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Deep Learning =2 Al Breakthroughs
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A woman is throwing a frisbee A dog i1s standing on a hardwood A stop sign is on a road with a
in a park. floor mountain in the background

Computers have made
huge strides in
perception,
manipulating language,
playing games,
reasoning, ...



What Deep Learning Owes to
Connectionism from the $0’'s

Iteratively learning distributed representations
through a composition of neurally inspired simple
operations towards a justifiable training objective
that forces the learner to capture the relevant
statistical structure of the data.



Canada’s Llead in deep Learning

Thanks to investments in basic research at a time
when the topic was not fashionable
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What's New with Neural Nebs in 21 Century?
e Ability to train deeper nets!

e Biologically inspired ReLUs instead of sigmoids, enable training
much deeper nets by backprop (Glorot & Bengio AISTATS 2011)
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Some forms of noise (e.g. spiking-like dropout) are powerful
regularizers yielding superior generalization abilities
* Attention!

Generative neural networks, deep reinforcement learning



2010-2012: breakthrough in
speech recognition
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2012-2015: breakthrough
In computer vision

2015: human-level performance

Ability to process unstructured |
data: text, images, signals, web
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The Attention Revolution in Deep Learning

e Attention mechanisms exploit GATING units, have unlocked a
breakthrough in machine translation:

Neural Machine Translation  (ICLR’2015)
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Still Far from Human-Level Al

* Industrial successes mostly based on
supervised learning

* Learning superficial clues, not generalizing
well enough outside of training contexts, easy
to fool trained networks:

— Current models cheat by picking on surface
regularities



The need for predictive
causal modeling: rare &
dangerous states

 Example: autonomous vehicles in
near-accident situations

* Current supervised learning may
not handle well these cases
because they are too rare (not
enough data)

* |t would be even worse with current RL (statistical inefficiency)

e Long-term objective: develop better predictive models of the world able to
generalize in completely unseen scenarios, but it does not seem reasonable

to model the sequence of future states in all their details
Human drivers: no need to die a thousand deaths



Deep Unsupervised Learning Takes off with
GANs (Goodfellow et al NIPS’2014)

Progress in unsupervised generative neural Predict
nets allows them to synthesize a diversity multi-modal
future

images, sounds and text imitating
unlabeled images, sounds or text
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This bird 1s red
and brown in
color, with a
stubby beak

Text 2 Image, Colorization

The bird 1s
short and
stubby with
yellow on its

body

A bird with a
medium orange
bill white body
gray wings and
webbed feet

This small
black bird has
a short, slightly
curved bill and
long legs

A small bird
with varying
shades of
brown with
white under the
eyes

A small yellow
bird with a
black crown
and a short
black pointed
beak

This small bird
has a white
breast, light
grey head, and
black wings
and tail




Image 2 Image

Labels to Street Scene Labels to Facade BW to Color

input output
7 Aerial to Map i

output
Day to Night Edges to Photo

output input output input output

Isola et al. 2016
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Can the conceptual advances
behind deep Learning successes

help us figure out the big
Pi.c ure of:ow the brain Learns
comr:te;x ehaviore



The Learning Mechanism is a Compact
and Abstract Explanation of the Brain

Similar to the laws of physics: e.g. we consider understanding the
physical world, mostly by having figured out the laws of physics,
not just by describing its consequences (the immense complexity
of describing the physical world)

Successful learning framework (architecture, optimizer, objective)
is @ compact abstract explanation, much more so than the actual
detailed neuron-by-neuron functions performed by a trained brain

ML validation: can learn complex tasks
Neuroscience validation: matches biology at some level
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Attention:
* vectors = data structures
* memory access, one-shot memorization

CQSM&E&Q“ * reasoning

* semantics & language
e agency & causality
* consciousness

Neural Nebworlkes

* biological backprop

BTQ&V‘. IMFLQMQV\EQ&E&)H e dropout & spikes

* multi-module architecture
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Deep Learning & Neuroscience:
Skl a Large Gap
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Backprop and the ability to jointly train multiple layers is the
workhorse of current deep learning successes. END-TO-END
TRAINING OF DEEP COMPUTATIONS ROCKS. Backprop is the
building block behind modern unsupervised (generative)
learning and RL. But has been deemed not biologically plausible.

* how to propagate gradients? linear neurons? separate net?
* what is the role of feedback connections? lateral connections?

