Ambitwistors in 4d

Ambitwistor spaces: spaces of complex null geodesics A.

- Extends Penrose/Ward's gravity/Yang-Mills twistor constructions to non-self-dual fields.
- ► Yang-Mills Witten and Isenberg, et. al. 1978, 1985.
- Conformal and Einstein gravity LeBrun [1983,1991]
 Baston & M. [1987]

Ambitwistor Strings:

- lacksquare Twistor-string for N=4 Yang-Mills [Witten, Roiban, Spradlin, Volovich, 2003/4].
- ho 8 supergravity [Cachazo-Geyer, Cachazo-Skinner, CMS, 2012], [Skinner, 2013]
- Tree S-Matrices in all dimensions for gravity, YM etc. [CHY]
- ► From strings in ambitwistor space [M. & Skinner 1311.2564]
- Place original twistor-string in multi-dimensional context.
- ▶ In 4d, $\mathbb{A} = \mathcal{T}^*\mathbb{PT} = \mathcal{T}^*\mathbb{PT}^* \sim$ ambidextrous version. [Geyer, Lipstein & M 1404.6219.]

Provide string theories at $\alpha' = 0$ for field theory amplitudes.

Geometry of ambitwistor space

Holomorphic category, i.e. (M, g) complexification of $(M_{\mathbb{R}}, g_{\mathbb{R}})$.

- ▶ A := space of complex null geodesics with scale of P.
- ▶ $\mathbb{A} = T^*M|_{P^2=0}/\{D_0\}$ where $D_0 := P \cdot \nabla =$ geodesic spray.
- ▶ D_0 has Hamiltonian P^2 wrt symplectic form $\omega = dP_\mu \wedge dx^\mu$.
- ▶ Symplectic potential $\theta = P_{\mu} dx^{\mu}$, $\omega = d\theta$, descend to \mathbb{A} .

Projectivise: PA := space of *unscaled* complex light rays.

▶ On PA, $\theta \in \Omega^1_{P$ A} \otimes L is a holomorphic contact structure.

Theorem (LeBrun 1983)

The complex structure on $P\mathbb{A}$ determines M and conformal metric g. The correspondence is stable under arbitrary deformations of the complex structure of $P\mathbb{A}$ that preserve θ .

Ambitwistors

Linearized LeBrun correspondence

 θ determines complex structure on $P\mathbb{A}$ via $\theta \wedge d\theta^{d-2}$. So:

Deformations of complex structure $\leftrightarrow [\delta\theta] \in H^1_{\bar{a}}(P\mathbb{A}, L)$.

Analyze with double fibration

$$\begin{array}{ccc} & PT^*M|_{P^2=0} \\ q\swarrow D_0 & \searrow \\ P\mathbb{A}_S & M \end{array}$$

Key example: On flat space-time, set $\delta g_{\mu\nu} = e^{ik\cdot x} \epsilon_{\mu\nu}$ then

$$\delta\theta = \bar{\delta}(\mathbf{k} \cdot \mathbf{P}) e^{i\mathbf{k} \cdot \mathbf{X}} \epsilon_{\mu\nu} \mathbf{P}^{\mu} \mathbf{P}^{\nu} , \qquad \bar{\delta}(\mathbf{z}) = \bar{\partial} \frac{1}{2\pi i \mathbf{z}}$$

- Dolbeault form of Penrose's scattering Hamiltonian for null geodesics from \mathscr{I}^- to \mathscr{I}^+ .
- ▶ Support on $k \cdot P = 0$ ⇒ the scattering equations.

Ambitwistors in 4 dimensions

In 4d, can solve $P^2 = 0$ with 2 cpt spinors:

$$P_{\alpha\dot{\alpha}} = \lambda_{\alpha}\tilde{\lambda}_{\dot{\alpha}}, \qquad \alpha = 0, 1, \quad \dot{\alpha} = \dot{0}, \dot{1}.$$

▶ Replace $x^{\alpha\dot{\alpha}}$ by $(\mu^{\alpha}, \tilde{\mu}^{\dot{\alpha}})$

$$\mu^{\dot{\alpha}} = -i\mathbf{X}^{\alpha\dot{\alpha}}\lambda_{\alpha}\,, \qquad \tilde{\mu}^{\alpha} = i\mathbf{X}^{\alpha\dot{\alpha}}\tilde{\lambda}_{\dot{\alpha}}$$

constant under $\mathbf{x}^{\alpha\dot{\alpha}} \to \mathbf{x}^{\alpha\dot{\alpha}} + \alpha\lambda^{\alpha}\tilde{\lambda}^{\dot{\alpha}}$.

