Spectral Backtests of Forecast Distributions with Application to Risk Management

Michael B. Gordy¹, Hsiao Yen Lok², Alexander J. McNeil³

¹Federal Reserve Board ²Heriot-Watt ³York Management School

Risk Measurement & Regulatory Issues in Business September 2017

The opinions expressed are our own, and do not reflect the views of the Board of Governors or its staff.

- We take a new look at the old risk management problem of backtesting.
- Consider a bank with a one-day-ahead forecast of its loss, defined as negative P&L. We use this notation throughout:
 - \mathcal{F}_t : Information available at t (filtration).
 - L_t : Loss realized at t on portfolio formed at t 1.
 - F_t : $F_t(y) = \Pr(L_t \le y | \mathcal{F}_{t-1})$; i.e., the df of the day-ahead forecast distribution.
 - \widehat{F}_t : The forecast distribution formed by the bank's risk-manager.
- In the regulatory context, it is generally assumed that the backtest is based on VaR exceedances.
 - $\widehat{\mathsf{VaR}}_{\alpha,t} := \widehat{F}_t^{\leftarrow}(\alpha)$ is an estimate of α -VaR constructed at time t 1.
 - Bank reports $\widehat{VaR}_{\alpha,t}$ and realized L_t .
 - VaR exceedance is simply $I_t = I[L_t > \widehat{VaR}_{\alpha,t}]$.

- Increasingly, regulators can observe more than just the VaR exceedances.
- Consider the PIT process given by $P_t = \widehat{F}_t(L_t)$.
- Reported PIT values contain information about VaR exceedances at every level α .

$$P_t \ge \alpha \iff L_t \ge \widehat{\mathsf{VaR}}_{\alpha,t}$$

- If the $\{\widehat{F}_t\}$ coincide with the true $\{F_t\}$, then the process $\{P_t\}$ is iid U[0,1].
- In the US, banks on the Internal Models Approach for the trading book have been required to report PIT values to regulators since 2013.
- Motivation: What is the best way to exploit this additional information?

Simulated example of a backtest dataset

Days	VaR	Loss	Exceed?	PIT
1	2.492	0.278	0	0.602
2	2.968	0.716	0	0.713
3	3.336	-0.759	0	0.298
4	3.018	-0.451	0	0.364
5	2.654	2.955	1	0.995
6	3.335	-1.697	0	0.118
7	3.137	0.184	0	0.554
8	2.641	1.091	0	0.832

- Diebold, Gunther, and Tay (1998) develop forecast density tests based on PIT values. They show how to test the null hypothesis that $\{P_t\}$ is iid U[0, 1].
- In a risk-management context, some quantiles of the forecast distribution are more important than others.
 - Accuracy in "good tail" of high profits (low P_t) is generally much less important than accuracy in the "bad tail" of large losses (high P_t).
 - Models generally cannot expected to perform well in the extreme tail of once-per-generation shock.
- We study a class of backtests for forecast distributions in which the test statistic weights exceedance events by a function of the probability level α .
- The choice of the kernel function makes explicit the priorities for model performance.

Applied to the regulator's problem of backtesting bank VaR, our results point to a tradeoff between specificity and power.

- Under the current regulatory framework, capital depends only on 99% VaR.
- So long as the model estimates VaR accurately, the regulator could be indifferent to its performance at other quantiles.
- Taking this narrow view, the sequence of VaR exceedance indicators is sufficient for backtesting.
- Exceedance indicators arise as a limiting case of the kernel function, so many of the traditional backtests are nested in our framework.
- But if the regulator is willing to assign positive mass to probability levels in a neighborhood of α, we can construct more powerful backtests.

We take a broader view of the risk-manager's mandate, in which the objective is to forecast probabilities over a *range* of large losses.

- We might readily believe that a model designed to deliver 99%-VaR could fail to deliver an accurate estimate of the 75th percentile.
- But if the bank fails to forecast losses at the 98.5% or 99.5% level, is it plausible to trust that the modeling of the 99% VaR is robust?
- The formal guidance of US regulators to banks on internal model validation (SR Letter 11-7) explicitly requires "checking the distribution of losses against other estimated percentiles."

