
Bridging	the	gap	between	brains,	
cogni3on	and	deep	learning	

Yoshua	Bengio,	November	19th,	2017	

Montreal	AI	&	Neuroscience	Workshop	

	

Deep	Learning		à		AI	Breakthroughs	

Computers	have	made	
huge	strides	in	

percepFon,	

manipulaFng	language,	

playing	games,	

reasoning,	...	

2	

What Deep Learning Owes to
Connectionism from the 80’s

Itera3vely	learning	distributed	representa3ons	
through	a	composi3on	of	neurally	inspired	simple	
opera3ons	towards	a	jus3fiable	training	objec3ve	
that	forces	the	learner	to	capture	the	relevant	
sta3s3cal	structure	of	the	data.	

3	

Canada’s lead in deep learning

A	Canadian-led	trio	iniFated	the	

deep	learning	AI	revoluFon	

	

	

Thanks	to	investments	in	basic	research	at	a	Fme	

when	the	topic	was	not	fashionable	

What’s New with Neural Nets in 21st Century?
•  Ability	to	train	deeper	nets!	
•  Biologically	inspired	ReLUs	instead	of	sigmoids,	enable	training	

much	deeper	nets	by	backprop	(Glorot	&	Bengio	AISTATS	2011)	

	

•  Some	forms	of	noise	(e.g.	spiking-like	dropout)	are	powerful	
regularizers	yielding	superior	generalizaFon	abiliFes	

•  AVenFon!	
•  GeneraFve	neural	networks,	deep	reinforcement	learning	
5	

2010-2012: breakthrough in
speech recognition

Source: Microsoft

Dramatic
inflection
point

2012-2015: breakthrough
in computer vision

2015: human-level performance

Ability to process unstructured
data: text, images, signals, web

March 2016:
World Go Champion
Beaten by Machine

The Attention Revolution in Deep Learning

•  AAen3on	mechanisms	exploit	GATING	units,	have	unlocked	a	
breakthrough	in	machine	translaFon:		

	 	Neural	Machine	TranslaFon	

	

	

	

	

	

	

	

	

•  Now	in	Google	Translate:		

9	

Lower-level	

Higher-level	

SoZmax	over	lower		

locaFons	condiFoned	

on	context	at	lower	and	

higher	locaFons		

Human	

evaluaFon	

human	

translaFon	

n-gram	

translaFon	

current	

neural	net	

translaFon	

(ICLR’2015)	

SFll	Far	from	Human-Level	AI	

•  Industrial	successes	mostly	based	on	
supervised	learning	

•  Learning	superficial	clues,	not	generalizing	
well	enough	outside	of	training	contexts,	easy	

to	fool	trained	networks:		

– Current	models	cheat	by	picking	on	surface	

regulariFes	

The	need	for	predicFve	

causal	modeling:	rare	&	

dangerous	states	

•  Example:	autonomous	vehicles	in	

near-accident	situaFons	

•  Current	supervised	learning	may	

not	handle	well	these	cases	

because	they	are	too	rare	(not	

enough	data)	

•  It	would	be	even	worse	with	current	RL	(staFsFcal	inefficiency)	

•  Long-term	objecFve:	develop	beVer	predicFve	models	of	the	world	able	to	

generalize	in	completely	unseen	scenarios,	but	it	does	not	seem	reasonable	

to	model	the	sequence	of	future	states	in	all	their	details	

•  Human	drivers:	no	need	to	die	a	thousand	deaths	

Deep	Unsupervised	Learning	Takes	off	with	

GANs	(Goodfellow	et	al	NIPS’2014)		

•  Progress	in	unsupervised	generaFve	neural	
nets	allows	them	to	synthesize	a	diversity	

images,	sounds	and	text	imitaFng	

unlabeled	images,	sounds	or	text	

12	

Generator	
Network	

Discriminator	
Network	

Fake	
Image	

Real	
Image	

Training	
Set	

Random	

Vector	

Random	

Index	

Under review as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations. On the right, two
images from an earlier megapixel GAN by Marchesi (2017) show limited detail and variation.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

mentation used an adaptive minibatch size depending on the current output resolution so that the
available memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we have also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1
shows six examples of 10242 images produced using our method using LSGAN. Further details of
this setup are given in Appendix B.

6.4 LSUN RESULTS

Figure 6 shows a purely visual comparison between our solution and earlier results in LSUN BED-
ROOM. Figure 7 gives selected examples from seven very different LSUN categories at 2562. A
larger, non-curated set of results from all 30 LSUN categories is available in Appendix G, and the
video demonstrates interpolations. We are not aware of earlier results in most of these categories,
and while some categories work better than others, we feel that the overall quality is high.

6.5 CIFAR10 INCEPTION SCORES

The best inception scores for CIFAR10 (10 categories of 32 ⇥ 32 RGB images) we are aware of
are 7.90 for unsupervised and 8.87 for label conditioned setups (Grinblat et al., 2017). The large

8

(Karras	et	al	2017)	

(Nguyen	et	al	2016)	

Predict	a	

mulF-modal	

future	

Text	2	Image,	ColorizaFon	

13	

Lucy	Li	

Zhang	et	al.	2017	

Image	2	Image	

14	

Introduction
Image → Image

GANs

Isola	et	al.	2016	

Can the conceptual advances
behind deep learning successes
help us figure out the big
picture of how the brain learns
complex behavior?

