dispersion relation for

 conformal theories
Simon Caron-Huot

McGill University
1703.00278 'analyticity in spin in conformal theories' on: I7II. 0203 I with Fernando Alday;
work in progress ($w /$ Anh-Khoi Trinh;
Yan Gobeil, Alex Maloney \& Zahra Zahraee)
talk at «Algebraic methods in mathematical physics» Centre de Recherches Mathématiques, Montréal, 16 Juillet 2018

Outline

I. Conformal field theories:
-Numerical bootstrap and spectrum
2. Lorentzian inversion formula:

- Why operators are analytic in spin
- Group theory problem: from $\mathrm{SO}(3)$ to $\mathrm{SO}(\mathrm{d}, 2)$

3. Applications:

- Large-spin expansions, and extension to J= 0
- CFTs dual to gravity: causality\&bulk locality

We'll be interested in conformal field theories in $d \geq 2$

Any QFT defines correlators of local operators:

$$
\langle 0| \mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{n}\left(x_{n}\right)|0\rangle
$$

CFT: scale and conformal invariant
-Ubiquitous near second-order phase transitions;
-Short-distance limit of strong force (QCD);
\Rightarrow important mileposts in the space of all QFTs!

3D Ising Model: IR fixed point of Z2-symmetric scalar field theory

$$
L=(\partial \phi)^{2}+m^{2} \phi^{2}+\lambda \phi^{4}\left[+\kappa \phi^{6} \ldots\right]
$$

free scalar perturbed by $m^{2} \phi^{2}+\lambda \phi^{4}$

[slide from Rychkov]

Lightest operators: $\begin{gathered}\Delta_{\sigma}=0.5181489(10), \quad \mathbf{Z}_{2} \text { odd } \\ \Delta_{\epsilon}=1.412625(10), \quad \mathbf{Z}_{2} \text { even }\end{gathered}$

CFT: any 3 points can be mapped to $0,1, \infty$.
2- and 3-points correlators fixed by symmetry, up to \#'s

$$
\begin{aligned}
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right)\right\rangle & =\frac{\delta_{i j}}{\left|x_{1}-x_{2}\right|^{2 \Delta_{i}}} \quad \text { «dimensions» } \\
\left\langle\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}\right\rangle & \propto f_{i j k} \quad \text { «OPE coefficients» }
\end{aligned}
$$

4-points determined by OPE:
$\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle=\sum_{k} f_{12 k} f_{34 k} G_{J_{k}, \Delta_{k}}(z, \bar{z})$

CFT $=$ solution $\left\{\Delta_{i}, f_{i j k}\right\}$ to crossing equation

= infinite constraints on infinite unknowns!

'bootstrap'
key for (unitary) $\mathbf{d}>\mathbf{2}$: coefficients are positive $\left(f_{i j k}\right)^{2} \geq 0$
[Rattazi,Rychkov,Tonni \&Vichi ‘08
Allowed Region Assuming $\Delta\left(\epsilon^{\prime}\right) \geq 3.4$

adding inequalities seems to isolate physical models!

Consistency alone determines critical exponents!

spin $\& \mathbb{Z}_{2}$	name	Δ	OPE coefficient
$\ell=0, \mathbb{Z}_{2}=-$	σ	$0.518154(15)$	
$\ell=0, \mathbb{Z}_{2}=+$	ϵ	$1.41267(13)$	$f_{\sigma \sigma \epsilon}^{2}=1.10636(9)$
	ϵ^{\prime}	$3.8303(18)$	$f_{\sigma \sigma \epsilon^{\prime}}^{2}=0.002810(6)$
$\ell=2, \mathbb{Z}_{2}=+$	T	3	$c / c_{\text {free }}=0.946534(11)$
	T^{\prime}	$5.500(15)$	$f_{\sigma \sigma T^{\prime}}^{2}=2.97(2) \times 10^{-4}$