Fundamental Review of the Trading Book

- Reforms mandated by the FRTB due to begin parallel run in 2018.
- FRTB replaces 99%-VaR with 97.5%-Expected Shortfall (ES) as determinant of capital requirements.
 - This has led to much debate on whether or not ES is amenable to direct backtesting.
 - The model approval process will continue to be based on VaR exceedances.
- We devise tests of the forecast distribution from which risk measures are estimated and not tests of the risk measure estimates.
 - For ES, a test of the tail of the forecast distribution offers an indirect approach to backtesting.
 - FRTB requires banks to go beyond the mandatory VaR backtesting regime to consider multiple levels or other features of the tail.
 - Basel Committee explicitly mentions the use of PIT values as a possible direction for the extended model validation requirements.
- To fix ideas, we henceforth assume the backtest is conducted by a regulator who is interested primarily in assessing the bank's 99%-VaR forecast, but
 - our conclusions hinge little on the choice of risk measure; and
 - apply equally to internal assessments of forecasting performance.

- Our tests are based on transformations of indicator variables for PIT exceedances.
 - We mean "spectral" in the integral transform sense, not in the Durlauf (1991) sense of a transformed autocovariance sequence.
- The transformations take the form

$$W_t = \int_0^1 I_{\{P_t > u\}} \mathrm{d}\nu(u) = \nu([0, P_t))$$

where ν is a measure defined on [0, 1].

- ν is chosen to apply weight to different levels in the unit interval, typically in the region of the standard VaR level $\alpha = 0.99$.
- We refer to ν as the kernel measure for the transform.
- W_t is (weakly) increasing in P_t .

- Spectral backtests are backtests based on W_1, \ldots, W_n .
- Null hypothesis. Let F_W^0 denote df of $W_t = \nu([0, P_t))$ when P_t is uniform.

 $H_0: W_1, \ldots, W_n$ are iid with df F_W^0 .

- Within the class of spectral backtests, we have
 - tests of unconditional coverage: test for correct distribution F_W^0 ;
 - tests of conditional coverage: correct distribution and serial independence.

$$W_t = \sum_{i=1}^m k_i I_{\{P_t > \alpha_i\}}$$

- Special case m = 1: $W_t \propto I_{\{P_t > \alpha\}}$ is exceedance indicator for α -VaR.
 - $(1/k_1)\sum_i W_i$ is distributed Binomial $(n, 1 \alpha)$ under H_0 .
 - Possible tests: Z-test (classical binomial score test), LRT (Kupiec '95, Christoffersen '98).
- General case yields multinomial tests.
 - W_t takes values in $0 = q_0 < q_1 < \cdots < q_m$ where $q_j = \sum_{i=1}^j k_i$.
 - Form count variables $O_i = \sum_{t=1}^n I_{\{W_t=q_i\}}, \quad i = 0, 1..., m.$
 - Under H_0 : $(O_0, \ldots, O_m) \sim \mathsf{MN}(n, (\alpha_1, \alpha_2 \alpha_1, \ldots, \alpha_m \alpha_{m-1}, 1 \alpha_m)).$
 - Possible tests: Pearson-Nass score test, LRT.

Continuous kernels

- A continuous kernel measure has density $d\nu(u) = g(u)du$ on an interval $[\alpha_1, \alpha_2] \subset [0, 1]$, where
 - g is continuous on [α₁, α₂],
 - $g(u) > 0, u \in (\alpha_1, \alpha_2)$, and
 - $g(u) = 0, u \notin [\alpha_1, \alpha_2].$
- The kernel density g plays the same role as the "kernel function" in the nonparametric statistics literature, and $[\alpha_1, \alpha_2]$ is the kernel window.
- When g satisfies the additional requirement that $\int_{\alpha_1}^{\alpha_2} g(u) du = 1$, is a normalized kernel density.
- In nonparametric statistics, the kernel is often defined to be normalized and symmetric, but we do not impose these requirements.
- Writing G for the integral of g, we have $W_t = G(P_t^*)$ for truncated PIT-value $P_t^* = \alpha_1 \vee (P_t \wedge \alpha_2)$.
- G strictly increasing inside kernel window, so W_t strictly increasing in P_t^* .
- Can also have mixed kernels.