15	

The Learning Mechanism is a Compact
and Abstract Explanation of the Brain

Similar	to	the	laws	of	physics:	e.g.	we	consider	understanding	the	
physical	world,	mostly	by	having	figured	out	the	laws	of	physics,	

not	just	by	describing	its	consequences	(the	immense	complexity	

of	describing	the	physical	world)	

	
	
Successful	learning	framework	(architecture,	opFmizer,	objecFve)	

is	a	compact	abstract	explanaFon,	much	more	so	than	the	actual	

detailed	neuron-by-neuron	funcFons	performed	by	a	trained	brain	

	

16	

ML	valida3on:	can	learn	complex	tasks	
Neuroscience	valida3on:	matches	biology	at	some	level	

Neural Networks

17	

Brain Implementation

Cognition

AVenFon:	

•  vectors	à	data	structures	

•  memory	access,	one-shot	memorizaFon	

•  reasoning	

•  semanFcs	&	language	

•  agency	&	causality	
•  consciousness	

•  biological	backprop	
•  dropout	&	spikes	

•  mulF-module	architecture		

Deep Learning & Neuroscience:
Still a Large Gap

•  Backprop	and	the	ability	to	jointly	train	mulFple	layers	is	the	

workhorse	of	current	deep	learning	successes.	END-TO-END	

TRAINING	OF	DEEP	COMPUTATIONS	ROCKS.	Backprop	is	the	
building	block	behind	modern	unsupervised	(genera3ve)	
learning	and	RL.	But	has	been	deemed	not	biologically	plausible.	

•  how	to	propagate	gradients?	linear	neurons?	separate	net?	

•  what	is	the	role	of	feedback	connecFons?	lateral	connecFons?	

•  How	to	efficiently	train	a	stochasFc	conFnuous-Fme	

dynamical	system	wrt	a	global	objecFve?	
•  Random	perturba>on-based	methods	do	not	scale,	BP	does	beau>fully	

18	

Neuroscience	

	
Hypothesis:	

Error	signals	

are	encoded	in	ds/dt.	

No	need	for	a	special	computaFonal	

path.	

	

This	idea	was	first	proposed	by	

Hinton	&	McClelland:	

“RecirculaFon	algorithm”	(1987)	

Deep	Learning	

	
BackpropagaFon:	

Requires	a	special	

computaFonal	path	for	the	

propagaFon	of	error	derivaFves	

backward	in	the	network.	

From Deep Learning to Neuroscience
Propagation of Error Signals

no	empirical	
evidence	yet	

Forward	Pass	
-read	predicFon	at	the	outputs	

	

	

	

Backward	Pass	
-compare	predicFon/target	

-compute	error	derivaFves	

Free	Phase	
-network	relaxes	to	fixed	point	

-read	predicFon	at	the	outputs	

	

	

Weakly	Clamped	Phase	
-nudge	outputs	towards	targets	

-error	signals	(back)propagate	

-network	relaxes	to	new	nearby	fixed	

point	

Backpropagation
Equilibrium
Propagation

(Scellier & Bengio 2017,

Fron5ers in Neuroscience)

requires:	
-special	computa>onal	circuit	
-special	kind	of	computa>on	

Equilibrium Propagation Theorem

•  Gradient	on	the	objecFve	funcFon	(cost	at	equilibrium)	can	

be	esFmated	by	a	ONE-DIMENSIONAL	finite-difference	

21	

Small	

nudging	

Sufficient	staFsFc	

aZer	nudging	
Sufficient	staFsFc	

before	nudging	

and
@L

@s

(✓, s

⇤
,�

⇤
) = 0, (59)

and then we do one step of gradient descent on L with respect to ✓, that is

�✓ / �@L

@✓

(✓, s

⇤
,�

⇤
). (60)

The first condition (Eq. 58) gives
@F

@s

(✓,�, s

⇤
, v) = 0) s

⇤
= s

�

✓,v

. (61)

Thus s⇤ is the 0-phase fixed point. Injecting this into the second condition (Eq. 59) we get

� · @

2

F

@�@s

(✓,�, s

�

✓,v

, v) + �

⇤ · @
2

F

@s

2

(✓,�, s, v) = 0. (62)

Comparing Eq. 62 and Eq. 21, we conclude that

�

⇤
= � · @s

�

✓

@�

, (63)

which is the directional derivative of the fixed point (as a function of �) at the point � in the direction �. Finally, injecting the
values of s⇤ and �

⇤ in Eq. 60, we get

�✓ / ��

⇤ · @

2

F

@s@✓

(✓,�, s

⇤
, v) = �� · @s

�

✓

@�

· @

2

F

@s@✓

(✓,�, s

�

✓

, v) (64)

= � lim

⇠!0

1

⇠

✓

@F

@✓

⇣

✓,� + ⇠�, s

�+⇠�

✓,v

, v

⌘

� @F

@✓

⇣

✓,�, s

�

✓,v

, v

⌘

◆

(65)

B/ Stochastic Framework
Rather than the deterministic dynamical system Eq. 37, a more likely dynamics would include some form of noise. As
suggested by Bengio and Fischer (2015), injecting Gaussian noise in the gradient system Eq. 37 leads to a Langevin dynamics,
which we write as the following stochastic differential equation:

ds = �@F

@s

(✓,�, s, v)dt+ �dB(t), (66)

where B(t) is a standard Brownian motion of dimension dim(s). In addition to the force � @F

@s

(✓,�, s, v)dt, the Brownian
term �dB(t) models some form of noise in the network. For fixed ✓, � and v, the Langevin dynamics Eq. 66 is known to
converge to the Boltzmann distribution (consequence of the Fokker-Planck equation).

