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Traditional setting for backtesting

We take a new look at the old risk management problem of backtesting.
Consider a bank with a one-day-ahead forecast of its loss, defined as negative
P&L. We use this notation throughout:

Ft : Information available at t (filtration).
Lt : Loss realized at t on portfolio formed at t − 1.
Ft : Ft(y) = Pr(Lt ≤ y |Ft−1); i.e., the df of the day-ahead

forecast distribution.
F̂t : The forecast distribution formed by the bank’s risk-manager.

In the regulatory context, it is generally assumed that the backtest is based
on VaR exceedances.

V̂aRα,t := F̂←t (α) is an estimate of α-VaR constructed at time t − 1.
Bank reports V̂aRα,t and realized Lt .
VaR exceedance is simply It = I[Lt > V̂aRα,t ].
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Probability integral transform

Increasingly, regulators can observe more than just the VaR exceedances.
Consider the PIT process given by Pt = F̂t(Lt).
Reported PIT values contain information about VaR exceedances at every
level α.

Pt ≥ α ⇐⇒ Lt ≥ V̂aRα,t

If the {F̂t} coincide with the true {Ft}, then the process {Pt} is iid U[0, 1].
In the US, banks on the Internal Models Approach for the trading book have
been required to report PIT values to regulators since 2013.
Motivation: What is the best way to exploit this additional information?
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Simulated example of a backtest dataset

Days VaR Loss Exceed? PIT
1 2.492 0.278 0 0.602
2 2.968 0.716 0 0.713
3 3.336 -0.759 0 0.298
4 3.018 -0.451 0 0.364
5 2.654 2.955 1 0.995
6 3.335 -1.697 0 0.118
7 3.137 0.184 0 0.554
8 2.641 1.091 0 0.832
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Some quantiles of greater interest than others

Diebold, Gunther, and Tay (1998) develop forecast density tests based on PIT
values. They show how to test the null hypothesis that {Pt} is iid U[0, 1].
In a risk-management context, some quantiles of the forecast distribution are
more important than others.

Accuracy in “good tail” of high profits (low Pt) is generally much less
important than accuracy in the “bad tail” of large losses (high Pt).
Models generally cannot expected to perform well in the extreme tail of
once-per-generation shock.

We study a class of backtests for forecast distributions in which the test
statistic weights exceedance events by a function of the probability level α.
The choice of the kernel function makes explicit the priorities for model
performance.
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Power vs Specificity

Applied to the regulator’s problem of backtesting bank VaR, our results point to a
tradeoff between specificity and power.

Under the current regulatory framework, capital depends only on 99% VaR.
So long as the model estimates VaR accurately, the regulator could be
indifferent to its performance at other quantiles.
Taking this narrow view, the sequence of VaR exceedance indicators is
sufficient for backtesting.
Exceedance indicators arise as a limiting case of the kernel function, so many
of the traditional backtests are nested in our framework.
But if the regulator is willing to assign positive mass to probability levels in a
neighborhood of α, we can construct more powerful backtests.
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A broader view of the backtesting mandate

We take a broader view of the risk-manager’s mandate, in which the objective is
to forecast probabilities over a range of large losses.

We might readily believe that a model designed to deliver 99%-VaR could fail
to deliver an accurate estimate of the 75th percentile.
But if the bank fails to forecast losses at the 98.5% or 99.5% level, is it
plausible to trust that the modeling of the 99% VaR is robust?
The formal guidance of US regulators to banks on internal model validation
(SR Letter 11-7) explicitly requires “checking the distribution of losses
against other estimated percentiles.”
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Fundamental Review of the Trading Book

Reforms mandated by the FRTB due to begin parallel run in 2018.
FRTB replaces 99%-VaR with 97.5%-Expected Shortfall (ES) as determinant
of capital requirements.

This has led to much debate on whether or not ES is amenable to direct
backtesting.
The model approval process will continue to be based on VaR exceedances.

We devise tests of the forecast distribution from which risk measures are
estimated and not tests of the risk measure estimates.

For ES, a test of the tail of the forecast distribution offers an indirect approach
to backtesting.
FRTB requires banks to go beyond the mandatory VaR backtesting regime to
consider multiple levels or other features of the tail.
Basel Committee explicitly mentions the use of PIT values as a possible
direction for the extended model validation requirements.