- Continuous weighting can be viewed as a way of building tests that incorporate information from reported PIT-values in a *neighbourhood* of *α*.
- Let g^{*} be a normalized kernel density on [0, 1], and define a family of normalized kernel densities g_{α,ε} on the intervals [α − ε/2, α + ε/2] by

$$g_{\alpha,\epsilon}(u) = rac{1}{\epsilon}g^*\left(rac{u-lpha+\epsilon/2}{\epsilon}
ight)$$

- The measures $\nu_{\alpha,\epsilon}$ defined by $g_{\alpha,\epsilon}$ converge to Dirac measure δ_{α} as $\epsilon \to 0+$, and $\lim_{\epsilon \to 0} W_t = I_{\{P_t > \alpha\}}$ almost surely.
- Thus, classic tests based on the exceedance indicator $I_{\{P_t > \alpha\}}$ can be seen as limiting cases of more general continuous tests as the width ϵ of the kernel window vanishes to zero.

- Test for correct distribution F_W^0 implied by H_0 and choice of kernel.
- Broadly, our tests fall into two categories, Z-tests and likelihood ratio tests.
- Presentation focuses on continuous kernel case, but discrete case works the same way.

Z-tests are based on the asymptotic normality under H_0 of

$$\overline{W}_n = n^{-1} \sum_{t=1}^n W_t$$

• Solve for $\mu_W = \mathbb{E}(W_t)$ and $\sigma_W^2 = \operatorname{var}(W_t)$ in the null model F_W^0 .

• Trivially follows from CLT that, under H_0 ,

$$Z_n = \frac{\sqrt{n}(\overline{W}_n - \mu_W)}{\sigma_W} \xrightarrow[n \to \infty]{d} N(0, 1).$$

- Multivariate extensions of Z-tests are chi-squared tests.
- In general, Z-tests are sensitive to the choice of kernel measure.

Likelihood ratio tests

- LRT are based on parametric models F_W(w | θ) for W₁,..., W_n that nest the model in H₀.
 - In other words $F_W^0 = F_W(\cdot \mid \theta_0)$ for some value θ_0 .
- Test is based on the asymptotic distribution of the statistic

$$\mathsf{LR}_{W,n} = L_W(\theta_0 \mid \mathbf{W}) / L_W(\hat{\theta} \mid \mathbf{W})$$

where $\hat{\theta}$ denotes the maximum likelihood estimate (MLE).

- A key difference with Z-tests is that LRT depends only on the support of the kernel measure, and not the distribution of mass within the support.
 - In the continuous case, it is boundaries of the kernel window $[\alpha_1, \alpha_2]$ that determines the test statistic and not the kernel density g.
 - This result is a consequence of the well-known invariance of the LRT under strictly increasing tranformations.
- Another key distinction with Z-test is that LRT requires estimation of $\hat{\theta}$ under the alternative.

Continuous spectral Z-test

• Product rule for continuous kernels

- Say we have two kernel densities g_1 and g_2 on the same window $[\alpha_1, \alpha_2]$.
- Let $W_t^{(j)}$, j = 1, 2, be the corresponding spectrally-transformed PIT values.
- Then the product $W_t^* = W_t^{(1)} W_t^{(2)}$ is a spectrally-transformed PIT value generated by density

$$g^*(u) = g_1(u)G_2(u) + g_2(u)G_1(u)$$

on the same window $[\alpha_1, \alpha_2]$.

• For a kernel density g on $[\alpha_1, \alpha_2]$, we have $\mu_W = \mathbb{E}(W_t)$ and $\sigma_W^2 = \mathbb{E}(W_t^2) - \mu_W^2$ where

$$\mathbb{E}(W_t) = \int_{\alpha_1}^{\alpha_2} g(u)(1-u) \mathrm{d}u,$$
$$\mathbb{E}(W_t^2) = \int_{\alpha_1}^{\alpha_2} 2g(u)G(u)(1-u) \mathrm{d}u,$$

• The spectral Z-test for the sample mean \overline{W}_n follows immediately.

Consider $\mathbf{W}_t = (W_t^{(1)}, W_t^{(2)})'$ for two distinct kernel measures on same support.