Let us denote by p

�

✓,v

the Boltzmann distribution corresponding to the energy function F . It is characterized by

p

�

✓,v

(s) :=

e

�F (✓,�,s,v)

Z

�

✓,v

, (67)

where Z

�

✓,v

is the partition function

Z

�

✓,v

(s) :=

Z

e

�F (✓,�,s,v)

. (68)

Let us write E�

✓,v

the expectation over s ⇠ p

�

✓,v

(s). Similarly to the deterministic case, we define the objective function as

e

J

�

�

(✓, v) := E�

✓,v



� · @F
@�

(✓,�, s, v)

�

. (69)

As for the gradient on the cost function, the learning rule takes the form

d

d✓

e

J

�

�

(✓, v) = lim

⇠!0

1

⇠

✓

E�+⇠�

✓,v



@F

@✓

(✓,� + ⇠�, s, v)

�

� E�

✓,v



@F

@✓

(✓,�, s, v)

�◆

, (70)

as a consequence of Theorem 3 below, which generalizes Theorem 1 to the stochastic framework.

17

StochasFc	version:	

(Scellier	&	Bengio,	Bridging	the	Gap	Between	Energy-Based	Models	and		

BackpropagaFon,	Fron>ers	in	Neuroscience,	2017)	

à	Gives	rise	to	Hebbian	/	an3-Hebbian	updates	with	Hopfield	net	energy	fn	

� ��� ���� ��� ���

� � �
�

��

��� �������� (×���)

A B

D

learning
~ 3 h

Time [ms]

+

-

v I
B,1

uI
1

w IP
1,1

wPI
1,1

uP
2

vP
A,1

uP
1

� � �
�

�

��� �������� (×���)

kr
P 2
�

rI 1k
2

kv
P A

,1
k

C

+

-

v I
B,1

uI
1

w IP
1,1

wPI
1,1

uP
2

vP
A,1

uP
1

new input

error

� ��� ���

uP
0

vP
A,1

(i)

(ii)

Time [ms]

uP
2

uI
1

(i) (ii) (iii)

Time [ms]

utrgt
2

new input

error

�

�
u

� ��� ���� ��� ���

� � �
�

��

��� �������� (×���)

A B

D

learning
~ 3 h

Time [ms]

+

-

v I
B,1

uI
1

w IP
1,1

wPI
1,1

uP
2

vP
A,1

uP
1

� � �
�

�

��� �������� (×���)

kr
P 2
�

rI 1k
2

kv
P A

,1
k

C

+

-

v I
B,1

uI
1

w IP
1,1

wPI
1,1

uP
2

vP
A,1

uP
1

new input

error

� ��� ���

uP
0

vP
A,1

(i)

(ii)

Time [ms]

uP
2

uI
1

(i) (ii) (iii)

Time [ms]

utrgt
2

new input

error

�

�
u

22	

mirror	

Interneuron	

(MarFnon	

cell?)	

Lateral Feedback
Interneurons May Solve the
Linear Feedback Puzzle

with	Walter	Senn	&	Joao	Sacramento	Building	on	Urbanczik	&	Senn	2014	

lateral	

inhibory	

•  Lateral	feedback	via	interneurons	imitates	feedforward	path,	

their	lateral	projecFons	trained	to	cancel	top-down	feedback	

Basal	dendrites:	boVom-up	

	

Apical	dendrites:	top-down	

feedback	minus	mirror	unit’s	

cancellaFon.	

	

With	no	nudging,	cancellaFon	

is	perfect	because	next	layer	

is	predictable.	

	

With	nudging,	difference	=	

backprop	error	signal.	

Other Ongoing Efforts
•  Avoiding	the	constraint	of	symmetric	weights	

•  although	it	may	be	approximately	enforced	via	the	learning	

itself,	and	feedback	alignment	suggests	that	backprop	would	

work	nonetheless	

•  Avoiding	the	need	to	wait	for	convergence	of	the	dynamics	

before	making	a	weight	update	

•  Biological	tests!	
•  SGD	in	the	brain,	neural	nudging	propagaFon,	feedback-
lateral	cancellaFon	

23	

What’s Missing
with Deep
Learning?

Humans	outperform	machines	at	

autonomous	learning	

•  Humans	are	very	good	at	

unsupervised	learning,	e.g.	

a	2	year	old	knows	intuiFve	

physics	

•  Babies	construct	an	
approximate	but	sufficiently	

reliable	model	of	physics,	

how	do	they	manage	that?	

Note	that	they	interact	
with	the	world,	not	just	
observe	it.	

What’s Missing?

Learning	MulFple	Levels	of	AbstracFon	

•  The	big	payoff	of	deep	learning	is	to	allow	learning	
higher	levels	of	abstracFon	

•  Higher-level	abstracFons	disentangle	the	
factors	of	varia3on,	which	allows	much	easier	

generalizaFon	and	transfer	

27	

How	to	Discover	Good	RepresentaFons	

•  How	to	discover	abstracFons?		
•  What	is	a	good	representaFon?	