To fix ideas, we henceforth assume the backtest is conducted by a regulator
who is interested primarily in assessing the bank’s 99%-VaR forecast, but

our conclusions hinge little on the choice of risk measure; and
apply equally to internal assessments of forecasting performance.
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Spectral transformations of PIT exceedances

Our tests are based on transformations of indicator variables for PIT
exceedances.

We mean “spectral” in the integral transform sense, not in the Durlauf (1991)
sense of a transformed autocovariance sequence.

The transformations take the form

Wt =

∫ 1

0
I{Pt>u}dν(u) = ν([0,Pt))

where ν is a measure defined on [0, 1].
ν is chosen to apply weight to different levels in the unit interval, typically in
the region of the standard VaR level α = 0.99.
We refer to ν as the kernel measure for the transform.

Wt is (weakly) increasing in Pt .
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Spectral backtests

Spectral backtests are backtests based on W1, . . . ,Wn.
Null hypothesis. Let F 0

W denote df of Wt = ν([0,Pt)) when Pt is uniform.

H0 : W1, . . . ,Wn are iid with df F 0
W .

Within the class of spectral backtests, we have
tests of unconditional coverage: test for correct distribution F 0

W ;
tests of conditional coverage: correct distribution and serial independence.

Gordy, Lok and McNeil (FRB/H-W/York) Spectral Backtests Montréal 2017 10 / 35



Discrete kernels

Wt =
m∑

i=1
ki I{Pt>αi}

Special case m = 1: Wt ∝ I{Pt>α} is exceedance indicator for α-VaR.
(1/k1)

∑
i Wi is distributed Binomial(n, 1− α) under H0.

Possible tests: Z-test (classical binomial score test), LRT (Kupiec ’95,
Christoffersen ’98).

General case yields multinomial tests.
Wt takes values in 0 = q0 < q1 < · · · < qm where qj =

∑j
i=1 ki .

Form count variables Oi =
∑n

t=1 I{Wt=qi}, i = 0, 1 . . . ,m.
Under H0: (O0, . . . ,Om) ∼ MN(n, (α1, α2 − α1, . . . , αm − αm−1, 1− αm)).
Possible tests: Pearson-Nass score test, LRT.
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Continuous kernels

A continuous kernel measure has density dν(u) = g(u)du on an interval
[α1, α2] ⊂ [0, 1], where

g is continuous on [α1, α2],
g(u) > 0, u ∈ (α1, α2), and
g(u) = 0, u /∈ [α1, α2].

The kernel density g plays the same role as the “kernel function” in the
nonparametric statistics literature, and [α1, α2] is the kernel window.
When g satisfies the additional requirement that

∫ α2
α1

g(u)du = 1, is a
normalized kernel density.
In nonparametric statistics, the kernel is often defined to be normalized and
symmetric, but we do not impose these requirements.
Writing G for the integral of g , we have Wt = G(P∗t ) for truncated
PIT-value P∗t = α1 ∨ (Pt ∧ α2).
G strictly increasing inside kernel window, so Wt strictly increasing in P∗t .
Can also have mixed kernels.
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Intuition for continuous kernel

Continuous weighting can be viewed as a way of building tests that
incorporate information from reported PIT-values in a neighbourhood of α.
Let g∗ be a normalized kernel density on [0, 1], and define a family of
normalized kernel densities gα,ε on the intervals [α− ε/2, α + ε/2] by

gα,ε(u) =
1
ε
g∗
(
u − α + ε/2

ε

)
The measures να,ε defined by gα,ε converge to Dirac measure δα as ε→ 0+,
and limε→0Wt = I{Pt>α} almost surely.
Thus, classic tests based on the exceedance indicator I{Pt>α} can be seen as
limiting cases of more general continuous tests as the width ε of the kernel
window vanishes to zero.
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Test of unconditional coverage

Test for correct distribution F 0
W implied by H0 and choice of kernel.

Broadly, our tests fall into two categories, Z-tests and likelihood ratio tests.
Presentation focuses on continuous kernel case, but discrete case works the
same way.
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Z-tests

Z-tests are based on the asymptotic normality under H0 of

W n = n−1
n∑

t=1
Wt

Solve for µW = E(Wt) and σ2W = var(Wt) in the null model F 0
W .

Trivially follows from CLT that, under H0,

Zn =

√
n(W n − µW )

σW

d−−−→
n→∞

N(0, 1).