- Use the product rule to calculate $\mu_W = \mathbb{E}(\mathbf{W}_t)$ and $\Sigma_W = \text{cov}(\mathbf{W}_t)$.
- Under H_0 , for large n, we have approximately that

$$n\left(\overline{\mathbf{W}}-\mu_{W}\right)'\Sigma_{W}^{-1}\left(\overline{\mathbf{W}}-\mu_{W}\right)\sim\chi_{2}^{2}.$$

• Straightforward to generalize to higher dimensions (*J* kernels).

Truncated probitnormal tests

- We assume P_t is probitnormal: $\Phi^{-1}(P_t) \sim N(\mu, \sigma^2)$ with df $F_P(p \mid \theta)$ and density $f_P(p \mid \theta)$, $\theta = (\mu, \sigma)'$.
- Nests uniform distribution: $\theta = \theta_0 = (0, 1)'$.
- Tests based on truncated PIT-values $P_t^* = \alpha_1 \vee (P_t \wedge \alpha_2)$.
- Likelihood function for P_t^* has closed-form expression.
- Denote the observed score vector for P_t^* by

$$\mathbf{S}_t(\theta) = \left(\frac{\partial}{\partial \mu} \ln L(\theta \mid P_t^*), \frac{\partial}{\partial \sigma} \ln L(\theta \mid P_t^*)\right)'$$

• We can show that the score can be written as a vector of spectrally-transformed PIT values.

• ν_1 and ν_2 a bit tedious to write out, but solved analytically. Thus, the score test is a special case of the bispectral Z-test.

• LRT is also a spectral test and generalizes a test proposed by Berkowitz (2001).

Parametric simulation study

- Sample data L_t from 4 distributions F: normal, t5, t3, skewed t3.
- All distributions are scaled to have mean zero and variance one.

F	$VaR_{0.975}$	$VaR_{0.99}$	Δ_1	ES _{0.975}	Δ_2
Normal	1.96	2.33	0.00	2.34	0.00
t5	1.99	2.61	12.04	2.73	16.68
t3	1.84	2.62	12.69	2.91	24.46
st3 ($\gamma=1.2$)	2.04	2.99	28.68	3.35	43.11

- Δ_1 shows the percentage increase in the value of VaR_{0.99} for each model compared to a normal model. Δ_2 does the same for ES_{0.975}.
- We assume $\widehat{F}_t = \Phi$ and apply tests to data $P_t = \Phi(L_t)$.
 - When F is normal, the data P_t are uniform.
 - Otherwise P_t will show departures from uniformity that would be typical when tail is underestimated.

-

- Set of reasonable candidates for kernel measure ν is very large. We begin with a few representative discrete examples.
- Discrete kernels on supports of cardinality 1, 3, 5:

```
1 point: \alpha = 0.99.
```

- **3 points**: {0.985, 0.99, 0.995}.
- **5** points: {0.985, 0.9875, 0.99, 0.9925, 0.995}.
- Discrete tests of five types.
 - B99: Binomial score test on VaR exceedance at $\alpha = 0.99$.
 - PNm: Pearson-Nass multinomial score test on m points.
 - LRm: Multinomial LRT on m points.
 - ZUm: Spectral test with uniform weights on m points.
 - ZEm: Spectral test with exponential weights rising from $k_1 = 1$ to $k_m = exp(2) \approx 7.4$.

F	$n \mid test$	B99	PN3	LR3	ZU3	ZE3	PN5	LR5	ZU5	ZE5
Normal	250	4.0	3.7	3.0	4.1	4.5	4.3	2.0	3.7	4.1
	500	3.7	5.1	5.7	4.6	4.5	5.0	4.9	4.6	4.8
	1000	3.8	4.5	5.9	5.0	4.9	4.5	7.3	5.4	5.0
t5	250	17.7	15.4	13.5	20.0	26.6	13.3	8.3	19.0	23.4
	500	22.4	30.7	25.7	27.8	36.6	21.6	19.2	27.4	34.4
	1000	33.0	48.0	42.0	40.3	55.0	38.6	38.4	40.6	51.6
t3	250	13.5	14.3	15.4	15.6	25.0	12.4	8.1	14.5	20.9
	500	16.2	32.1	33.6	20.5	33.5	19.6	22.9	20.5	30.5
	1000	22.3	55.4	56.4	28.0	49.1	40.8	53.2	28.7	44.8
st3	250	31.2	31.5	30.2	35.0	46.3	27.6	20.8	33.2	41.6
	500	44.2	60.9	55.1	51.3	64.8	48.0	45.7	50.8	62.0
	1000	66.2	<mark>85.9</mark>	82.8	73.8	<mark>87.5</mark>	79.3	78.5	74.3	85.2

