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We’ll be interested in conformal field theories in d≥2

Any QFT defines correlators of local operators:

h0|O1(x1) · · · On(xn)|0i

CFT: scale and conformal invariant

-Ubiquitous near second-order phase transitions; 

-Short-distance limit of strong force (QCD);  
 
 ⇒ important mileposts in the space of all QFTs!
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3D Ising Model: IR fixed point of Z2-symmetric  
scalar field theory

L = (@�)2 +m2�2 + ��4
⇥
+ �6 . . .

⇤

Lightest operators:
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Existing approaches to 3D Ising 

• RG methods

3D Ising CFT

perturbed by
free scalar

[slide from Rychkov]
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puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension � and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators ⇤ and ⇧ are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called ⇤� and ⇧�. Their dimensions are related to
the irrelevant critical exponents ⌅A and ⌅ measuring corrections to scaling. The operator
⇧�� is analogously related to the next-to-leading Z2-even irrelevant exponent ⌅2. The stress
tensor Tµ⇤ has spin 2 and, as a consequence of being conserved, canonical dimension �T = 3.
The lowest-dimension spin 4 operator Cµ⇤�⇥ has a small anomalous dimension, related to
the critical exponent ⌅NR measuring e⇥ects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 � Exponent

⇤ 0 � 0.5182(3) � = 1/2 + �/2
⇤� 0 � � 4.5 � = 3 + ⌅A

⇧ 0 + 1.413(1) � = 3� 1/⇥
⇧� 0 + 3.84(4) � = 3 + ⌅
⇧�� 0 + 4.67(11) � = 3 + ⌅2

Tµ⇤ 2 + 3 n/a
Cµ⇤�⇥ 4 + 5.0208(12) � = 3 + ⌅NR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.
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3D Ising CFT describes also liquid-vapor critical point:

emergent Z2 symmetry

To get to this point one has to finetune 2 parameters: P, T =
the total number of relevant scalars (one Z2-even and one Z2-odd)

2 Numerics and the lightcone limit

2.1 A numerical picture of the 3d Ising spectrum

Numerical bootstrap methods have become powerful enough to estimate several operator
dimensions and OPE coe�cients in the 3d Ising CFT. The strategy is as follows. Consider
the four-point functions h����i, h��✏✏i, and h✏✏✏✏i where � and ✏ are the lowest-dimension
Z2-odd and Z2-even scalars in the 3d Ising CFT, respectively. Crossing symmetry and
unitarity for these correlators forces the dimensions ��,�✏ and OPE coe�cients f��✏, f✏✏✏
to lie inside a tiny island given by [55]

�� = 0.5181489(10), f��✏ = 1.0518537(41),

�✏ = 1.412625(10), f✏✏✏ = 1.532435(19). (2.1)

We can then ask: given that (��,�✏, f��✏, f✏✏✏) lie in this island, what other operators
are needed for crossing symmetry? Although it is possible in principle to compute rigorous
bounds on more operators, it is di�cult in practice because we must scan over the dimensions
and OPE coe�cients of those additional operators.

Instead, we adopt the non-rigorous approach of [68], based on the extremal functional
method [7, 14, 20]. Consider N derivatives of the crossing equation around z = z = 1

2 ,
which we write as FN = 0, where FN is an N -dimensional vector depending on the CFT
data. We assume that OPE coe�cients are real and operator dimensions are consistent
with unitarity bounds [69]. By the argument of [3], there is an allowed region AN in the
space of CFT data such that any point outside AN is inconsistent with FN = 0.6 For every
point p on the boundary of AN , there is a unique “partial spectrum” SN(p): a finite list of
operator dimensions and OPE coe�cients that solve FN = 0. The number of operators in
SN(p) grows linearly with N .7

If p lies on the boundary of the Ising island and N is large, we might expect that SN(p) is
a reasonable approximation to the actual spectrum of the theory. However, it is not obvious
how to assign error bars to SN(p). Firstly, the actual theory lies somewhere in the interior
of the island, not on the boundary. It is important that the island is small enough that
points on the interior are close to points on the boundary. Secondly, SN(p) depends on p,
and there is no canonical choice of p.

In [68], we propose the following trick. We sample several di↵erent points p on the
boundary of the island, and compute SN(p) for each one. As we increase N and vary p,
some of the operators in SN(p) jump around, while others remain relatively stable. If an
operator remains stable, we can guess that it is truly required by crossing symmetry.

In [68], we used this strategy to estimate the dimensions and OPE coe�cients of a
few low-dimension operators in the 3d Ising CFT. In figures 1 and 2, we show a more

6The island (2.1) is the projection of A1265 onto (��,�✏, f��✏, f✏✏✏)-space, where we also assume that �
and ✏ are the only relevant scalars in the theory.

7It is impossible to solve the full crossing equations with a finite number of operators. SN (p) can be
finite because we have truncated the crossing equations to FN = 0.
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Z2 even



●●

CFT: any 3 points can be mapped to 0,1,∞.
2- and 3-points correlators fixed by symmetry, up to #’s

hOiOjOki / fijk

●

●∞

0
z

1

hOi(x1)Oj(x2)i =
�ij

|x1 � x2|
2�i

4-points determined by OPE:

« dimensions »

« OPE coefficients »

hO1O2O3O4i =
X

k

f12kf34kGJk,�k(z, z̄)



CFT = solution               to crossing equation

=
X X

= infinite constraints on infinite unknowns!