Multivariate extensions of Z-tests are chi-squared tests.
In general, Z-tests are sensitive to the choice of kernel measure.
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Likelihood ratio tests

LRT are based on parametric models FW (w | θ) for W1, . . . ,Wn that nest the
model in H0.

In other words F 0
W = FW (· | θ0) for some value θ0.

Test is based on the asymptotic distribution of the statistic

LRW ,n = LW (θ0 |W)/LW (θ̂ |W)

where θ̂ denotes the maximum likelihood estimate (MLE).
A key difference with Z-tests is that LRT depends only on the support of the
kernel measure, and not the distribution of mass within the support.

In the continuous case, it is boundaries of the kernel window [α1, α2] that
determines the test statistic and not the kernel density g .
This result is a consequence of the well-known invariance of the LRT under
strictly increasing tranformations.

Another key distinction with Z-test is that LRT requires estimation of θ̂
under the alternative.
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Continuous spectral Z-test

Product rule for continuous kernels
Say we have two kernel densities g1 and g2 on the same window [α1, α2].
Let W (j)

t , j = 1, 2, be the corresponding spectrally-transformed PIT values.
Then the product W ∗

t = W (1)
t W (2)

t is a spectrally-transformed PIT value
generated by density

g∗(u) = g1(u)G2(u) + g2(u)G1(u)

on the same window [α1, α2].
For a kernel density g on [α1, α2], we have µW = E(Wt) and
σ2W = E(W 2

t )− µ2W where

E(Wt) =

∫ α2

α1

g(u)(1− u)du,

E(W 2
t ) =

∫ α2

α1

2g(u)G(u)(1− u)du,

The spectral Z-test for the sample mean W n follows immediately.
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Continuous bispectral Z-test

Consider Wt = (W (1)
t ,W (2)

t )′ for two distinct kernel measures on same support.
Use the product rule to calculate µW = E(Wt) and ΣW = cov(Wt).
Under H0, for large n, we have approximately that

n
(
W− µW

)′
Σ−1W

(
W− µW

)
∼ χ22.

Straightforward to generalize to higher dimensions (J kernels).
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Truncated probitnormal tests

We assume Pt is probitnormal: Φ−1(Pt) ∼ N(µ, σ2) with df FP(p | θ) and
density fP(p | θ), θ = (µ, σ)′.
Nests uniform distribution: θ = θ0 = (0, 1)′.
Tests based on truncated PIT-values P∗t = α1 ∨ (Pt ∧ α2).
Likelihood function for P∗t has closed-form expression.
Denote the observed score vector for P∗t by

St(θ) =

(
∂

∂µ
ln L(θ | P∗t ),

∂

∂σ
ln L(θ | P∗t )

)′
We can show that the score can be written as a vector of
spectrally-transformed PIT values.

ν1 and ν2 a bit tedious to write out, but solved analytically.
Thus, the score test is a special case of the bispectral Z-test.
LRT is also a spectral test and generalizes a test proposed by Berkowitz
(2001).

Gordy, Lok and McNeil (FRB/H-W/York) Spectral Backtests Montréal 2017 19 / 35



Parametric simulation study

Sample data Lt from 4 distributions F : normal, t5, t3, skewed t3.
All distributions are scaled to have mean zero and variance one.

F VaR0.975 VaR0.99 ∆1 ES0.975 ∆2

Normal 1.96 2.33 0.00 2.34 0.00
t5 1.99 2.61 12.04 2.73 16.68
t3 1.84 2.62 12.69 2.91 24.46

st3 (γ = 1.2) 2.04 2.99 28.68 3.35 43.11

∆1 shows the percentage increase in the value of VaR0.99 for each model
compared to a normal model. ∆2 does the same for ES0.975.
We assume F̂t = Φ and apply tests to data Pt = Φ(Lt).

When F is normal, the data Pt are uniform.
Otherwise Pt will show departures from uniformity that would be typical when
tail is underestimated.
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Menagerie of discrete kernels

Set of reasonable candidates for kernel measure ν is very large. We begin
with a few representative discrete examples.
Discrete kernels on supports of cardinality 1, 3, 5:

1 point: α = 0.99.
3 points: {0.985, 0.99, 0.995}.
5 points: {0.985, 0.9875, 0.99, 0.9925, 0.995}.