Power of binomial test in the extreme tail

- Test most powerful in far tail.
- But also most erratic: At $\alpha = 0.9999$, one exceedance in n = 1000 enough to reject.
- Nonmonotonic in α.
- ZE3 weights very heavily on α₃ = 0.995, so similar to Binomial(α₃) test.
- Poor performance of ZU3 due to weight at α₁ = 0.985.
- Again, choose ν to fit priorities, not to chase power.

Kernel densities

Ze: Exponential kernel, decreasing $g(u) = \exp\left(\kappa\left(\frac{u-\alpha_1}{\alpha_2-\alpha_1}\right)\right)$ for $\kappa = -2$.

- ZE: Exponential kernel, increasing $\kappa = 2$.
- ZV: Epanechnikov kernel. Hump-shaped, symmetric around $\alpha = 0.99$.
- ZU: Uniform kernel.
- ZL: Linear kernel $g(u) = u \alpha_1$
- Continuous bispectral tests: ZeE, ZUE, ZLE.
- Probitnormal LRT (PNL) and score test (PNS).

F	$n \mid test$	Ze	ZV	ZU	ZE	ZeE	ZUE	ZLE	PNL	PNS
Normal	250	3.7	3.8	4.0	4.1	5.0	5.0	5.1	7.0	5.0
	500	4.6	4.3	4.7	4.7	4.6	4.7	4.7	5.6	4.5
	1000	5.1	5.2	5.4	5.3	4.8	4.9	4.9	5.3	4.8
t5	250	15.9	18.2	19.2	22.4	21.1	21.3	17.4	17.8	22.8
	500	22.7	25.8	26.9	31.5	30.5	31.1	25.6	27.1	33.5
	1000	32.8	38.6	39.9	47.4	49.4	50.0	39.2	47.1	53.8
t3	250	11.0	13.7	14.5	19.6	21.2	21.5	13.2	23.0	23.3
	500	14.4	18.9	20.1	26.5	32.3	33.0	20.2	35.8	37.2
	1000	19.7	26.9	27.9	38.7	55.1	56.2	31.1	61.4	62.1
st3	250	27.8	31.9	33.3	39.5	39.9	40.1	30.7	35.8	42.7
	500	41.6	48.4	50.3	58.0	59.6	60.3	49.9	57.3	64.0
	1000	64.0	72.2	73.5	81.7	86.1	86.6	74.9	86.0	89.2

Kernel window is [0.985, 0.995].

Normalized kernel measures

Continuous spectral transformation

Block tests of conditional coverage

- While the expected value of a sum does not depend on the dependence structure of the sample, the expected value of a product does. This can give power to detect deviations from serial independence.
- Let $(\tilde{W}_t)_{t\in\mathbb{N}}$ denote the sequence of centred values $\tilde{W}_t = W_t \mu_W$.
- Divide the *n* reported PIT-values into N_B blocks of size B and define block sums and products of (W_t):

$$\mathbf{Y}_b = \left(\sum_{t=s_b}^{bB} \tilde{W}_t, \prod_{t=s_b}^{B} (\tilde{W}_t + \zeta)\right)', \ \ s_b = (b-1)B + 1,$$

for some chosen constant $\zeta \neq \mu_W$.

• Let $\overline{\mathbf{Y}} = N_B^{-1} \sum_{b=1}^{N_B} \mathbf{Y}_b$. Under the null, for fixed B as $N_B \to \infty$,

$$N_B \left(\overline{\mathbf{Y}} - \mu_{\mathbf{Y}} \right)' \Sigma_{\mathbf{Y}}^{-1} \left(\overline{\mathbf{Y}} - \mu_{\mathbf{Y}} \right) \sim \chi_2^2,$$

where $\mu_{\mathbf{Y}} = (0, \zeta^B)'$ and $\Sigma_{\mathbf{Y}}$ is a covariance matrix which can also be explicitly determined.