•  Need	clues	to	disentangle	the	underlying	
factors	

– SpaFal	&	temporal	scales	

– Marginal	independence	

– Controllable	factors	

28	

AcFng	to	Guide		

RepresentaFon	Learning	

&	Disentangling	

•  Some	factors	(e.g.	objects)	correspond	to	
‘independently	controllable’	aspects	of	the	world	

•  Can	only	be	discovered	by	ac>ng	in	the	world	

7/17

Independently Controllable Features

Discrete Case Objective Function

Proposition

“Latent properties” can be controlled independently from other
“things” in the environment

Discrete case, � 2 {1, ..,N}, define selectivity:

NX

k=1

E
(s

t

,a
t

,s
t+1

)

2

4⇡
k

(a
t

|s
t

)
f

k

(s
t+1

)� f

k

(s
t

)P
k

0
|f
k

0(s
t+1

)� f

k

0(s
t

)|

3

5

Note: this is an objective, not a constraint (e.g. Whitney et al., 2016)

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

In order to quantify the change in fk when actions are taken according to ⇡k, we define the selectivity of a feature as:

sel(s, a, k) = Es0⇠Pa
ss0


|fk(s0)� fk(s)|P
k0 |fk0

(s0)� fk0
(s)|

�
(1)

where s,s0 are successive raw state representations (e.g. pixels), a is the action, Pa
ss0 is the environment’s transition distribution from

s to s0 under action a. The normalization by the change in all features means that the selectivity of fk is maximal when only that

single feature changes as a result of some action.

By having an objective that maximizes selectivity and minimizes the autoencoder objective, we can ensure that the features learned
can both reconstruct the data and recover independently controllable factors. Hence, we define the following objective, which can be
minimized via stochastic gradient descent:

Es[
1
2 ||s� g(f(s))||22]| {z }
reconstruction error

� �
X

k

Es[

X

a

⇡k(a|s) log sel(s, a, k)]

| {z }
disentanglement objective

(2)

Here one can think of log sel(s, a, k) as the reward signal Rk(s, a) of a control problem, and the expected reward Ea⇠⇡k [Rk] is
maximized by finding the optimal set of policies ⇡k.

Note that it is also possible to have directed selectivity: by not taking the absolute value of the numerator of (1) (and replacing log sel
with log(1+sel) in (2)), the policies must learn to increase the learned latent feature rather than simply change it. This may be useful
if the policy to gradually increase a feature is distinct from the policy that decreases it.

2.3 A first toy problem

Consider the simple environment described in Figure 1(a): the agent sees a 2 ⇥ 2 square of adjacent cells in the environment, and
has 4 actions that move it up, down, left or right. An autoencoder with directed selectivity (see Figure 1(c,d)) learns latent features
that map to the (x, y) position of the square in the input space, without ever having explicitly access to these values, and while
reconstructing the input properly. An autoencoder without selectivity also reconstructs the input properly but without learning these
two latent (x, y) features explicitly.

In this setting f , g and ⇡ share some of their parameters. We use the following architecture: f has two 16⇥3⇥3 ReLU convolutional
layers, followed by a fully connected ReLU layer of 32 units, and a tanh layer of n = 4 features; g is the transpose architecture of f ;
⇡k is a softmax policy over 4 actions, computed from the output of the ReLU fully connected layer.

(a) (b) (c) (d)

Figure 1: (a) & (b) A simple environment with 4 actions that push a square left, right, up or down. (a) is an example ground truth,
(b) is the reconstruction of the model trained with selectivity. (c) The slope of a linear regression of the true features (the real x
and y position of the agent) as a function of each latent feature. White is no correlation, blue and red indicate strong negative or
positive slopes respectively. We can see that features 0 and 1 recover y and features 2 and 3 recover x. (d) Representation of the
learned policies. Each row is a policy ⇡k, each column corresponds to an action (left/right/up/down). Each cell (k, i) represents the
probability of action i in policy ⇡k; We can see that features 0 and 1 correspond to going down and up (�y/+y) and features 2 and 3
correspond to going right and left (+x/�x).

2.4 A slightly harder toy problem

In the next experiments, we aim to generalize the model above in a slightly more complex environment. Instead of having f and ⇡k

parametrized by the same parameters, we now introduce a different set of parameters for each policy and for the encoder, so that each
policy can be learned separately.

2

Independently Controllable Factors
(Emmanuel Bengio, Valentin Thomas, Joelle Pineau, Doina
Precup, Yoshua Bengio, 2017)
(Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc
Sarfati, Philippe Beaudoin, Marie-Jean Meurs, Joelle Pineau,
Doina Precup, Yoshua Bengio, 2017)
•  Jointly	train	for	each	aspect	(factor)	

•  A	policy									(which	tries	to	selecFvely	change	just	that	factor)	
•  A	representaFon	(which	maps	state	to	value	of	factor)	

	

•  OpFmize	both	policy								and	representaFon									to	minimize	

30	

1 Introduction

Whether in static or dynamic environments, decision making for real world problems is often confronted with the hard challenge of
finding a “good” representation of the problem. In the context of supervised or semi-supervised learning, it has been argued (Bengio,
2009) that good representations separate out underlying explanatory factors, which may be causes of the observed data. In such
problems, feature learning often involves mechanisms such as autoencoders (Hinton & Salakhutdinov, 2006), which find latent
features that explain the observed data. In interactive environments, the temporal dependency between successive observations
creates a new opportunity to notice structure in data which may not be apparent using only observational studies. The need to
experiment in order to discover causal structures has already been well explored in psychology (e.g. Gopnik & Wellman (in press)).
In reinforcement learning, several approaches explore mechanisms that push the internal representations of learned models to be
“good” in the sense that they provide better control (see Sec. 4).