{�i, fijk}

‘bootstrap’ 



key for (unitary) d>2: coefficients are positive
[Rattazi,Rychkov,Tonni & Vichi ‘08]
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Figure 5: Same as Figs. 3, 4, but imposing the extra constraints �"0 � {3, 3.4, 3.8}.
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(fijk)
2 � 0

adding inequalities seems to isolate physical models!
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We find that the resulting Z2-even spectrum shows a dramatic transition in the vicinity
of �� = 0.518154(15), giving a high precision determination of the leading critical exponent
⌘. Focusing on the transition region, we are able to extract precise values of the first
several Z2-even operator dimensions and of their OPE coe�cients, see Table 1. We also
give reasonable estimates for the locations of all low dimension (� . 13) scalar and spin 2
operators in the Z2-even spectrum.

spin & Z2 name � OPE coe�cient

` = 0, Z2 = � � 0.518154(15)
` = 0, Z2 = + ✏ 1.41267(13) f

2
��✏ = 1.10636(9)

✏
0 3.8303(18) f

2
��✏0 = 0.002810(6)

` = 2, Z2 = + T 3 c/cfree = 0.946534(11)
T

0 5.500(15) f
2
��T 0 = 2.97(2) ⇥ 10�4

Table 1: Precision information about the low-lying 3d Ising CFT spectrum and OPE
coe�cients extracted in this work. See sections 3.4 and 3.6 for preliminary information about
higher-dimension ` = 0 and ` = 2 operators. See also section 4 for a comparison to results by
other techniques.

The transition also shows the highly intriguing feature that certain operators disappear
from the spectrum as one approaches the 3d Ising point. This decoupling of states gives
an important characterization of the 3d Ising CFT. This is similar to what occurs in the
2d Ising model, where the decoupling of operators can be rigorously understood in terms of
degenerate representations of the Virasoro symmetry. To better understand this connection,
we give a detailed comparison to the application of our c-minimization algorithm in 2d,
where the exact spectrum of the 2d Ising CFT and its interpolation through the minimal
models is known. We conclude with a discussion of important directions for future research.

2 A Conjecture for the 3d Ising Spectrum

Consider a 3d CFT with a scalar primary operator � of dimension ��. In [1], we studied
the constraints of crossing symmetry and unitarity on the four-point function h����i.
From these constraints, we derived universal bounds on dimensions and OPE coe�cients of
operators appearing in the � ⇥� OPE. Figure 1, for example, shows an upper bound on the
dimension of the lowest-dimension scalar in � ⇥ � (which we call ✏), as a function of ��.
This bound is a consequence of very general principles - conformal invariance, unitarity, and
crossing symmetry - yet it has a striking “kink” near (��, �✏) t (0.518, 1.412), indicating
that these dimensions have special significance in the space of 3d CFTs. Indeed, they are
believed to be realized in the 3d Ising CFT.

The curves in Figure 1 are part of a family of bounds labeled by an integer N (defined
in section 2.3), which get stronger as N increases. It appears likely that the 3d Ising CFT

3

[El-Showk,Paulos,Poland,  
Rychkov,Simmons-Duffin&Vichi ’14]

Consistency alone determines critical exponents!
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Numerical methods also probe the spectrum

complete computation, giving about a hundred stable operators. To produce figures 1 and 2,
we computed 60 di↵erent spectra by varying (��,�✏, f��✏, f✏✏✏) and minimizing cT . (We
give more details in appendix A.1.) We then superimposed these 60 spectra, and grouped
together operators with dimensions closer than 0.03. Each circle represents a group, and
the size of the circle is proportional to the number of operators in that group. Thus, large
circles correspond to stable operators and small circles correspond to unstable operators.
We list the dimensions and OPE coe�cients of the stable operators in appendix A.3. Most
of the stable operators also appear in figures 7, 9, 12, 13, 14, 17, 18, and 19, where we
compare to analytics.

10 20 30 40 50
ℓ

5

10

15

20
τ=Δ-ℓ

operators in the σ×σ and ϵ× ϵ OPEs

Figure 1: Estimates of Z2-even operators in the 3d Ising model. Larger circles
represent “stable” operators whose dimensions and OPE coe�cients have small errors in our
computation. We plot the twist �� ` versus spin `. The grey dashed lines are ⌧ = 2�� + 2n
and ⌧ = 2�✏ + 2n for nonnegative integer n.

2.2 E↵ectiveness of the large spin expansion

Let us make some comments about these results. Firstly, most of the stable operators fall
into families with increasing spin and nearly constant twist ⌧ = � � `. We immediately
recognize these as double-twist operators — specifically the families [��]0, [��]1, [✏✏]0 in
figure 1, and [�✏]0 in figure 2. (There are also vague hints of [�✏]1.) The fact that these
families are stable implies that they play a crucial role in the numerical bootstrap for the
3d Ising CFT.8

8Note that even though our numerical calculation uses an expansion of the crossing equation around the
Euclidean point z = z = 1

2 , the results are sensitive to the Lorentzian physics of the lightcone limit. The
prevailing lore was that, since the conformal block expansion converges exponentially in � in the Euclidean

5

[Simmons-Duffin ’16]

J
✏

Tµ⌫
O

µ⌫�⇢ …



 10

where we used equation (5.48) for the Jacobian @h

@`
that relates f��[��]0 to ���[��]0 . The

actual operator dimensions are determined by solving h� 2h� � �(h) = 0, 2, 4, . . . .