Numerical methods also probe the spectrum

operators in the $\sigma \times \sigma$ and $\epsilon \times \epsilon$ OPEs

Lowest trajectory in 3D Ising

[Alday\&Zhiboedov '15; Plot from Simmons-Duffin 'I6]

In stat.mech, hard to understand such a continuous curve we'll argue it's origin is: 3D Ising = unitary Minkowski CFT

Euclidean 3D CFT \Rightarrow Lorentzian 2+ID CFT
 Wick rotation

Peilippe Di Francenco Pierre Mathieu
David Sinetchal

Conformal Field Theory

The Analytic
S-Matrix
R.J.EDEN
$+$ P.V.LANDSHOFF
D.I.OLIVE
$=$ CFT dispersion relation

Outline

I. Conformal field theories:

-Numerical bootstrap and spectrum \checkmark
2. Lorentzian inversion formula:

- Why operators are analytic in spin
- Group theory problem: from $\mathrm{SO}(3)$ to $\mathrm{SO}(\mathrm{d}, 2)$

3. Applications:

- Large-spin expansions, and extension to J= 0
- CFTs dual to gravity: causality\&bulk locality

Consider four points in space-time at $(1,-1, \rho,-\rho)$
[Rychkov\& Hogervorst 'I3]

When all spacelike, OPE $\sim \sum f^{2} \rho^{\#} \bar{\rho}^{\#}$ converges

Now boost $(\rho,-\rho)$

large boost $=$ 'Regge limit'

OPE diverges, yet
correlator stays bounded [cross-channel OPE]
That gives 'analyticity in spin'

Toy example: amplitude $f(E)$ that's:

I.Analytic in cut plane
2. $|f(\mathrm{E})|$ bounded at large $|\mathrm{E}|$
3. Has Taylor series at small E

$$
f(E)=\sum_{J=0}^{\infty} f_{J} E^{J}
$$

(=Correlator with $E=\sqrt{\bar{\rho} / \rho}=\exp$ (boost))

Q:What does this 'nice behavior' imply for series?
\Rightarrow can write coefficients as integral over branch cut

\Rightarrow coefficients f_{j} are analytic in J (\& bounded at large Im J)
[for odd/even J separately]

Resumming series gives Kramers-Kronig relation:

$$
f(E)=f(\infty)+\int_{\left|E^{\prime}\right|>1} \frac{d E^{\prime} \operatorname{Disc} f\left(E^{\prime}\right)}{2 \pi\left(E^{\prime}-E-i 0\right)}
$$

Ex: $\operatorname{Re}(f) \sim$ phase velocity of light $\operatorname{lm}(f) \sim$ absorption by medium

Absorptive part determines propagation

Causality:'no instantaneous action at a distance'. Forces mediated by exchanging excitations.

3D Ising spectrum: 'experimental’ evidence for a CFT Kramers-Kronig relation!

Froissart-Gribov formula: analyticity for $\mathrm{SO}(3)$ partial waves
SO(3) partial waves: $a_{j}(s)=\int_{-1}^{1} d \cos \theta P_{j}(\cos (\theta)) \mathcal{M}(s, t(\cos \theta))$ $+$ disp. relation: $\quad \mathcal{M}(s, t)=\int \frac{d t^{\prime}}{\pi\left(t-t^{\prime}\right)} \operatorname{Im} \mathcal{M}\left(s, t^{\prime}\right)$ $+(t \leftrightarrow u)$ =
analyticity in spin $a_{j}(s)=\int_{1}^{\infty} d \cosh \eta Q_{j}(\cosh (\eta)) \operatorname{Im} \mathcal{M}$

$$
+(-1)^{j}(t \leftrightarrow u)
$$

[Froissart-Gribov ~60]
foundation of Regge theory

Generalizing it to CFT

Euclidean

Lorentzian

Taylor series:

$$
E^{J} \quad E^{-J}
$$

Rotation symmetry:

$$
\begin{array}{lll}
\mathbf{S O}(2) \cos (j \theta) & \longrightarrow & e^{-j \eta} \\
\mathbf{S O}(3) & P_{j}(\cos \theta) & \longrightarrow \\
Q_{j}(\operatorname{losh} \eta) & \mathbf{I}) \\
\mathbf{S O}(2, \mathbf{I})
\end{array}
$$