We propose and explore a more direct mechanism, which explicitly links an agent’s control over its environment with its internal
feature representations. Specifically, we hypothesize that some of the factors explaining variations in the data correspond to aspects
of the world which can be controlled by the agent. For example, an object could be pushed around or picked up independently of
others. In such a case, our approach aims to extract object features from the raw data while learning a policy that controls precisely
these features of the data. In Sec. 2 we explain this mechanism and show experimental results in its simplest instantiation. In Sec. 3
we discuss how this principle could be applied more generally, and what are the research challenges that emerge.

2 Independently controllable features

To make the above intuitions concrete, assume that there are factors of variation underlying the observations coming from an inter-
active environment that are “independently controllable”. That is, for each of these factors of variation, there exists a policy which
will modify that factor only, and not the others. For example, the object behind a set of pixels could be acted on independently from
other objects, which would explain variations in its pose and scale when we move it around. The object in this case is a “factor of
variation”. What makes discovering and mapping such factors into features tricky is that the factors are not explicitly observed. Our
goal is to learn these factors, which we call independently controllable features, along with policies that control them. While these
may seem strong assumptions about the nature of the environment, our point of view is that they are similar to regularizers meant to
make a difficult learning problem better constrained.

There are many possible ways to express the desire to learn independently controllable features as an objective. Section 2.2 proposes
such an objective for a simple scenario. Section 2.3 illustrates the effect of this objective when all the features of the environment are
simple and controllable by the agent. Section 2.4 explores a slightly harder scenario in which there is redundancy and policies are
learned through a reinforcement learning algorithm.

2.1 Autoencoders

Our approach builds on the familiar framework of autoencoders (Hinton & Salakhutdinov, 2006), which are defined as a pair of
function approximators f, g with parameters ✓ such that f : X ! H maps the input space to some latent space H , and g : H ! X
maps back to the input space X ⇢ Rd. Autoencoders are trained to minimize the discrepancy between x and g(f(x)), a.k.a. the
reconstruction error, e.g.,:

min

✓

1
2kx� g(f(x))k22

We call f(x) = h 2 H ⇢ Rn the latent feature representation of x, with n features.

It is common to assume that n ⌧ d. This causes f and g to perform dimensionality reduction of X , i.e. compression, since there
is a dimension bottleneck through which information about the input data must pass. Often, this bottleneck forces the optimization
procedure to uncover principal factors of variation of the data on which they are trained. However, this does not necessarily imply that
the different dimensions of h = f(x) are individually meaningful. In fact, note that for any bijective function r, we could obtain the
same reconstruction error by replacing f by r � f and g by r�1 � g, so we should not expect any form of disentangling of the factors
of variation unless some additional constraints or penalties are imposed on h. This motivates the approach we are about to present.
Specifically, we will look for policies which can separately influence one of the dimensions of h, and we will prefer representations
which make such policies possible.

2.2 Policy Selectivity

Consider the following simple scenario: we train an autoencoder f, g producing n latent features, fk, k = 1, . . . n. In tandem with
these features we train n policies, denoted ⇡k. Autoencoders can learn relatively arbitrary feature representations, but we would like
these features to correspond to controllable factors in the learner’s environment. Specifically, we would like policy ⇡k to cause a
change only in fk and not in any other features. We think of fk and ⇡k as a feature-policy pair.

1

1 Introduction

Whether in static or dynamic environments, decision making for real world problems is often confronted with the hard challenge of
finding a “good” representation of the problem. In the context of supervised or semi-supervised learning, it has been argued (Bengio,
2009) that good representations separate out underlying explanatory factors, which may be causes of the observed data. In such
problems, feature learning often involves mechanisms such as autoencoders (Hinton & Salakhutdinov, 2006), which find latent
features that explain the observed data. In interactive environments, the temporal dependency between successive observations
creates a new opportunity to notice structure in data which may not be apparent using only observational studies. The need to
experiment in order to discover causal structures has already been well explored in psychology (e.g. Gopnik & Wellman (in press)).
In reinforcement learning, several approaches explore mechanisms that push the internal representations of learned models to be
“good” in the sense that they provide better control (see Sec. 4).

We propose and explore a more direct mechanism, which explicitly links an agent’s control over its environment with its internal
feature representations. Specifically, we hypothesize that some of the factors explaining variations in the data correspond to aspects
of the world which can be controlled by the agent. For example, an object could be pushed around or picked up independently of
others. In such a case, our approach aims to extract object features from the raw data while learning a policy that controls precisely
these features of the data. In Sec. 2 we explain this mechanism and show experimental results in its simplest instantiation. In Sec. 3
we discuss how this principle could be applied more generally, and what are the research challenges that emerge.

2 Independently controllable features

To make the above intuitions concrete, assume that there are factors of variation underlying the observations coming from an inter-
active environment that are “independently controllable”. That is, for each of these factors of variation, there exists a policy which
will modify that factor only, and not the others. For example, the object behind a set of pixels could be acted on independently from
other objects, which would explain variations in its pose and scale when we move it around. The object in this case is a “factor of
variation”. What makes discovering and mapping such factors into features tricky is that the factors are not explicitly observed. Our
goal is to learn these factors, which we call independently controllable features, along with policies that control them. While these
may seem strong assumptions about the nature of the environment, our point of view is that they are similar to regularizers meant to
make a difficult learning problem better constrained.