Discrete tests of five types.
B99: Binomial score test on VaR exceedance at α = 0.99.
PNm: Pearson-Nass multinomial score test on m points.
LRm: Multinomial LRT on m points.
ZUm: Spectral test with uniform weights on m points.
ZEm: Spectral test with exponential weights rising from k1 = 1 to

km = exp(2) ≈ 7.4.
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Size and power of unconditional discrete tests

F n | test B99 PN3 LR3 ZU3 ZE3 PN5 LR5 ZU5 ZE5

Normal 250 4.0 3.7 3.0 4.1 4.5 4.3 2.0 3.7 4.1
500 3.7 5.1 5.7 4.6 4.5 5.0 4.9 4.6 4.8
1000 3.8 4.5 5.9 5.0 4.9 4.5 7.3 5.4 5.0

t5 250 17.7 15.4 13.5 20.0 26.6 13.3 8.3 19.0 23.4
500 22.4 30.7 25.7 27.8 36.6 21.6 19.2 27.4 34.4
1000 33.0 48.0 42.0 40.3 55.0 38.6 38.4 40.6 51.6

t3 250 13.5 14.3 15.4 15.6 25.0 12.4 8.1 14.5 20.9
500 16.2 32.1 33.6 20.5 33.5 19.6 22.9 20.5 30.5
1000 22.3 55.4 56.4 28.0 49.1 40.8 53.2 28.7 44.8

st3 250 31.2 31.5 30.2 35.0 46.3 27.6 20.8 33.2 41.6
500 44.2 60.9 55.1 51.3 64.8 48.0 45.7 50.8 62.0
1000 66.2 85.9 82.8 73.8 87.5 79.3 78.5 74.3 85.2
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Power of binomial test in the extreme tail

Test most powerful in far tail.
But also most erratic: At
α = 0.9999, one exceedance in
n = 1000 enough to reject.
Nonmonotonic in α.
ZE3 weights very heavily on
α3 = 0.995, so similar to
Binomial(α3) test.
Poor performance of ZU3 due to
weight at α1 = 0.985.
Again, choose ν to fit priorities,
not to chase power.
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Menagerie of continuous kernels

Kernel densities
Ze: Exponential kernel, decreasing

g(u) = exp
(
κ
(

u−α1
α2−α1

))
for κ = −2.

ZE: Exponential kernel, increasing κ = 2.
ZV: Epanechnikov kernel. Hump-shaped, symmetric around

α = 0.99.
ZU: Uniform kernel.
ZL: Linear kernel g(u) = u − α1

Continuous bispectral tests: ZeE, ZUE, ZLE.
Probitnormal LRT (PNL) and score test (PNS).
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Size and power of unconditional continuous tests

F n | test Ze ZV ZU ZE ZeE ZUE ZLE PNL PNS

Normal 250 3.7 3.8 4.0 4.1 5.0 5.0 5.1 7.0 5.0
500 4.6 4.3 4.7 4.7 4.6 4.7 4.7 5.6 4.5
1000 5.1 5.2 5.4 5.3 4.8 4.9 4.9 5.3 4.8

t5 250 15.9 18.2 19.2 22.4 21.1 21.3 17.4 17.8 22.8
500 22.7 25.8 26.9 31.5 30.5 31.1 25.6 27.1 33.5
1000 32.8 38.6 39.9 47.4 49.4 50.0 39.2 47.1 53.8

t3 250 11.0 13.7 14.5 19.6 21.2 21.5 13.2 23.0 23.3
500 14.4 18.9 20.1 26.5 32.3 33.0 20.2 35.8 37.2
1000 19.7 26.9 27.9 38.7 55.1 56.2 31.1 61.4 62.1

st3 250 27.8 31.9 33.3 39.5 39.9 40.1 30.7 35.8 42.7
500 41.6 48.4 50.3 58.0 59.6 60.3 49.9 57.3 64.0
1000 64.0 72.2 73.5 81.7 86.1 86.6 74.9 86.0 89.2

Kernel window is [0.985, 0.995].
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Normalized kernel measures

0.980 0.985 0.990 0.995 1.000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Continuous spectral transformation

Pt

W
t

ZU
ZL
ZV
ZE
Ze
PNS(1)
PNS(2)