A comparison between the above formula and numerics for ⌧[��]0 = 2��+2�[��]0 is shown
in figure 7. The discrepancy between analytics and numerics is 3 ⇥ 10�3 and 5 ⇥ 10�4 for
spins ` = 2, 4, respectively, and ⇠ 5 ⇥ 10�5 for ` > 4. Including additional higher-twist
operators (primaries or descendants) in (6.1) and (6.2) does not improve the fit for low
spins, and barely a↵ects it for high spins.

10 20 30 40
h

1.00

1.01

1.02

1.03

1.04
τ

τ[σσ]0(h)

Figure 7: A comparison between the analytical prediction (6.5) (blue curve) and numerical
data (blue dots) for ⌧[��]0 . The two agree with accuracy 3 ⇥ 10�3 and 5 ⇥ 10�4 for spins
` = 2, 4, respectively, and ⇠ 5⇥ 10�5 for ` > 4. The grey dashed line is the asymptotic value
⌧ = 2��. The curve (2.3) from [1] looks essentially the same.

6.1.1 Di↵erences from [1]

Let us comment briefly on the (inconsequential) di↵erences between the above calculation
and the series (2.3) computed in [1]. Firstly, we have not included descendants of ✏, T ,

namely terms of the form W (0)����
O,m

and V (0)����
O,m

with m � 1, whereas [1] included descen-
dants at first order in z. This is because it doesn’t make sense to include level-1 descendants
of ✏, T without also including the double-twist operators [✏T ]0, [TT ]0, which contribute at
the same order in the large-h expansion. Also, because we organize everything as a series in
y instead of z, the contributions of descendants will di↵er somewhat (though the sum over

32

[Alday&Zhiboedov ’15;  
Plot from Simmons-Duffin ’16]

stress 
tensor

Lowest trajectory in 3D Ising

j +�

2

2��

1/j expansion

(j=2)

[Komargodski&Zhiboedov,  
Fitzpatrick,Kaplan,Poland&Simmons-Duffin,

Alday&Bissi&…,  
Kaviraj,Sen,Sinha&…,

Alday,Bissi,Perlmutter&Aharony,…]



In stat.mech, hard to understand such a continuous curve

we’ll argue it’s origin is: 3D Ising = unitary Minkowski CFT

Euclidean 3D CFT ⇒ Lorentzian 2+1D CFT

+
New tool:  

CFT dispersion relation=

Wick
rotation
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-Numerical bootstrap and spectrum 

2. Lorentzian inversion formula:  
- Why operators are analytic in spin 
- Group theory problem: from SO(3) to SO(d,2)

3. Applications:  
- Large-spin expansions, and extension to J= 0  
- CFTs dual to gravity: causality&bulk locality
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x

x
x

x

1

time
⇢

�⇢
-1

⇢

⇢̄

[Rychkov& Hogervorst ’13]

Consider four points in space-time at

When all spacelike, OPE ~
X

f2⇢#⇢̄# converges

(1,�1, ⇢,�⇢)



x

x

x

x

⇢

�⇢

Now boost 

large boost  = ‘Regge limit’

(⇢,�⇢)

OPE diverges, yet 
correlator stays bounded

That gives ‘analyticity in spin’

[cross-channel OPE]
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Toy example:  amplitude f(E) that’s:  
 

  1. Analytic in cut plane
  2. |f(E)| bounded at large |E| 
  3. Has Taylor series at small E

(=Correlator with 

E

1-1

)

Q: What does this ‘nice behavior’ imply for series?

f(E) =
1X

J=0

fJE
J

E =
p

⇢̄/⇢ = exp(boost)
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E

1�1
)

Figure 1. Relation between low-energy coe�cients and discontinuity. Analyticity in spin holds if the
arcs at infinity (the Regge limit) can be dropped.

An immediate quantitative implication can be illustrated in the example of large-N the-

ories with a sparse spectrum, where we will see that the discontinuity is negligible below a

gap �2
gap. The preceding formula then gives a result which decays rapidly with spin,

fJ ⇠

Z
1

�2
gap

dE

E
E�JDisc f(E) ⇠ (�gap)

�2J , (1.4)

which in the context of gauge-gravity duality will be interpreted as the expected suppression

of higher-derivative corrections, if the bulk theory is local to distances of order 1/�gap times

the AdS curvature radius. Notice the essential role of controlling the Regge limit: nothing

would be learnt from this argument for a given J if we didn’t know that |f(E)/EJ
| vanishes at

infinity. Physically, eq. (1.3) and the Froissart-Gribov formula can be regarded as dispersion

relations for partial waves, since their input are discontinuities of amplitudes (this is further

discussed in section 2.5).

The goal of this paper to obtain similar dispersive representations but which extract the

OPE coe�cients in unitary CFTs (projecting out descendants and extracting only primary

operators). Convergence will be established for all spins higher than one, by borrowing ideas

from the recent “bound on chaos” as well as from a recent proof of the averaged null energy

condition (ANEC) [20, 21], which are reviewed in the next section.

This paper is organized as follows. In section 2 we review the main ingredients regarding

the operator product expansion, its convergence, and the ensuing positivity and boundedness

properties of discontinuities in Lorentzian signature; we also present a simplified dispersion

relation, valid in the Regge limit, and discuss its relationship to the just mentioned recent

work. Section 3 is purely mathematical and is devoted to deriving our main result, the

inversion formula in eq. (3.20). The starting point will be the partial wave expansion in [22],

in which scaling dimensions are continuous, and a corresponding not-so-well-known Euclidean

inverse to this formula, which exploits the orthonormality of blocks.