There are many possible ways to express the desire to learn independently controllable features as an objective. Section 2.2 proposes
such an objective for a simple scenario. Section 2.3 illustrates the effect of this objective when all the features of the environment are
simple and controllable by the agent. Section 2.4 explores a slightly harder scenario in which there is redundancy and policies are
learned through a reinforcement learning algorithm.

2.1 Autoencoders

Our approach builds on the familiar framework of autoencoders (Hinton & Salakhutdinov, 2006), which are defined as a pair of
function approximators f, g with parameters ✓ such that f : X ! H maps the input space to some latent space H , and g : H ! X
maps back to the input space X ⇢ Rd. Autoencoders are trained to minimize the discrepancy between x and g(f(x)), a.k.a. the
reconstruction error, e.g.,:

min

✓

1
2kx� g(f(x))k22

We call f(x) = h 2 H ⇢ Rn the latent feature representation of x, with n features.

It is common to assume that n ⌧ d. This causes f and g to perform dimensionality reduction of X , i.e. compression, since there
is a dimension bottleneck through which information about the input data must pass. Often, this bottleneck forces the optimization
procedure to uncover principal factors of variation of the data on which they are trained. However, this does not necessarily imply that
the different dimensions of h = f(x) are individually meaningful. In fact, note that for any bijective function r, we could obtain the
same reconstruction error by replacing f by r � f and g by r�1 � g, so we should not expect any form of disentangling of the factors
of variation unless some additional constraints or penalties are imposed on h. This motivates the approach we are about to present.
Specifically, we will look for policies which can separately influence one of the dimensions of h, and we will prefer representations
which make such policies possible.

2.2 Policy Selectivity

Consider the following simple scenario: we train an autoencoder f, g producing n latent features, fk, k = 1, . . . n. In tandem with
these features we train n policies, denoted ⇡k. Autoencoders can learn relatively arbitrary feature representations, but we would like
these features to correspond to controllable factors in the learner’s environment. Specifically, we would like policy ⇡k to cause a
change only in fk and not in any other features. We think of fk and ⇡k as a feature-policy pair.

1

1 Introduction

Whether in static or dynamic environments, decision making for real world problems is often confronted with the hard challenge of
finding a “good” representation of the problem. In the context of supervised or semi-supervised learning, it has been argued (Bengio,
2009) that good representations separate out underlying explanatory factors, which may be causes of the observed data. In such
problems, feature learning often involves mechanisms such as autoencoders (Hinton & Salakhutdinov, 2006), which find latent
features that explain the observed data. In interactive environments, the temporal dependency between successive observations
creates a new opportunity to notice structure in data which may not be apparent using only observational studies. The need to
experiment in order to discover causal structures has already been well explored in psychology (e.g. Gopnik & Wellman (in press)).
In reinforcement learning, several approaches explore mechanisms that push the internal representations of learned models to be
“good” in the sense that they provide better control (see Sec. 4).

We propose and explore a more direct mechanism, which explicitly links an agent’s control over its environment with its internal
feature representations. Specifically, we hypothesize that some of the factors explaining variations in the data correspond to aspects
of the world which can be controlled by the agent. For example, an object could be pushed around or picked up independently of
others. In such a case, our approach aims to extract object features from the raw data while learning a policy that controls precisely
these features of the data. In Sec. 2 we explain this mechanism and show experimental results in its simplest instantiation. In Sec. 3
we discuss how this principle could be applied more generally, and what are the research challenges that emerge.

2 Independently controllable features

To make the above intuitions concrete, assume that there are factors of variation underlying the observations coming from an inter-
active environment that are “independently controllable”. That is, for each of these factors of variation, there exists a policy which
will modify that factor only, and not the others. For example, the object behind a set of pixels could be acted on independently from
other objects, which would explain variations in its pose and scale when we move it around. The object in this case is a “factor of
variation”. What makes discovering and mapping such factors into features tricky is that the factors are not explicitly observed. Our
goal is to learn these factors, which we call independently controllable features, along with policies that control them. While these
may seem strong assumptions about the nature of the environment, our point of view is that they are similar to regularizers meant to
make a difficult learning problem better constrained.

There are many possible ways to express the desire to learn independently controllable features as an objective. Section 2.2 proposes
such an objective for a simple scenario. Section 2.3 illustrates the effect of this objective when all the features of the environment are
simple and controllable by the agent. Section 2.4 explores a slightly harder scenario in which there is redundancy and policies are
learned through a reinforcement learning algorithm.

2.1 Autoencoders

Our approach builds on the familiar framework of autoencoders (Hinton & Salakhutdinov, 2006), which are defined as a pair of
function approximators f, g with parameters ✓ such that f : X ! H maps the input space to some latent space H , and g : H ! X
maps back to the input space X ⇢ Rd. Autoencoders are trained to minimize the discrepancy between x and g(f(x)), a.k.a. the
reconstruction error, e.g.,:

min

✓

1
2kx� g(f(x))k22

We call f(x) = h 2 H ⇢ Rn the latent feature representation of x, with n features.