• Block bispectral tests and block probitnormal score tests can also be constructed.

Martingale difference tests of conditional coverage

- We test for the martingale difference (MD) property $\mathbb{E}(\tilde{W}_t \mid \mathcal{F}_{t-1}) = 0$.
- For any \mathcal{F}_{t-1} -measurable \mathbf{h}_{t-1} we must have $\mathbb{E}(\mathbf{h}_{t-1}\tilde{W}_t) = 0$.
- Form the *lagged* vector $\mathbf{h}_{t-1} = (1, h(P_{t-1}), \dots, h(P_{t-k}))'$ for some function h and test whether $\mathbb{E}(\mathbf{h}_{t-1}\tilde{W}_t) = \mathbf{0}, \quad t = k+1, \dots, n.$
- Let $\mathbf{Y}_t = \mathbf{h}_{t-1} \tilde{W}_t$ for $t = k+1, \dots, n$. Let $\overline{\mathbf{Y}} = (n-k)^{-1} \sum_{t=k+1}^{n} \mathbf{Y}_t$ and let $\hat{\Sigma}_Y$ denote a consistent estimator of $\Sigma_Y := \operatorname{cov}(\mathbf{Y}_t)$.
- Giacomini and White (2006) show that under very weak assumptions, for large enough *n* and fixed *k*,

$$(n-k) \overline{\mathbf{Y}}' \hat{\boldsymbol{\Sigma}}_{Y}^{-1} \overline{\mathbf{Y}} \sim \chi_{k+1}^{2}.$$

• The MD test generalizes the Dynamic Quantile test of Engle and Manganelli (2004).

- Idea is to capture behavior of reported PIT values when DGP F_t features stochastic volatility, but SV is ignored in the bank's model \hat{F}_t .
- Draw sequence of uniform rv with serial dependence generated by an AR(1) process.
- Generate losses $L_t = F^{-1}(U_t)$, where F is normal, t5, t3, or st3.
- The bank reports PIT values from normal distribution: $P_t = \widehat{F}(L_t) = \Phi(L_t)$.
- When $F = \Phi$, PIT-values are a correlated sequence of uniformly distributed data.
- When $F \neq \Phi$, PIT-values are correlated and non-uniform. Tails will be underestimated.
- In MD tests, choose $h(P_{t-j}) = \Phi^{-1}(|2P_{t-j} 1|)$ to target SV.

Power of tests of conditional coverage

F	п	ITT test	B99	ZU	ZE	ZeE	ZUE	PNS
Normal	250	None Block MD	5.6 19.4 27.6	5.3 18.1 29.5	5.3 15.4 28.0	6.4 20.3 29.6	6.3 18.3 28.7	6.3 15.5 30.3
	500	None Block MD	5.9 34.3 42.1	7.4 25.9 46.2	7.0 23.4 42.5	6.3 20.9 46.6	6.3 24.8 44.4	6.1 22.4 49.7
	1000	None Block MD	5.8 25.3 70.3	7.7 30.8 77.5	7.5 31.5 71.5	6.8 30.2 78.2	6.8 29.1 74.5	6.8 29.6 82.0
t5	t5 250	None Block MD	18.8 32.9 49.5	20.2 33.5 52.6	22.7 32.2 53.3	21.9 35.5 51.5	22.0 34.1 52.2	23.3 33.8 51.3
	500	None Block MD	24.1 53.9 70.7	28.4 49.2 75.3	32.4 49.2 75.3	31.2 44.5 74.0	31.7 50.1 74.7	33.9 45.0 74.7
	1000	None Block MD	33.6 52.6 <mark>92.8</mark>	40.0 59.6 95.1	46.8 65.0 <mark>94.5</mark>	48.3 64.2 95.3	49.1 65.0 95.2	53.0 66.0 <mark>95.8</mark>

Historical Simulation

- Historical simulation (HS) is a nonparametric method based on the empirical distribution function of historical risk-factor changes (returns) affecting P&L.
- Perignon and Smith (2010) report that 73% of US and international banks use historical simulation for \hat{F}_t .
- *Filtered HS* (FHS) as refinement: first apply EWMA volatility estimation to risk-factor changes, then use edf of volatility-filtered returns.
- Assuming stationarity of risk-factors, PIT values are unconditionally U[0, 1], but P_t very likely to be serially dependent under HS.
- Experiment: generate samples from a GJR-GARCH(1,1) model with skew t innovations.
 - Many features of a real financial return series: SV, leverage effect, skewed and heavy-tailed shocks.
 - Fit to historical sample of S&P log-returns.
 - The EWMA volatility filter can capture GARCH(1,1) volatility effect but cannot capture the leverage effect.