In section 4 we analyze the formula in the limit of large spin in a general conformal field

theory, substituting in the convergent OPE expansion in a cross-channel to re-derive and

– 4 –

1.1 Why good behavior in the Regge limit is constraining

Physically, analyticity in spin reflects the fact that not any low-energy expansion can resum

into something that is sensible at high energies.

Mathematically, this can be illustrated by a simple single-variable model. Consider an

“amplitude” which admits a low-energy Taylor series:

f(E) =
1X

J=0

fJE
J . (1.1)

We suppose that we are given the following information: f(E) is analytic except for branch

cuts at real energies |E| > 1, and |f(E)/E| is bounded at infinity. (In the physical application

below, f(E) will represent the four-point correlator and its low-energy expansion will be

provided by the Euclidean OPE; at the thresholds E = ±1 some distances become timelike.)

With the stated assumptions, an elementary contour deformation argument relates the series

coe�cients to the discontinuity of the amplitude, as shown in fig. 1:

fJ ⌘
1

2⇡i

I

|E|<1

dE

E
E�Jf(E) (1.2)

=
1

2⇡

Z
1

1

dE

E
E�J

�
Disc f(E) + (�1)JDisc f(�E)

�
(J > 1), (1.3)

where Disc f = �i
⇥
f(E(1 + i0))� f(E(1� i0))

⇤
. The second line follows from the first using

the assumed high-energy behavior to drop large arcs at infinity.

As a concrete example, one may take the function f(E) = � log(1�E2): upon inserting

its discontinuity Disc f = 2⇡, the integral indeed produces fJ = (1 + (�1)J)/J , as expected.

Now let us focus on a single coe�cient, say f2. It may seem paradoxical that it can

be recovered from the discontinuity of f(E), given that varying f2 alone in eq. (1.1) clearly

leaves Disc f(E) unchanged. The point is that given the constraint that |f(E)/E| is bounded at

infinity, the coe�cient f2 (or any finite number of coe�cients) cannot be varied independently

of all the others. Rather, the coe�cients form a much more rigid structure, that is an analytic

function of spin. This is explicited by the integral in eq. (1.3), which defines an analytic

function provided that the real part of J is large enough. (More precisely, there are two

analytic functions, for even and odd spins, reflecting that there are two branch cuts.)

These are the key features of the classic Froissart-Gribov formula [17–19], which is con-

ceptually the same but with Legendre functions instead of power laws. Historically, the

Froissart-Gribov formula established the analyticity in spin of partial amplitudes in relativis-

tic S-matrix theory, thus paving the way for phenomelogical applications of Regge theory.

We will show that OPE coe�cients in unitary conformal field theories are of a similar

type: they are not independent from each other, but rather organize into rigid analytic

functions. Furthermore, they can be extracted from a “discontinuity” which would naively

seem to annihilate each individual contribution.
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⇒ can write coefficients as integral over branch cut

⇒ coefficients fJ are analytic in J (& bounded at large Im J)

[for odd/even J separately]

0



Resumming series gives Kramers-Kronig relation:

 
Ex:   Re(f) ~ phase velocity of light  
       Im(f) ~ absorption by medium

Absorptive part determines propagation

f(E) = f(1) +

Z

|E0|>1

dE0 Disc f(E0)

2⇡(E0 � E � i0)

Causality: ‘no instantaneous action at a distance’.  
Forces mediated by exchanging excitations.
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3D Ising spectrum: ‘experimental’ evidence  
for a CFT Kramers-Kronig relation!



 SO(3) partial waves:

disp. relation: M(s, t) =

Z
dt0

⇡(t� t0)
ImM(s, t0)

+(t $ u)

foundation of Regge theory

+(�1)j(t $ u)

+

=

analyticity in spin

aj(s) =

∫ 1

−1
d cos θ Pj(cos(θ))M(s, t(cos θ))

aj(s) =

∫ ∞

1
d cosh ηQj(cosh(η))ImM

[Froissart-Gribov ~60]

Froissart-Gribov formula: analyticity for SO(3) partial waves



Euclidean Lorentzian

SO(2)

SO(3)

SO(d+1,1) SO(d,2)

Rotation symmetry:

SO(1,1)

SO(2,1)

Conformal symmetry:

Gj,�(z, z̄)

e�j⌘

Qj(cosh ⌘)Pj(cos ✓)

cos(j✓)

Taylor series:
E�JEJ

????????

dispersion relation 
for CFT data

[Froissart-Gribov ~’60]

Generalizing it to CFT
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A very physical problem:  
 

‘reconstruct CFT data from absorptive part’

mapped to group theory!



« conformal blocks » G = solutions to 
quadratic (and quartic) Casimir eqs.

(No closed form for non-even D, but good series expansions)

Section 6 contains concluding remarks. A lengthy appendix A details formulas for handling

conformal blocks in various dimensions, while appendix B details tests in the 2D Ising model.