It is common to assume that n ⌧ d. This causes f and g to perform dimensionality reduction of X , i.e. compression, since there
is a dimension bottleneck through which information about the input data must pass. Often, this bottleneck forces the optimization
procedure to uncover principal factors of variation of the data on which they are trained. However, this does not necessarily imply that
the different dimensions of h = f(x) are individually meaningful. In fact, note that for any bijective function r, we could obtain the
same reconstruction error by replacing f by r � f and g by r�1 � g, so we should not expect any form of disentangling of the factors
of variation unless some additional constraints or penalties are imposed on h. This motivates the approach we are about to present.
Specifically, we will look for policies which can separately influence one of the dimensions of h, and we will prefer representations
which make such policies possible.

2.2 Policy Selectivity

Consider the following simple scenario: we train an autoencoder f, g producing n latent features, fk, k = 1, . . . n. In tandem with
these features we train n policies, denoted ⇡k. Autoencoders can learn relatively arbitrary feature representations, but we would like
these features to correspond to controllable factors in the learner’s environment. Specifically, we would like policy ⇡k to cause a
change only in fk and not in any other features. We think of fk and ⇡k as a feature-policy pair.

1

1 Introduction

Whether in static or dynamic environments, decision making for real world problems is often confronted with the hard challenge of
finding a “good” representation of the problem. In the context of supervised or semi-supervised learning, it has been argued (Bengio,
2009) that good representations separate out underlying explanatory factors, which may be causes of the observed data. In such
problems, feature learning often involves mechanisms such as autoencoders (Hinton & Salakhutdinov, 2006), which find latent
features that explain the observed data. In interactive environments, the temporal dependency between successive observations
creates a new opportunity to notice structure in data which may not be apparent using only observational studies. The need to
experiment in order to discover causal structures has already been well explored in psychology (e.g. Gopnik & Wellman (in press)).
In reinforcement learning, several approaches explore mechanisms that push the internal representations of learned models to be
“good” in the sense that they provide better control (see Sec. 4).

We propose and explore a more direct mechanism, which explicitly links an agent’s control over its environment with its internal
feature representations. Specifically, we hypothesize that some of the factors explaining variations in the data correspond to aspects
of the world which can be controlled by the agent. For example, an object could be pushed around or picked up independently of
others. In such a case, our approach aims to extract object features from the raw data while learning a policy that controls precisely
these features of the data. In Sec. 2 we explain this mechanism and show experimental results in its simplest instantiation. In Sec. 3
we discuss how this principle could be applied more generally, and what are the research challenges that emerge.

2 Independently controllable features

To make the above intuitions concrete, assume that there are factors of variation underlying the observations coming from an inter-
active environment that are “independently controllable”. That is, for each of these factors of variation, there exists a policy which
will modify that factor only, and not the others. For example, the object behind a set of pixels could be acted on independently from
other objects, which would explain variations in its pose and scale when we move it around. The object in this case is a “factor of
variation”. What makes discovering and mapping such factors into features tricky is that the factors are not explicitly observed. Our
goal is to learn these factors, which we call independently controllable features, along with policies that control them. While these
may seem strong assumptions about the nature of the environment, our point of view is that they are similar to regularizers meant to
make a difficult learning problem better constrained.

There are many possible ways to express the desire to learn independently controllable features as an objective. Section 2.2 proposes
such an objective for a simple scenario. Section 2.3 illustrates the effect of this objective when all the features of the environment are
simple and controllable by the agent. Section 2.4 explores a slightly harder scenario in which there is redundancy and policies are
learned through a reinforcement learning algorithm.

2.1 Autoencoders

Our approach builds on the familiar framework of autoencoders (Hinton & Salakhutdinov, 2006), which are defined as a pair of
function approximators f, g with parameters ✓ such that f : X ! H maps the input space to some latent space H , and g : H ! X
maps back to the input space X ⇢ Rd. Autoencoders are trained to minimize the discrepancy between x and g(f(x)), a.k.a. the
reconstruction error, e.g.,:

min

✓

1
2kx� g(f(x))k22

We call f(x) = h 2 H ⇢ Rn the latent feature representation of x, with n features.

It is common to assume that n ⌧ d. This causes f and g to perform dimensionality reduction of X , i.e. compression, since there
is a dimension bottleneck through which information about the input data must pass. Often, this bottleneck forces the optimization
procedure to uncover principal factors of variation of the data on which they are trained. However, this does not necessarily imply that
the different dimensions of h = f(x) are individually meaningful. In fact, note that for any bijective function r, we could obtain the
same reconstruction error by replacing f by r � f and g by r�1 � g, so we should not expect any form of disentangling of the factors
of variation unless some additional constraints or penalties are imposed on h. This motivates the approach we are about to present.
Specifically, we will look for policies which can separately influence one of the dimensions of h, and we will prefer representations
which make such policies possible.

2.2 Policy Selectivity

Consider the following simple scenario: we train an autoencoder f, g producing n latent features, fk, k = 1, . . . n. In tandem with
these features we train n policies, denoted ⇡k. Autoencoders can learn relatively arbitrary feature representations, but we would like
these features to correspond to controllable factors in the learner’s environment. Specifically, we would like policy ⇡k to cause a
change only in fk and not in any other features. We think of fk and ⇡k as a feature-policy pair.

