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Mobile network

(r , a, b)-covering code with

r : reach of the emitting stations

a: number of emitting stations within reach of an emitting
station

b: number of emitting stations that reach of a phone
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Translation in terms of graphs

A set S ⊆ V is an (r , a, b)-covering code of G = (V ,E ) if for any
u ∈ V ∣∣∣{Br (v) | u ∈ Br (v), v ∈ S}

∣∣∣ =

{
a if u ∈ S

b if u 6∈ S .

Also known as isotropic coloring, perfect coloring.
If a = 1 = b, they are called r -perfect code. [Biggs 1973]

r = 1

Finding an r -prefect code is NP-complete. [Kratochv́ıl 1988]
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The infinite grid Z2

Vertices : x = (x1, x2) ∈ Z2

Edge between (x1, x2) and (y1, y2) if
|x1 − y1|+ |x2 − y2| = 1

Manhattan distance d :

d(x, y) = |x1 − y1|+ |x2 − y2|
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The infinite grid Z2

a = 3 and b = 4 a = 3 and b = 4
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Radius 1

There exists a (1, a, b)-code in Z2 iff (a, b) is equal to one of:

(1, 4), (2, 3), (3, 1),
(3, 2), (3, 3), (3, 4),
(4, 1), (4, 3), (4, 4),

up to switching colors.

Theorem (Axenovich 2003)

(1, a, b)-code
switching colors

=⇒ (1, 5− b, 5− a)-code.
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Unique up to isomorphism

(1, 4) (2, 3) (3, 3)

(3, 4) (4, 1) (4, 4)
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Exactly two up to isomorphism

(3, 2) (3, 2)
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Radius 1

There exist non-periodic codes, but all of them can be ob-
tained by periodic ones.

Theorem (Puzynina 2004)

Non-periodic (1, a, b)-code =⇒ (a, b) = (3, 2) or (a, b) = (4, 3)
Example?
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Radius 1 in higher dimension

Construction of periodic codes by extension of a 1D-pattern.

Theorem (Dorbec, Gravier, Honkala, Mollard 2009)
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In Z6

A • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
|N[u] ∩ A| 2 3 2 1 0 0 0 0 0 0 0 0 0 0 1
w1 = 0

• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

−w1 = 0

• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

w2 = 2

◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

−w2 = −2

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •

w3 = 4

◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

−w3 = −4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦

w4 = 5

◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦

−w4 = −5

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦

w5 = 7

◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦

−w5 = −7

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦
5 5 5 2 2 2 2 2 2 2 2 2 2 2 2

C = {(x1, . . . , x6) ∈ Z6 | x1 − x2w1 − · · · − x6w5 ∈ A} is a
(1, 5, 2)-code
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Radius r ≥ 2

All (r , a, b)-codes with r ≥ 2 are periodic.

Theorem (Puzynina 2008)
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Radius r ≥ 2

Axenovich divides (r , a, b)-codes into

Type A: ∃ a vertex such that

?

or

?

Type A =⇒ |a− b| ≤ 4

Type B: ∀ vertex, we have

?

Type B =⇒ which values of a and b?
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If c is an (r , a, b)-covering code of Z2 and |a − b| > 4, then
c is a p-periodic diagonal colouring for some p = (p, 0).

Theorem (Axenovich 2003)

diagonal coloring

16/27



Consequence

We can assume that
ϕ is an (r , a, b)-code with r ≥ 2 and |a− b| > 4
=⇒ ∃p ∈ Z such that

ϕ(x) = ϕ(x + (1, 1)) ∀x ∈ Z2,

ϕ(x) = ϕ(x + (p, 0)) ∀x ∈ Z2.
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Projection and Folding

Hypotheses :

ϕ : Z2 → { , }
t, p ∈ N
ϕ(x) = ϕ(x + (t, 1)) ∀x ∈ Z2,

ϕ(x) = ϕ(x + (p, 0)) ∀x ∈ Z2.

Goal :

Identify vertices of a given ball playing the “same role”.
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Projection and folding

Axis

t = (1, 1)

(0, 0)

Axis (0, 0)p = (6, 0)

. . . 0 0 0 0 0 4 3 4 3 4 3 4 0 0 0 0 0 . . .
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Projection and folding

Axis (0, 0)p = (6, 0)

. . . 0 0 0 0 0 4 3 4 3 4 3 4 0 0 0 0 0 . . .

t = (1, 1)

p = (6, 0)

∃ a (3, 11, 7)-covering code of Z2
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Constant 2-labellings

We only have to study particular colorings in 4 types of cycles!

y
x

z
x

y

x

y y

x

y
x

z
x

y

x x

y
x

z
x

y

x
y

t

y
x

y
x

z
x

y

x
t

x
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Constant 2-labellings

A coloring is a constant 2-labelling of a weighted cycle Cp if
for all rotations of the coloring

v black =⇒
∑

u black w(u) = α constant

v white =⇒
∑

u black w(u) = β constant

3

4

3

8

3

4

3

4

3

8

3

4

v black
∑

u black w(u) = 7

∑
u black w(u) = 11

v white

∑
u black w(u) = 7

6= 11

∑
u black w(u) = 7
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Properties

For any G = (V ,E ), v ∈ V , w : V → R and A ⊆ Aut(G ),
a monochromatic coloring is a constant 2-labelling.

Proposition

5

6

9

4

11

α =
∑

u black

w(u) =
∑
u∈V

w(u)

NB : β is not defined.
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Properties

For any G = (V ,E ), v ∈ V , w : V → R and A ⊆ Aut(G ),
ϕ is a constant 2-labelling iff ϕ is a constant 2-labelling.

Proposition

A = Aut(G ), v = v3

v5
5

v0
3

v1
1

v2
2

v3

4

v4
5

α = 6
β = 4

v5
5

v0
3

v1
1

v2
2

v3

4

v4
5

α =
∑

u∈V w(u)− β = 16
β =

∑
u∈V w(u)− α = 14
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Example of results

y
x

z
x

y

x x

If c is a non-trivial constant 2-labelling of
such cycle, then the number of vertices is a
multiple of 3 and c is 3-periodic of pattern
period • • ◦.

Lemma (Gravier, V.)

For r ≥ 2 and |a− b| > 4, ∃ an (r , a, b)-code of Z2

iff ∃ a constant 2-labelling of some cycle Cp with adequate
constants.
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Characterization

Let r , a, b ∈ N be such that |a − b| > 4 and r ≥ 2. For
all (r , a, b)-codes of Z2, the values of a and b can be given
explicitly.

Theorem (Gravier, V.)

If ϕ is an (r , a, b)-code with |a− b| > 4,

ϕ is one of the periodic diagonal colorings given by
Axenovich’s theorem.

We can apply the projection and folding method.

Using constant 2-labellings, we have the possible values of a
and b.
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Perspectives

Many (1, a, b)-covering codes of Zd are periodic.
[Dorbec, Gravier, Honkala, Mollard 2009]

Similar periodicity result? Yes [Puzynina 2009]

Which kind of weighted cycles?

Same question for the King Lattice
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