2 Review and main ingredients

2.1 Four-point correlator and conformal blocks

We will be interested in the correlator of four conformal primary operators (which we will

take to be scalars for simplicity). Up to an overall factor, it is a function of cross-ratios only:

hO4(x4) · · · O1(x1)i =
1

(x212)
1
2 (�1+�2)(x234)

1
2 (�3+�4)

✓
x214
x224

◆a✓
x214
x213

◆b

G(z, z̄) (2.1)

where here and below a = 1
2(�2 ��1), b =

1
2(�3 ��4), and z, z̄ are conformal cross-ratios

zz̄ =
x212x

2
34

x213x
2
24

, (1� z)(1� z̄) =
x223x

2
14

x213x
2
24

. (2.2)

The operator product expansion (OPE) produces a series expansion around the limit where

two points coincide. The expansion in the s-channel (between 1 and 2) reads

G(z, z̄) =
X

J,�

f12Of43O GJ,�(z, z̄) (2.3)

where the sum runs over the spin J and dimension � of the exchanged primary operator

O. The conformal blocks G are special functions which resum derivatives (descendants) of

O. They are eigenfunctions of the quadratic and quartic Casimir invariants (A.2) of the

conformal group. It will be useful to use blocks normalized so that, at small z ⌧ z̄:

GJ,�(z, z̄) ! z
��J

2 z̄
�+J

2 (0 ⌧ z ⌧ z̄ ⌧ 1) . (2.4)

The same normalization was used in [11]. The angular dependence when z and z̄ are both

small but of comparable magnitude can be expressed in terms of Gegenbauer polynomials, see

eq. (A.8). In even spacetime dimensions, the conformal blocks admit closed form expressions

in terms of hypergeometric functions, for example

GJ,�(z, z̄) =
k��J(z)k�+J(z̄) + k�+J(z)k��J(z̄)

1 + �J,0
(d = 2) , (2.5)

GJ,�(z, z̄) =
zz̄

z̄ � z

⇥
k��J�2(z)k�+J(z̄)� k�+J(z)k��J�2(z̄)

⇤
(d = 4) . (2.6)

In both expressions, k� denotes the hypergeometric function

k�(z) = z̄�/2 2F1(�/2 + a,�/2 + b,�, z) . (2.7)

Since four points can always be mapped to a plane via a conformal transformation, z

and z̄ can be viewed as coordinates on a two-dimensional plane. In fact it will be convenient
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Ex, in 4D:
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Hint:  solution is some SO(d,2)  Weyl reflection:

which are the eigenvalues of the following di↵erential operators:

C2 = Dz +Dz̄ + (d� 2)
zz̄

z � z̄
[(1� z)@z � (1� z̄)@z̄] ,

C4 =

✓
zz̄

z � z̄

◆d�2

(Dz �Dz̄)

✓
zz̄

z � z̄

◆2�d

(Dz �Dz̄) .
(A.2)

Here

Dz = z
2
@z(1� z)@z � (a+ b)z2@z � abz (A.3)

with a = �1
2�12, b =

1
2�34.

Since we will be interested in various analytic continuations, it is useful to consider the

most general solution to these equations. Let us also assume that j and � are generic non-

integer numbers (such that j ±� are also non-integer) – the non-generic cases will then be

obtained as limits. From the di↵erential equations, it is easy to see that the solutions can

then be labelled in terms of their exponents in the regime 0⌧ z ⌧ z̄ ⌧ 1:

g
pure
j,� = z

��j
2 z̄

�+j
2 ⇥ (1 + integer powers of z/z̄, z̄) . (A.4)

There are in fact eight independent solutions, which correspond to the fact that the Casimir

eigenvalues (A.1) are invariant under the three permutations:

j !2� d� j, � ! d��, � ! 1� j . (A.5)

A.1 Expansion around the origin

To make contact with the conformal blocks Gj,� used in the main text, we note that in the

limit zz̄ ! 0 the dependence on the ratio z/z̄ is controlled by the Gegenbauer di↵erential

equation with x = cos ✓ = 1
2(
p
z/z̄ +

p
z̄/z):

g
pure
j,� = (zz̄)

�
2 (fj(x) +O(zz̄)),

⇥
(1� x

2)@2
x � (d� 1)x@x + j(j + d� 2)

⇤
fj(x) = 0 .

(A.6)

This generalizes to d-dimension the spherical harmonics, e.g. Legendre polynomials. This

is physically unsurprising since in Euclidean kinematics x is the cosine of an angle. Our

blocks have the asymptotics where the (rescaled) Gegenbauer polynomial is normalized so

that C̃j(1) = 1:

Gj,� = (zz̄)�/2
C̃j(x) + . . . ,

C̃j(x) ⌘
�(j + 1)�(d� 2)

�(j + d� 2)
C

d/2�1
j (x) = 2F1

�
� j, j + d� 2, d�1

2 ,
1�x
2

�
.

(A.7)

In Lorentzian kinematics x is better thought as the cosh of a boost and the two possible

large-x exponents are x
j and x

�j�d+2. Working out the asymptotics of the C̃j we thus get

Gj,�(z, z̄) =
2d�3�(d�1

2 )
p
⇡

"
�(d�2

2 + j)

�(d� 2 + j)
g
pure
j,� (z, z̄) +

�(�d�2
2 � j)

�(�j)
g
pure
�j�d+2,�(z, z̄)

#
. (A.8)

– 7 –

which are the eigenvalues of the following di↵erential operators:

C2 = Dz +Dz̄ + (d� 2)
zz̄

z � z̄
[(1� z)@z � (1� z̄)@z̄] ,

C4 =

✓
zz̄

z � z̄

◆d�2

(Dz �Dz̄)

✓
zz̄

z � z̄

◆2�d

(Dz �Dz̄) .
(A.2)

Here

Dz = z
2
@z(1� z)@z � (a+ b)z2@z � abz (A.3)

with a = �1
2�12, b =

1
2�34.