Reported PIT-values derived from HS/FHS

ACF plots of PIT-values (P_t) and transformed PIT-values ($|2P_t - 1|$) obtained from HS and FHS applied to S&P 500 returns (250-day window).

m	п	ITT test	B99	ZU	ZE	ZeE	ZUE	PNS
250	250	None Block MD	30.3 39.2 44.2	32.1 41.0 46.2	33.4 39.6 46.5	31.6 42.1 45.7	31.6 41.0 46.2	32.7 40.9 46.4
	500	None Block MD	35.5 63.3 64.0	41.4 59.4 67.0	44.0 58.4 67.3	39.4 54.7 66.1	39.8 58.7 66.3	41.9 56.0 66.6
	1000	None Block MD	51.9 68.3 <mark>84.6</mark>	61.4 76.5 87.8	65.6 79.1 88.3	59.3 76.7 87.7	59.8 77.0 87.8	63.4 78.0 88.3
500	250	None Block MD	24.8 31.7 34.1	25.6 32.2 35.2	26.1 30.4 35.2	25.6 33.6 34.9	25.4 32.1 35.1	25.5 31.6 35.2
	500	None Block MD	31.7 52.8 50.8	36.8 50.3 53.2	36.3 46.5 52.9	31.5 43.5 52.7	31.6 46.8 52.5	31.8 44.3 52.8
	1000	None Block MD	32.1 57.9 75.6	37.4 64.1 78.6	38.8 65.3 77.9	34.5 63.1 77.8	34.8 63.1 77.5	36.4 63.0 78.5

Rejection rates for Filtered Historical Simulation

m	n	ITT test	B99	ZU	ZE	ZeE	ZUE	PNS
250	250	None Block MD	8.6 17.2 20.2	9.3 17.5 21.7	10.6 16.1 22.7	9.3 19.0 20.7	9.5 17.7 21.4	10.3 16.9 20.4
	500	None Block MD	6.5 31.3 21.0	8.9 23.1 23.1	11.0 22.8 25.6	8.5 16.4 20.9	8.9 22.7 22.4	10.3 18.5 20.9
	1000	None Block MD	9.3 17.8 24.5	14.8 24.3 27.9	19.6 30.8 31.3	12.9 24.4 25.5	13.4 25.0 27.5	17.2 25.5 26.9
500	250	None Block MD	6.4 14.5 15.4	6.4 13.7 15.8	7.1 12.1 16.9	7.1 15.5 15.0	7.2 14.1 16.1	7.1 12.7 15.1
	500	None Block MD	3.8 25.0 14.8	4.2 16.8 15.6	5.0 16.1 17.0	4.3 10.8 13.3	4.3 15.9 14.6	4.6 11.7 13.2
	1000	None Block MD	1.8 11.4 14.3	2.3 14.3 15.4	3.4 16.2 16.8	2.4 13.5 12.8	2.4 13.4 14.0	2.8 12.4 12.7

- Tests based on spectral transformations of *reported PIT-values* can yield more power than simple VaR exception tests.
- The spectral class of backtests provides a *unifying framework* encompassing many widely-used backtests.
 - VaR exception tests (Kupiec), probitnormal LTR (Berkowitz), DQ (Engle-Manganelli).
 - Among widely-used backtests, only duration-based tests (Christoffersen and Pelletier, 2004) fall outside the spectral class.
- Expressing tests in this form facilitates construction of new tests and encourages thinking about the implied kernel.
- The tests are available in *unconditional and conditional* variants. Conditional tests can be based on *blocking* or testing the *martingale difference property*.
- Spectral backtests increase rejection rates for HS/FHS procedures.
 - Backtests of length n = 500 (2 years) would be preferable to n = 250.
- Application to proprietary bank-reported data is in progress.