* How to efficiently train a stochastic continuous-time
dynamical system wrt a global objective?
* Random perturbation-based methods do not scale, BP does beautifully



~rom ‘bee.p Learining ko Neuroscience

Propagation of Error Sighals
Deep Learning Neuroscience
. . no empirical
Backl?ropagatlo.n. Hypothesis: «. _ ... .c yet
Requires a special Error signals
computational path for the are encoded in ds/dt.
propagation of error derivatives No need for a special computational
backward in the network. path.

This idea was first proposed by
Hinton & McClelland:
“Recirculation algorithm” (1987)
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Fron‘ners in Neuroscience)

Free Phase #~rwmmmmcammts EForward Pass

-network relaxes to fixed point -read prediction at the outputs
-read prediction at the outputs

Weakly Clamped Phase . g (Backwand_lzass)

-nudge outputs towards targets -compare prediction/target

-error signals (back)propagate -compute error derivatives
-network relaxes to new nearby fixed

point requires:
-special computational circuit
-special kind of computation



c.)uitibrium Propa ?aﬁoh Theorem
(Scellter & Bengio, Bridging the Gap Betweén Energy-Based Models and
Backpropagation, Frontiers in Neuroscience, 2017) ,
e Gradient on the objective function (cost at equilibriun

be estimated by a ONE-DIMENSIONAL finite-difference

de(Q ) = hm—(aF (9 B+ €0, Sd+€5, ) oF (0 B, 90\ ))

df —0¢ a0
Small Sufficient statistic Sufficient statistic
nudging after nudging before nudging

Stochastic version:

a0 = pm (52 [ 28 05 g0 | -2, [0 (0.5,0,0)])

51 —> Gives rise to Hebbian / anti-Hebbian updates with Hopfield net energy fn



Lateral Feedbacle
Inkerneurons Maj Solve the
Linear Feedback Puzzle

Building on Urbanczik & Senn 2014 with Walter Senn & Joao Sacramento

 Lateral feedback via interneurons imitates feedforward path,
their lateral projections trained to cancel top-down feedback

new input
P .
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Interneuron,| Wi oo
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(Martinotti v1inhibory With no nudging, cancellation

With nudging, difference =
backprop error signal.

2 VB,1 _
cell?) is perfect because next layer
uP uy is predictable.
Wiy W1“,31
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Other Ongoing Efforts

e Avoiding the constraint of symmetric weights

 although it may be approximately enforced via the learning
itself, and feedback alignment suggests that backprop would
work nonetheless

e Avoiding the need to wait for convergence of the dynamics
before making a weight update

e Biological tests!

* SGD in the brain, neural nudging propagation, feedback-
lateral cancellation
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What’s Missing
with Deep
Learning?

beeg
Understanding



Humans outperform machines at
autonomous learning

* Humans are very good at
unsupervised learning, e.g.
a 2 year old knows intuitive
physics

* Babies construct an
approximate but sufficiently
reliable model of physics,
how do they manage that?
Note that they interact
with the world, not just
observe it.




What's Missing?

Abskrack
Qeyresem%aﬁoms



Learning Multiple Levels of Abstraction

* The big payoff of deep learning is to allow learning
higher levels of abstraction

» Higher-level abstractions disentangle the

factors of variation, which allows much easier
generalization and transfer




How to Discover Good Representations

* How to discover abstractions?
* What is a good representation?

* Need clues to disentangle the underlying
factors

-5 patl al & tem PO ral scales N4 /
— Marginal independence

— Controllable factors ) ) )



Acting to Guide
Representation Learning
& Disentangling

* Some factors (e.g. objects) correspond to
‘independently controllable’ aspects of the world

* Can only be discovered by acting in the world



Iv\depev\den&l.g Cownkrollable Factors

(Emmaniuel Bengio, Vadlentin Thomas, Joelle Pineau, Doina
Precup, Yoshua Bengio, 2017)

(Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc

Sarfaki, Philippe Beaudoin, Marie-Jean Meurs, Joelle Pineay,
Doina Precup, Yoshua Bengio, 2017)

e Jointly train for each aspect (factor)
* A policy T (which tries to selectively change just that factor)

* A representation (which maps state to value of factor) fk
Discrete case, ¢ € {1, .., N}, define selectivity:

N
fi(se+1) — f(st)
K
; (stracsri1) ﬂ-k(at|5t)z |fk’(5t—|—1) — fk’(St)|
— .

e Optimize both policy 7T and representation fk to minimize |

Es[5lls — g(F(sDIE] =AY Es[Y  mi(als)logsel(s, a, k)]
k a

A\

N~

reconstruction error /

disentanglement objective
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Predict the effect of actions in
attribute space

Given initial state and set of actions, predict new attribute values
and the corresponding reconstructed images

Encoder Decoder
X h , X h , = h+ dhright +? . d‘hrdowg

> N——
" (0.4, 13.1) (—4.6, —1.9) (5, —5) (—10, —10)



CGriven two states, recover the causal
actions Leading from one ko the other

Encoder Encoder
) 3
hy h
—~— —~—
(0.4, 13.1) (5.9, —11.6)

dh = (55, —248) ~ 2. dhdoWn -+ 3- dhright
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Continuous Set of Atkributes: Attribute
Embeddings = variable name

We map controllable factors to embeddings ¢ instead of
coordinates k (one policy network). Discovers by itself the
relevant number of features.

¢ = G(h,z) € R" is now generated from h = f(s), z ~ N(0, 1):

A(f(se+1) — f(se), 0)

K !A(f(5t+1) — f(st), Cb/)’
¢/:G(htvzl)

E(5t>at75t+1) E¢ ﬂ-gb(at‘st)

How much the value of property ¢ changed relatively to other
properties.



What's Wrong with

our Uv\suge:rvised
Training 0D Jectives?

Tlnetj are i Fvi‘,xet
space rather than
abskract spoce



Abstraction Challenge for Unsupervised
Learhing

e Why is modeling P(acoustics) so much worse than modeling
P(acoustics | phonemes) P(phonemes)?

e Why are our current models not able to figure out phonemes
AND model their distribution separately?

e May have to do with the different time scales and objective
function at the wrong level of abstraction:

* log-likelihood focuses most of its value on the vast majority of bits
characterizing the acoustic details (instead of the higher-level linguistic
structure)

it would be good to just predict the future in in abstract space rather
than in the pixel space



The Consciousness Prior
Bengio 2017, arXiv:

e Conscious thoughts are very low-dimensional objects compared
to the full state of the (unconscious) brain

e Yet they have unexpected predictive value or usefulness

—> strong constraint or prior on the underlying representation

* Thought: composition of few selected factors / concepts
at the highest level of abstraction of our brain

* Richer than but closely associated with short verbal
expression such as a sentence or phrase, a rule or fact
(link to classical symbolic Al & knowledge representation)
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How to select a few
relevant abstract
cov\cep&s N a

thought?

Conkenbk-based
Aktention



On the Relakion betweewn Abstraction
and Attention

e Attention allows to focus on a few elements out of a large set

e Soft-attention allows this process to be trainable with gradient-
based optimization and backprop

Top-down
attention

Bottom-up
attention

Attention focuses on a few
appropriate abstract or concrete
elements of mental
representation
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The Consciousness Prior
Bengio 2017, arXiv:1709,0556%

e 2 levels of representation:

* High-dimensional abstract representation space (all known
concepts and factors) h

* Low-dimensional conscious thought ¢, extracted from h

 Example: cis a prediction about some future event,
involves current variables and their values, and a
prediction about a future variable

* Predictor needs to refer to a predicted variable by NAME
(e.g. embedding) so as to be able to separate the name
from the value and recover the prediction when a future
event makes the variable observed (at a different value).
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The Consciousness Prior
Bengio 2017, arXiv:1709,0556%

e Conscious prediction over attended variables A (soft attention)

V =- ZUJA log P(hi,a = alci_1)
A

/ Earlier conscious

Predicted value

state

Attention weights

e How to train the attention mechanism which

selects which variables to predict?
e (predicted variables, conditioning variables) = rule "v;;‘z,

SOOOOT

Connection to classical symbolic Al
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Ongoing Research:
DL for AI
neural nets > cognition
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Learn more abstract representations which capture causality

Independently controllable factors: some abstract factors are
controllable aspects of the environment, disentangled

Jointly learn conditional exploratory policies with intrinsic
rewards |

Naturally gives rise to the notion of
objects, attributes & agents

Natural language & consciousness prior: other B==me
clue about abstract representations :
Unsupervised RL research, performed in simulated environments