Since we will be interested in various analytic continuations, it is useful to consider the

most general solution to these equations. Let us also assume that j and � are generic non-

integer numbers (such that j ±� are also non-integer) – the non-generic cases will then be

obtained as limits. From the di↵erential equations, it is easy to see that the solutions can

then be labelled in terms of their exponents in the regime 0⌧ z ⌧ z̄ ⌧ 1:

g
pure
j,� = z

��j
2 z̄

�+j
2 ⇥ (1 + integer powers of z/z̄, z̄) . (A.4)

There are in fact eight independent solutions, which correspond to the fact that the Casimir

eigenvalues (A.1) are invariant under the three permutations:

j !2� d� j, � ! d��, � ! 1� j . (A.5)

A.1 Expansion around the origin

To make contact with the conformal blocks Gj,� used in the main text, we note that in the

limit zz̄ ! 0 the dependence on the ratio z/z̄ is controlled by the Gegenbauer di↵erential

equation with x = cos ✓ = 1
2(
p
z/z̄ +

p
z̄/z):

g
pure
j,� = (zz̄)

�
2 (fj(x) +O(zz̄)),

⇥
(1� x

2)@2
x � (d� 1)x@x + j(j + d� 2)

⇤
fj(x) = 0 .

(A.6)

This generalizes to d-dimension the spherical harmonics, e.g. Legendre polynomials. This

is physically unsurprising since in Euclidean kinematics x is the cosine of an angle. Our

blocks have the asymptotics where the (rescaled) Gegenbauer polynomial is normalized so

that C̃j(1) = 1:

Gj,� = (zz̄)�/2
C̃j(x) + . . . ,

C̃j(x) ⌘
�(j + 1)�(d� 2)

�(j + d� 2)
C

d/2�1
j (x) = 2F1

�
� j, j + d� 2, d�1

2 ,
1�x
2

�
.

(A.7)

In Lorentzian kinematics x is better thought as the cosh of a boost and the two possible

large-x exponents are x
j and x

�j�d+2. Working out the asymptotics of the C̃j we thus get

Gj,�(z, z̄) =
2d�3�(d�1

2 )
p
⇡

"
�(d�2

2 + j)

�(d� 2 + j)
g
pure
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pure
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� ! j + d� 1

Group theory: Can you fill the missing box?

SO(d+1,1) SO(d,2)Gj,�(z, z̄) ????????

dispersion relation 
for CFT data



Calculation: split harmonic function F  
into pieces which vanish in each Regge limit:

 24

Fj,�(z, z̄) = F (+)
j,� + F (�)

j,�

2 cos(j✓) = eij✓ + e�ij✓

⇒

⇠ e�|✓|

(✓ ! +i1)

⇠ e�|✓|

(✓ ! �i1)
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8 constraints, 4 parameters,  
fingers crossed…



s-channel  
OPE coefficients

absorptive 
part

block with  
J and Δ 

exchanged

converges for J>1 (boundedness in Regge limit)

Lorentzian inversion formula

[SCH ’17]

c(J,�) =

Z

⌃

⇥
G�+1�d,j+d�1

⇤
⇥

⇥
dDiscG

⇤

[see also: Simmons-Duffin, Stanford& Witten;  
Kravchuk& Simmons-Duffin ‘18]

causal  
diamond



x2
x3

x4
x1

What’s ‘absorptive part’?

h0|�2�3�1�4|0i ⌘ GE

Positive & bounded

dDiscG ⌘ 1
2 h0|[�2,�3][�1,�4]|0i

cf: [Maldacena, Shenker&Stanford ‘bound on chaos’] 
[Hartman,Kundu&Tajdini ‘proof of ANEC’]

h0|T�1 · · ·�4|0i ⌘ G = GE + iM
h0|T̄�1 · · ·�4|0i ⌘ G⇤ = GE � iM⇤

dDiscG ≡ GE − 1
2G− 1

2G
∗ = “ImM”

equal to double-commutator:



Outline
1. Conformal field theories:  

-Numerical bootstrap and spectrum 

2. Lorentzian inversion formula:  
- Why operators are analytic in spin 
- Group theory problem: from SO(3) to SO(d,2)

3. Applications:  
- Large-spin expansions, and extension to J= 0  
- CFTs dual to gravity: causality&bulk locality

✓

✓



Large-spin expansion

Simplest at large-J: integral pushed to corner

large spin in s-channel  ↔ low twist in t-channel

⇒ Solve crossing in asymptotic series in 1/J
[Komargodski&Zhiboedov,  

Fitzpatrick,Kaplan,Poland&Simmons-Duffin,
Alday&Bissi&…,  

Kaviraj,Sen,Sinha&…,
Alday,Bissi,Perlmutter&Aharony,…]

(z, z̄) ! (0, 1)

Analyticity in spin:  organizing principle for CFT spectrum



X
Coefficient [     ] =

Z

large J dominated by lowest twists ⌧ 0 = �0 � J 0

(J 0,�0)

(J 0,�0)

⇠
Z

(1� z̄)⌧
0
⇠ J�⌧ 0

Insert cross-channel OPE in inversion formula:



Large-spin limit in 3D Ising

j +�

2

2��

where we used equation (5.48) for the Jacobian @h

@`
that relates f��[��]0 to ���[��]0 . The

actual operator dimensions are determined by solving h� 2h� � �(h) = 0, 2, 4, . . . .

A comparison between the above formula and numerics for ⌧[��]0 = 2��+2�[��]0 is shown
in figure 7. The discrepancy between analytics and numerics is 3 ⇥ 10�3 and 5 ⇥ 10�4 for
spins ` = 2, 4, respectively, and ⇠ 5 ⇥ 10�5 for ` > 4. Including additional higher-twist
operators (primaries or descendants) in (6.1) and (6.2) does not improve the fit for low
spins, and barely a↵ects it for high spins.