Set

$$Z = (\lambda_{\alpha}, \mu^{\dot{\alpha}}) \in \mathbb{T}, \quad W = (\tilde{\mu}^{\alpha}, \tilde{\lambda}_{\dot{\alpha}}) \in \mathbb{T}^*$$

where $Z \cdot W := \lambda_{\alpha} \tilde{\mu}^{\alpha} + \mu^{\dot{\alpha}} \tilde{\lambda}_{\dot{\alpha}}$ and incidence $\rightsquigarrow Z \cdot W = 0$.

Thus:

$$\mathbb{A} = \{ (\boldsymbol{Z}, \boldsymbol{W}) \in \mathbb{T} \times \mathbb{T}^* | \boldsymbol{Z} \cdot \boldsymbol{W} = \boldsymbol{0} \} / \{ \boldsymbol{Z} \cdot \partial_{\boldsymbol{Z}} - \boldsymbol{W} \cdot \partial_{\boldsymbol{W}} \} \,.$$

Symplectic potential

$$\Theta := P \cdot dx = iW \cdot dZ - iZ \cdot dW$$
.

Field equations on 4d ambitwistor space

Define formal neighbourhoods $\mathbb{P}\mathbb{A}_{[k]}$ of $\mathbb{P}\mathbb{A} \subset \mathbb{PT} \times \mathbb{PT}^*$ to extend objects off $\mathbb{P}\mathbb{A}$ to $O((Z \cdot W)^{k+1})$ into ambient $\mathbb{PT} \times \mathbb{PT}^*$.

- ▶ 1. Off-shell YM fields \leftrightarrow hol vector bundle $E \to \mathbb{P}\mathbb{A}$.
 - 2. YM equs \leftrightarrow E extends to $E \to \mathbb{P}\mathbb{A}_{[3]}$. Isenberg, Green & Yasskin (1978)
- ▶ 1. Conformal gravity equs $\leftrightarrow \mathbb{P}\mathbb{A}$ admits extension to $\mathbb{P}\mathbb{A}_{[5]}$.
 - 2. Einstein \leftrightarrow extension to $\mathbb{P}\mathbb{A}_{[6]}$, Baston & M. 1986, LeBrun 1991

Witten's (1978) approach:

- Can naturally super-symmetrize by extending $\mathbb{T} = \mathbb{C}^{4|\mathcal{N}}$.
- ▶ Formal neighbourhoods \leftrightarrow susy via $\mathbb{P}\mathbb{A}_{[k]} \leftrightarrow \mathcal{N} = k$.
- ▶ Yang-Mills field equs in terms of $\exists \mathcal{N}=3$ SUSY for YM [Harnad, Hurtubise & Schnider 1986].
- Story unfinished for gravity.

Null geodesics and ambitwistor strings

Complexify: $(M_{\mathbb{R}}, g_{\mathbb{R}})$ real space-time dim. $d, \rightsquigarrow (M, g)$. Let Σ be a Riemann surface.

Ambitwistor string action:

▶ Let $X : \Sigma \to M$, $P \in K \otimes X^*T^*M$

$$S = \int P \cdot \bar{\partial} X - e P^2/2.$$

with $e \in \Omega^{0,1} \otimes T$, where $K = \Omega_{\Sigma}^{1,0}$ and $T = T^{1,0}\Sigma$.

- $e \rightsquigarrow P^2 = 0$,
- gauge: $\delta(X, P, e) = (\alpha P, 0, 2\bar{\partial}\alpha)$.

Solutions mod gauge are holomorphic maps to \mathbb{A} , **Ambitwistor space:** $\mathbb{A} = T^*M|_{P^2=0}/\{\text{gauge}\}.$

Conformal scattering and the tree S-matrix

- Pose asymptotic data g_{in}: resp. ± frequency at J[±].
- Solve for g on M s.t. ± freq. parts at J[±] agree with g_{in}.
- ► S-matrix is functional of g_{in}

$$\mathcal{S}[g_{\mathit{in}}] = \mathcal{S}_{\mathit{EH}}[g] := rac{1}{\kappa^2} \int_M R \, d \, \mathit{vol} + \mathsf{bdy} \; \mathsf{term}.$$

Usually evaluate S-matrix perturbatively

- ▶ Pose data $g_{in} = \sum_{i=1}^{n} \epsilon_i g_i |_{\mathscr{I}}$, and solve for g on M.
- (tree) S-matrix is

$$\mathcal{M}(g_1,\ldots,g_n) = \text{ Coeff of } \prod_i \epsilon_i \text{ in } S_{EH}[g]$$

[Usually use Fourier modes for g_j : $g_{j\mu\nu} = \xi_{j\mu}\xi_{j\nu}e^{ik_j\cdot x}$.]