Gordy, Lok and McNeil (FRB/H-W/York) Spectral Backtests Montréal 2017 26 / 35



Block tests of conditional coverage

While the expected value of a sum does not depend on the dependence
structure of the sample, the expected value of a product does. This can give
power to detect deviations from serial independence.
Let (W̃t)t∈N denote the sequence of centred values W̃t = Wt − µW .
Divide the n reported PIT-values into NB blocks of size B and define block
sums and products of (Wt):

Yb =

( bB∑
t=sb

W̃t ,

B∏
t=sb

(W̃t + ζ)

)′
, sb = (b − 1)B + 1,

for some chosen constant ζ 6= µW .
Let Y = N−1B

∑NB
b=1 Yb. Under the null, for fixed B as NB →∞,

NB
(
Y− µY

)′
Σ−1Y

(
Y− µY

)
∼ χ22,

where µY = (0, ζB)′ and ΣY is a covariance matrix which can also be
explicitly determined.
Block bispectral tests and block probitnormal score tests can also be
constructed.
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Martingale difference tests of conditional coverage

We test for the martingale difference (MD) property E(W̃t | Ft−1) = 0.
For any Ft−1-measurable ht−1 we must have E(ht−1W̃t) = 0.
Form the lagged vector ht−1 = (1, h(Pt−1), . . . , h(Pt−k))′ for some function
h and test whether E

(
ht−1W̃t

)
= 0, t = k + 1, . . . , n.

Let Yt = ht−1W̃t for t = k + 1, . . . , n. Let Y = (n− k)−1
∑n

t=k+1 Yt and let
Σ̂Y denote a consistent estimator of ΣY := cov(Yt).
Giacomini and White (2006) show that under very weak assumptions, for
large enough n and fixed k,

(n − k) Y′ Σ̂−1Y Y ∼ χ2k+1.

The MD test generalizes the Dynamic Quantile test of Engle and Manganelli
(2004).
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Designing experiment for tests of conditional coverage

Idea is to capture behavior of reported PIT values when DGP Ft features
stochastic volatility, but SV is ignored in the bank’s model F̂t .
Draw sequence of uniform rv with serial dependence generated by an AR(1)
process.
Generate losses Lt = F−1(Ut), where F is normal, t5, t3, or st3.
The bank reports PIT values from normal distribution: Pt = F̂ (Lt) = Φ(Lt).
When F = Φ, PIT-values are a correlated sequence of uniformly distributed
data.
When F 6= Φ, PIT-values are correlated and non-uniform. Tails will be
underestimated.
In MD tests, choose h(Pt−j) = Φ−1(|2Pt−j − 1|) to target SV.
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Power of tests of conditional coverage

F n ITT | test B99 ZU ZE ZeE ZUE PNS

Normal 250 None 5.6 5.3 5.3 6.4 6.3 6.3
Block 19.4 18.1 15.4 20.3 18.3 15.5
MD 27.6 29.5 28.0 29.6 28.7 30.3

500 None 5.9 7.4 7.0 6.3 6.3 6.1
Block 34.3 25.9 23.4 20.9 24.8 22.4
MD 42.1 46.2 42.5 46.6 44.4 49.7

1000 None 5.8 7.7 7.5 6.8 6.8 6.8
Block 25.3 30.8 31.5 30.2 29.1 29.6
MD 70.3 77.5 71.5 78.2 74.5 82.0

t5 250 None 18.8 20.2 22.7 21.9 22.0 23.3
Block 32.9 33.5 32.2 35.5 34.1 33.8
MD 49.5 52.6 53.3 51.5 52.2 51.3

500 None 24.1 28.4 32.4 31.2 31.7 33.9
Block 53.9 49.2 49.2 44.5 50.1 45.0
MD 70.7 75.3 75.3 74.0 74.7 74.7

1000 None 33.6 40.0 46.8 48.3 49.1 53.0
Block 52.6 59.6 65.0 64.2 65.0 66.0
MD 92.8 95.1 94.5 95.3 95.2 95.8
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Historical Simulation

Historical simulation (HS) is a nonparametric method based on the empirical
distribution function of historical risk-factor changes (returns) affecting P&L.
Perignon and Smith (2010) report that 73% of US and international banks
use historical simulation for F̂t .
Filtered HS (FHS) as refinement: first apply EWMA volatility estimation to
risk-factor changes, then use edf of volatility-filtered returns.
Assuming stationarity of risk-factors, PIT values are unconditionally U[0, 1],
but Pt very likely to be serially dependent under HS.
Experiment: generate samples from a GJR-GARCH(1,1) model with skew t
innovations.