10 20 30 40
h

1.00

1.01

1.02

1.03

1.04
τ

τ[σσ]0(h)

Figure 7: A comparison between the analytical prediction (6.5) (blue curve) and numerical
data (blue dots) for ⌧[��]0 . The two agree with accuracy 3 ⇥ 10�3 and 5 ⇥ 10�4 for spins
` = 2, 4, respectively, and ⇠ 5⇥ 10�5 for ` > 4. The grey dashed line is the asymptotic value
⌧ = 2��. The curve (2.3) from [1] looks essentially the same.

6.1.1 Di↵erences from [1]

Let us comment briefly on the (inconsequential) di↵erences between the above calculation
and the series (2.3) computed in [1]. Firstly, we have not included descendants of ✏, T ,

namely terms of the form W (0)����
O,m

and V (0)����
O,m

with m � 1, whereas [1] included descen-
dants at first order in z. This is because it doesn’t make sense to include level-1 descendants
of ✏, T without also including the double-twist operators [✏T ]0, [TT ]0, which contribute at
the same order in the large-h expansion. Also, because we organize everything as a series in
y instead of z, the contributions of descendants will di↵er somewhat (though the sum over

32

stress 
tensor 

J=2

New: - 1/J expansion obtained from convergent integral  
         - No ‘stick-outs’  
         - any op. with J>1 must be on a trajectory

𝜎

𝜎
1,𝜀,T

𝜎

𝜎
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Best Be
fore J>

 1

What about J=0?
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6.2.3 Comparison to numerics

We plot the twists ⌧[�✏]0 = �� + �✏ + 2�[�✏]0 in figure 13 and OPE coe�cients f�✏[�✏]0 in
figure 14, comparing the formulae (6.33) and (6.34) to numerical results. In both cases,
analytics matches numerics to high precision (⇠ 10�4) at large h, and moderate precision
(< 10�2) for all h. The agreement is particularly impressive because the corrections are
large compared to Mean Field Theory, in contrast to the case of [��]0. Correctly summing
the family [��]0 is crucial for achieving this.

10 20 30 40
h

1.7

1.8

1.9

2.0

2.1

2.2
τ

τ[σϵ]0(h)

Figure 13: Comparison between numerical data and the analytical prediction (6.33, 6.34) for
⌧[�✏]0 . The blue curve and points correspond to even-spin operators and the orange curve and
points correspond to odd-spin operators. The dashed line is the asymptotic value ⌧ = ��+�✏.

7 Operator mixing and the twist Hamiltonian

7.1 Allowing for mixing

The naive large-h expansion of section 5 describes the operators [��]0 and [�✏]0 nicely.
However, it fails badly for [��]1 and [✏✏]0. As mentioned in the introduction, the numerics
indicate large mixing between these families. As a striking illustration, we plot the ratios

42

+(�1)j

𝜎𝜀

𝜎𝜀

𝜀
Z2-odd operators

𝜎𝜀

𝜎 𝜀

J even

J odd

Works great for J>1, but seems hopeless for J=0!

�

𝜎
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What’s analytic in spin is generating function c(J,∆),  
whose poles encode spectrum:

c(J,�0) !
f2
OO!J,n

���n(J)

Has shadow symmetry: � ! d��



� �̃

[�✏]0shadow
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+

+

-15 -10 -5 5 10 15
Δ -
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6

8
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12

14

J
Z_2 odd states ([σϵ]_0)

Simple Padé  
fit passes 

within 15%
of shadow!

[Brower, Polchinski, Strassler& Tan]
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In 3D Ising:

 1. the shadow of 𝜎 is on the [𝜎𝜀]0+ trajectory,  
 that of 𝜀 on (a branch of) [𝜎𝜎]0 

2. Residue of [𝜎𝜀]0- has a fine-tuned zero at J=1

3. Intercept J*<1 :  dDisc→0 in Regge limit  
(corrollary: spectrum is regular (non-chaotic))

Conjectures: 

lim
�!1

ha sin2(⇡�)i�
hai�

! 0

[cf: Zhiboedov+Turiaci ’18;  
Alday ’18]
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[work in progress:  Classens-Howe, Gobeil, Maloney& Zahraee]

To check conjectures numerically:

X
Coefficient [     ] =

Z

(J 0,�0)

(J 0,�0)

- Evaluate ‘block times block’ integral accurately  
     ⇒ either numerically, or use in (1-z) series

- Sum over (known!) cross-channel operators 
     ⇒ control truncation errors

✓



Outline
1. Conformal field theories:  

-Numerical bootstrap and spectrum 

2. Lorentzian inversion formula:  
- Why operators are analytic in spin 
- Group theory problem: from SO(3) to SO(d,2)

3. Applications:  
- Large-spin expansions, and extension to J= 0  
- CFTs dual to gravity: causality&bulk locality

✓

✓



s-channel  
OPE coefficients

absorptive 
part

c(J,�) =

Z

⌃

⇥
G�+1�d,j+d�1

⇤
⇥

⇥
dDiscG

⇤

Recall our Lorentzian inversion formula:

‘absorptive part’ especially simple in AdS/CFT!