1

14/17

Independently Controllable Features

Predict e↵ect of a cause

h|{z}
(0.4, 13.1)

ĥ

0|{z}
(�4.6, �1.9)

= h + dh

right| {z }
(5, �5)

+2 · dh
down| {z }

(�10, �10)

Encoder Decoder

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

Predict the effect of actions in
attribute space
Given	iniFal	state	and	set	of	acFons,	predict	new	aVribute	values	

and	the	corresponding	reconstructed	images	

31	

Given two states, recover the causal
actions leading from one to the other

32	

15/17

Independently Controllable Features

Recover the cause

h

1|{z}
(0.4, 13.1)

h

2|{z}
(5.9, �11.6)

dh = (5.5, �24.8) ⇡ 2 · dh
down

+ 3 · dh
right

Encoder Encoder

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

Continuous Set of Attributes: Attribute
Embeddings = variable name

33	

9/17

Independently Controllable Features

From discrete to continuous

Principle

We map controllable factors to embeddings � instead of
coordinates k (one policy network). Discovers by itself the
relevant number of features.

� = G (h, z) 2 Rn is now generated from h = f (s), z ⇠ N (0, 1):

E
(s

t

,a
t

,s
t+1

)

E
�

2

6664
⇡�(at |st)

A

�
f (s

t+1

)� f (s
t

),�
�

E
�0
=G(h

t

,z 0)


|A
�
f (s

t+1

)� f (s
t

),�0
�
|
�

3

7775

How much the value of property � changed relatively to other
properties.

E. Bengio, J. Pondard, M. Sarfati, V. Thomas et al. Independently Controllable Features

What’s Wrong with
our Unsupervised

Training Objectives?

Abstraction Challenge for Unsupervised
Learning

•  Why	is	modeling	P(acousFcs)	so	much	worse	than	modeling	

P(acousFcs	|	phonemes)	P(phonemes)?	

•  Why	are	our	current	models	not	able	to	figure	out	phonemes	

AND	model	their	distribuFon	separately?	

•  May	have	to	do	with	the	different	Fme	scales	and	objecFve	

funcFon	at	the	wrong	level	of	abstracFon:		

•  log-likelihood	focuses	most	of	its	value	on	the	vast	majority	of	bits	
characterizing	the	acous3c	details	(instead	of	the	higher-level	linguis3c	
structure)	

•  it	would	be	good	to	just	predict	the	future	in	in	abstract	space	rather	
than	in	the	pixel	space	

The Consciousness Prior
Bengio 2017, arXiv:1709.08568
•  Conscious	thoughts	are	very	low-dimensional	objects	compared	

to	the	full	state	of	the	(unconscious)	brain	

•  Yet	they	have	unexpected	predicFve	value	or	usefulness	
à	strong	constraint	or	prior	on	the	underlying	representaFon	

36	

•  Thought:	composiFon	of	few	selected	factors	/	concepts	

at	the	highest	level	of	abstracFon	of	our	brain	

•  Richer	than	but	closely	associated	with	short	verbal	

expression	such	as	a	sentence	or	phrase,	a	rule	or	fact	
(link	to	classical	symbolic	AI	&	knowledge	representaFon)	

How to select a few
relevant abstract

concepts in a
thought?

On the Relation between Abstraction
and Attention

•  AVenFon	allows	to	focus	on	a	few	elements	out	of	a	large	set	

•  SoZ-aVenFon	allows	this	process	to	be	trainable	with	gradient-
based	opFmizaFon	and	backprop	

38	

AVenFon	focuses	on	a	few	

appropriate	abstract	or	concrete	

elements	of	mental	

representaFon		

The Consciousness Prior
Bengio 2017, arXiv:1709.08568
•  2	levels	of	representaFon:		

•  High-dimensional	abstract	representaFon	space	(all	known	

concepts	and	factors)	h	
•  Low-dimensional	conscious	thought	c,	extracted	from	h	

39	

•  Example:	c	is	a	predicFon	about	some	future	event,	

involves	current	variables	and	their	values,	and	a	

predicFon	about	a	future	variable	

•  Predictor	needs	to	refer	to	a	predicted	variable	by	NAME	
(e.g.	embedding)	so	as	to	be	able	to	separate	the	name	

from	the	value	and	recover	the	predicFon	when	a	future	

event	makes	the	variable	observed	(at	a	different	value).	

The Consciousness Prior
Bengio 2017, arXiv:1709.08568
•  Conscious	predicFon	over	aVended	variables	A	(soZ	aVenFon)	

	

•  How	to	train	the	aVenFon	mechanism	which	

				selects	which	variables	to	predict?	

•  (predicted	variables,	condiFoning	variables)	=	rule	
					ConnecFon	to	classical	symbolic	AI	

40	

AVenFon	weights	

Earlier	conscious	

state	
Predicted	value	

Ongoing Research:
DL for AI
neural nets à cognition
•  Learn	more	abstract	representaFons	which	capture	causality	

•  Independently	controllable	factors:	some	abstract	factors	are	

controllable	aspects	of	the	environment,	disentangled	
•  Jointly	learn	condi3onal	exploratory	policies	with	intrinsic	

rewards	
•  Naturally	gives	rise	to	the	noFon	of		

	objects,	aAributes	&	agents	
•  Natural	language	&	consciousness	prior:	other	
					clue	about	abstract	representaFons	

•  Unsupervised	RL	research,	performed	in	simulated	environments	

41	

Montreal	Ins3tute	for	
Learning	Algorithms	