Strings and the S-matrix

Key proposal field theory S-matrix

$$\mathcal{S}[g_{\mathit{in}}] = \int \mathcal{D}[\mathsf{XP}] \mathrm{e}^{i S_{\mathrm{string}}^{g_{\mathit{in}}}}$$

The miracle is that (perturbatively at least) the RHS is computed directly from $g_{in} = \sum_{i} \epsilon_{i} g_{i}$

$$S_{ ext{string}}^{g_{in}} = S_{ ext{string}}^{g_{flat}} + \sum_{i} \epsilon_{i} \int V_{i}$$

Where V_i are vertex operators represented here e.g. by $\delta\theta = \bar{\delta}(\mathbf{k} \cdot \mathbf{P}) \mathrm{e}^{i\mathbf{k} \cdot \mathbf{x}} \epsilon_{\mu\nu} \mathbf{P}^{\mu} \mathbf{P}^{\nu}$. Thus

$$\mathcal{M}(g_1,\ldots,g_n) = \int D[XP\ldots]V_1\ldots V_n \,\mathrm{e}^{iS_{string}^{flat}} =: \langle V_1\ldots V_n
angle$$

Twistor and 4d ambitwistor strings

with Yvonne Geyer & Arthur Lipstein arxiv:1404.6219

Contact structure Θ on $\mathbb{P}\mathbb{A}$ gives action

$$S = i \int_{\Sigma} W \cdot \bar{\partial} Z - Z \cdot \bar{\partial} W + aZ \cdot W$$
.

- ▶ a Lagrange multiplier $\sim Z \cdot W = 0$, gauge quotients phase.
- At $\mathcal{N}=4$ similar to Witten/Berkovits twistor-string.

Now consider ambidextrous model perhaps with ${\cal N} < 4$

- ▶ Take $Z, W \in K^{1/2}$, (reduce to $Z \cdot W = 0$ globally).
- ▶ Use wave fns from both \mathbb{PT} and $\mathbb{PT}^* \rightsquigarrow \mathsf{YM}$ vertex ops

$$\begin{array}{lcl} V_i & = & \int_{\Sigma} f_i(Z) J \cdot t_i \,, & f_i \in H^1(\mathbb{PT}, \mathcal{O}) \\ \\ \widetilde{V}_i & = & \int_{\Sigma} \widetilde{f}_i(W) J \cdot t_i, & \widetilde{f}_i \in H^1(\mathbb{PT}^*, \mathcal{O}) \end{array}$$

J being worldsheet current algebra and $t_i \in \mathfrak{g}$ Lie algebra.

New Amplitude formulae in 4d

N^kMHV amplitude

$$\begin{split} \mathcal{A}(1,\ldots,n) &= \langle V_1 \ldots \tilde{V}_k \, V_{k+1} \ldots V_n \rangle \\ &= \int D[ZW] \, \tilde{V}_1 \ldots \tilde{V}_k \, V_{k+1} \ldots V_n \, \mathrm{e}^{iS} \, . \end{split}$$

▶ For momentum eigenstates $k_i = \lambda_i \tilde{\lambda}_i$ take:

$$V_{i} = \int \frac{\mathrm{d}\mathbf{s}_{i}}{\mathbf{s}_{i}} \bar{\delta}^{2} (\lambda_{i} - \mathbf{s}_{i}\lambda(\sigma_{i})) \mathrm{e}^{i\mathbf{s}_{i}[\mu \tilde{\lambda}_{i}]} J \cdot t_{i}$$

$$\widetilde{V}_{i} = \int \frac{\mathrm{d}\mathbf{s}_{i}}{\mathbf{s}_{i}} \bar{\delta}^{2} (\tilde{\lambda}_{i} - \mathbf{s}_{i}\tilde{\lambda}(\sigma_{i})) \mathrm{e}^{i\mathbf{s}_{i}\langle \tilde{\mu} \lambda_{i} \rangle} J \cdot t_{i}$$