Many features of a real financial return series: SV, leverage effect, skewed and
heavy-tailed shocks.
Fit to historical sample of S&P log-returns.
The EWMA volatility filter can capture GARCH(1,1) volatility effect but cannot
capture the leverage effect.
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Reported PIT-values derived from HS/FHS
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ACF plots of PIT-values (Pt) and transformed PIT-values (|2Pt − 1|) obtained
from HS and FHS applied to S&P 500 returns (250-day window).
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Rejection rates for Historical Simulation

m n ITT | test B99 ZU ZE ZeE ZUE PNS

250 250 None 30.3 32.1 33.4 31.6 31.6 32.7
Block 39.2 41.0 39.6 42.1 41.0 40.9
MD 44.2 46.2 46.5 45.7 46.2 46.4

500 None 35.5 41.4 44.0 39.4 39.8 41.9
Block 63.3 59.4 58.4 54.7 58.7 56.0
MD 64.0 67.0 67.3 66.1 66.3 66.6

1000 None 51.9 61.4 65.6 59.3 59.8 63.4
Block 68.3 76.5 79.1 76.7 77.0 78.0
MD 84.6 87.8 88.3 87.7 87.8 88.3

500 250 None 24.8 25.6 26.1 25.6 25.4 25.5
Block 31.7 32.2 30.4 33.6 32.1 31.6
MD 34.1 35.2 35.2 34.9 35.1 35.2

500 None 31.7 36.8 36.3 31.5 31.6 31.8
Block 52.8 50.3 46.5 43.5 46.8 44.3
MD 50.8 53.2 52.9 52.7 52.5 52.8

1000 None 32.1 37.4 38.8 34.5 34.8 36.4
Block 57.9 64.1 65.3 63.1 63.1 63.0
MD 75.6 78.6 77.9 77.8 77.5 78.5
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Rejection rates for Filtered Historical Simulation

m n ITT | test B99 ZU ZE ZeE ZUE PNS

250 250 None 8.6 9.3 10.6 9.3 9.5 10.3
Block 17.2 17.5 16.1 19.0 17.7 16.9
MD 20.2 21.7 22.7 20.7 21.4 20.4

500 None 6.5 8.9 11.0 8.5 8.9 10.3
Block 31.3 23.1 22.8 16.4 22.7 18.5
MD 21.0 23.1 25.6 20.9 22.4 20.9

1000 None 9.3 14.8 19.6 12.9 13.4 17.2
Block 17.8 24.3 30.8 24.4 25.0 25.5
MD 24.5 27.9 31.3 25.5 27.5 26.9

500 250 None 6.4 6.4 7.1 7.1 7.2 7.1
Block 14.5 13.7 12.1 15.5 14.1 12.7
MD 15.4 15.8 16.9 15.0 16.1 15.1

500 None 3.8 4.2 5.0 4.3 4.3 4.6
Block 25.0 16.8 16.1 10.8 15.9 11.7
MD 14.8 15.6 17.0 13.3 14.6 13.2

1000 None 1.8 2.3 3.4 2.4 2.4 2.8
Block 11.4 14.3 16.2 13.5 13.4 12.4
MD 14.3 15.4 16.8 12.8 14.0 12.7
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Summary

Tests based on spectral transformations of reported PIT-values can yield
more power than simple VaR exception tests.
The spectral class of backtests provides a unifying framework encompassing
many widely-used backtests.

VaR exception tests (Kupiec), probitnormal LTR (Berkowitz), DQ
(Engle-Manganelli).
Among widely-used backtests, only duration-based tests (Christoffersen and
Pelletier, 2004) fall outside the spectral class.

Expressing tests in this form facilitates construction of new tests and
encourages thinking about the implied kernel.
The tests are available in unconditional and conditional variants. Conditional
tests can be based on blocking or testing the martingale difference property.
Spectral backtests increase rejection rates for HS/FHS procedures.

Backtests of length n = 500 (2 years) would be preferable to n = 250.
Application to proprietary bank-reported data is in progress.

Gordy, Lok and McNeil (FRB/H-W/York) Spectral Backtests Montréal 2017 35 / 35