Theories with AdS gravity duals have:

- Large-N expansion (small ℏ in AdS)

- Few light single-traces, all with small spin ≤2 
   (up to a very high dimension               )∆gap ≫ 1 [HPPS ‘09]



Theories with AdS gravity duals have:

- Large-N expansion (small ℏ in AdS)

- Few light single-traces, all with small spin ≤2 
   (up to a very high dimension               )∆gap ≫ 1

simple consequence for dDisc:

kills double-traces kills heavy

[HPPS ‘09]

theories with local  
AdS dual ⇔ dDisc saturated 

by few light primaries

dDiscG =
∑

J ′,∆′

sin2(π2 (∆
′ − 2∆))

(
1−√

ρ

1 +
√
ρ

)∆′+J ′ (
1−

√
ρ̄

1 +
√
ρ̄

)∆′−J ′



Cutting rules for dDisc in AdS/CFT:

=
P

⇥
single
traces

Figure 1. Correlators in any large-N theories can be reconstructed from singularities that are
saturated by single-trace operators. Theories with a gravity dual correspond to the case where the
sum is e↵ectively finite.

where the regular terms contain at most a single logarithm as v ! 0, in contrast with terms

which we will call “singular” due to either poles or double logarithms at v ! 0. So far the

discussion has been general. In the present paper we will consider solutions consistent with

crossing in a large central charge expansion, in the regime of large t’ Hooft coupling �:

H(u, v) = H(0)(u, v) +
1

c
H(1)(u, v) +

1

c2
H(2)(u, v) + · · · (2.9)

In this regime the intermediate operators contributing to H(u, v) are double trace operators

with twist four and higher. The pole terms as v ! 0 present on the r.h.s. of (2.8) arise

from the protected, single-trace sector. Following general arguments, we see that these poles

are consistent with, and actually require, the existence of double trace operators of twist

�� ` = 4+2n. As we will see, their precise form at c = 1 su�ces to fix the OPE coe�cients

to

⌦
a(0)

↵
n,`

= 2(`+ 1)(6 + `+ 2n) . (2.10)

We use the bracket to denote the sum over all operators of approximate twist 4 + 2n and

spin `, emphasizing the fact that in general many nearly-degenerate operators contribute.

As we take into account 1/c corrections both the scaling dimensions and OPE coe�cients of

individual operators acquire corrections

�n,` = 4 + 2n+ `+
1

c
�(1)n,` +

1

c2
�(2)n,` + · · · (2.11)

an,` = a(0)n,` +
1

c
a(1)n,` +

1

c2
a(2)n,` + · · · (2.12)

As we will see in the next two sections �(1)n,` and a(1)n,` are again fully determined by the singular

terms in (2.8). We obtain

⌦
a(0)�(1)

↵
n,`⌦

a(0)
↵
n,`

= � n
(1 + `)(6 + `+ 2n)

,
⌦
a(1)

↵
n,`

=
1

2
@n

⌦
a(0)�(1)

↵
n,`

, (2.13)
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light  
single-traces

[Alday& SCH ’17]

⇥=
P

single
traces

Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:

H(2)(v, u) =
1

8
log2 v

X

n,`

⌦
a(0)

�
�(1)

�2↵
n,`

gn,`(v, u) + regular (2.14)

In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as

c̃(`,�) =
1 + (�1)`

4
̃(�+`

2 )

Z 1

0

dz

z2
dz

z2

✓
z � z

zz

◆2

g̃`+3,��3(z, z) dDisc [G(z, z)], (3.1)

with ̃(h) = �(h)4

2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect
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p

p’

one-loop:

tree:

Excitations = particles in AdS!



dDiscG

1⇠ 1/�2
gap

0

1

⇠ 1/N2
c

light
(known)

unknown
(heavy&non-  
perturbative)

cj,� =

Z
Fj,� dDiscG

⇢ ⇠ ⇢̄

‘minimal  
solution’

correction
small for j>2

= cj,�
���
light

+ cj,�
���
heavy

[see also: Alday,Bissi&Perlmutter;  
Li,Meltzer&Poland]

Nonperturbative picture:



‘Heavy’ part depends on nonperturbative UV completion.  

It’s weighed by              .  Use positivity + boundedness:

“
�1

s��2
gap

” 1

�2
gap

+
s

�4
gap

+ . . .

��c(j, d
2 + i⌫)heavy

��  1

cT

#

(�2
gap)

j�2

⇠ (⇢⇢̄)J/2

Establishes EFT power-counting in AdS:  HPSS conjecture
[for 4pt correlators]



for strongly coupled N=4 SYM dual to AdS5xS5 :

Mixing problem between different S5 spherical harmonics 
has revealed amazingly simple eigenvalues:

⇒Amazing structures await in non-planar N=4 SYM!

SO(4,2)xSO(6)∈ SO(10,2)  symmetry unifies all harmonics
[Anh-Khoi Trinh& SCH, to appear]

We confirm this conjecture, and make a new one:

[Aprile,Drummond,Heslop&Paul ‘18]

� = �⇡

c

�(8)

(JJe↵ + 1)6
+O(1/c2)



• Dispersion relation for OPE coefficients:

• -Organizes spectrum into analytic families,  
 works for all operators in 3D Ising?  
-Efficient cutting rules for AdS/CFT  

• Open directions:  
- interplay with numerical bootstrap?  
- why/when does it work for J≤1?  
- apply to more strongly coupled CFTs; 
  trees and loops in AdS:  AdS5xS5 hidden symmetries?

Summary

s-channel cross-channels
c(j,�) ⌘

Z 1

0
d⇢d⇢̄ g�,j dDiscG