Take exponentials into action to give:

$$S[Z, W] = \int_{\Sigma} W \cdot \bar{\partial} Z + \sum_{i=1}^{k} s_{i} [\mu \tilde{\lambda}_{i}] \delta^{2}(\sigma - \sigma_{i}) + \sum_{r=k+1}^{n} s_{r} \langle \tilde{\mu} \lambda_{r} \rangle \delta^{2}(\sigma - \sigma_{r})$$

Gives sources

$$\bar{\partial}\lambda = \sum_{r} \mathbf{s}_{r} \lambda_{r} \delta^{2}(\sigma - \sigma_{r}), \qquad \bar{\partial}\tilde{\lambda} = \sum_{i} \mathbf{s}_{i} \tilde{\lambda}_{i} \delta^{2}(\sigma - \sigma_{i})$$

with solutions $\mu = \tilde{\mu} = 0$ and

$$\lambda(\sigma) = \sum_{r=k+1}^{n} \frac{\lambda_r}{(\sigma \, \sigma_r)}, \qquad \tilde{\lambda}(\sigma) = \sum_{i=1}^{k} \frac{\tilde{\lambda}_i}{(\sigma \, \sigma_i)}, \qquad \sigma_{\alpha} = \frac{1}{s}(1, \sigma)$$

► For Yang-Mills obtain amplitude

$$\mathcal{A}(1,\ldots,n) = \int \prod_{i=1}^{n} \frac{\mathrm{d}^{2}\sigma_{i}}{(\sigma_{i}\sigma_{i+1})} \prod_{i=1}^{k} \bar{\delta}^{2}(\tilde{\lambda}_{i} - \tilde{\lambda}(\sigma)) \prod_{i=k+1}^{n} \bar{\delta}^{2}(\lambda_{i} - \lambda(\sigma_{i}))$$

- Essentially the formula obtained by Witten (2005).
- ► The delta functions ⇒ scattering equations refined by the MHV degree.

Gravity

Adapt Skinner model:

Introduce skew *infinity twistors*

$$\langle Z_1 Z_2 \rangle = I_{\alpha\beta} Z_1^{\alpha} Z_2^{\beta} , \quad [W_1 \ W_2] = I^{\alpha\beta} W_{1\alpha} W_{2\beta} .$$

- ▶ include Fermions $(\rho, \tilde{\rho}) \in \mathbb{T} \times \mathbb{T}^*$ spinors on Σ .
- ▶ gauge currents from an SL(1|2).
- ▶ Vertex ops from $h \in H^1(\mathbb{PT}, \mathcal{O}(2))$ and conjugates are

$$V_h = [W, \partial]h + \rho \cdot \partial [\tilde{\rho}, \partial]h, \qquad \widetilde{V}_{\tilde{h}} = \langle Z, \tilde{\partial} \rangle \tilde{h} + \tilde{\rho} \cdot \tilde{\partial} \langle \rho, \tilde{\partial} \rangle \tilde{h}.$$

▶ Amplitude formulae: replace $\prod \frac{1}{(i,i+1)}$ by det' \mathcal{H}

$$\mathbb{H}_{ij} = \frac{\langle ij \rangle}{(ij)}, \quad i,j \leq k, \qquad \widetilde{\mathbb{H}}_{ij} = \frac{[ij]}{(ij)}, \quad i,j > k,
\mathcal{H}_{ij} = \begin{pmatrix} \mathbb{H} & 0 \\ 0 & \widetilde{\mathbb{H}} \end{pmatrix}, \qquad \mathcal{H}_{ii} = -\sum_{l \neq i} \mathcal{H}_{il}.$$

$$\mathcal{M}(1,\ldots,n) = \int \det' \mathcal{H} \prod_{i=1}^n \mathrm{d}^2 \sigma_i \prod_{i=1}^k \bar{\delta}^2 (\tilde{\lambda}_i - \tilde{\lambda}(\sigma)) \prod_{i=k+1}^n \bar{\delta}^2 (\lambda_i - \lambda(\sigma_i))$$

Summary

- Formulae proved by recursion.
- Valid for any amount of SUSY unlike original twistor-strings.
- Higher dimensional analogues yield 10d supergravities
- successfully compute loop effects.
- Suggest surprising new structures: Colour/Kinematic dualities.
- String field theory should be a geometric formulation of (super-)gravities in ambitwistor space.

The end

Happy Birthday Claude!