[Froissart-Gribov ~'60]
Conformal symmetry:

$$
\begin{aligned}
& \mathrm{SO}(\mathrm{~d}+\mathrm{I}, \mathrm{I}) \quad G_{j, \Delta}(z, \bar{z}) \\
& \text { dispersion relation } \\
& \text { for CFT data }
\end{aligned}
$$

A very physical problem:

'reconstruct CFT data from absorptive part'

mapped to group theory!

« conformal blocks » $G=$ solutions to quadratic (and quartic) Casimir eqs.

Ex, in 4D:

$$
\begin{aligned}
G_{J, \Delta}(z, \bar{z}) & =\frac{z \bar{z}}{\bar{z}-z}\left[k_{\Delta-J-2}(z) k_{\Delta+J}(\bar{z})-k_{\Delta+J}(z) k_{\Delta-J-2}(\bar{z})\right] \\
k_{\beta}(z) & =\bar{z}^{\beta / 2}{ }_{2} F_{1}(\beta / 2+a, \beta / 2+b, \beta, z)
\end{aligned}
$$

(No closed form for non-even D, but good series expansions)

Group theory: Can you fill the missing box?

Hint: solution is some $\mathrm{SO}(\mathrm{d}, 2)$ Weyl reflection:

$$
\begin{gathered}
j \longleftrightarrow 2-d-j \\
\Delta \longleftrightarrow d-\Delta \\
\Delta \longleftrightarrow j+d-1
\end{gathered}
$$

Calculation: split harmonic function F into pieces which vanish in each Regge limit:

$$
\begin{gathered}
2 \cos (j \theta)=e^{i j \theta}+e^{-i j \theta} \\
\Rightarrow \quad F_{j, \Delta}(z, \bar{z})=F_{j, \Delta}^{(+)}+F_{j, \Delta}^{(-)} \\
\sim e^{-|\theta|} \\
(\theta \rightarrow+i \infty) \quad(\theta \rightarrow-i \infty)
\end{gathered}
$$

8 constraints, 4 parameters, fingers crossed...

Lorentzian inversion formula

$$
c(J, \Delta)=\int_{\substack{\text { causal } \\ \text { diamond }}}\left[G_{\Delta+1-d, j+d-1]} \uparrow[\mathrm{dDisc} G]\right.
$$

s-channel
OPE coefficients
block with
J and Δ
exchanged
absorptive part [SCH 'I7]
converges for $\mathrm{J}>\mathrm{I}$ (boundedness in Regge limit)
[see also: Simmons-Duffin, Stanford\& Witten; Kravchuk\& Simmons-Duffin ‘I8]

What's 'absorptive part'?

$$
\begin{gathered}
\langle 0| T \phi_{1} \cdots \phi_{4}|0\rangle \equiv G=G_{E}+i \mathcal{M} \\
\langle 0| \bar{T} \phi_{1} \cdots \phi_{4}|0\rangle \equiv G^{*}=G_{E}-i \mathcal{M}^{*}
\end{gathered}
$$

$$
\langle 0| \phi_{2} \phi_{3} \phi_{1} \phi_{4}|0\rangle \equiv G_{E}
$$

$\mathrm{dDiscG} \equiv G_{E}-\frac{1}{2} G-\frac{1}{2} G^{*}=" \operatorname{Im} \mathcal{M} "$
equal to double-commutator:

$$
\mathrm{dDisc} G \equiv \frac{1}{2}\langle 0|\left[\phi_{2}, \phi_{3}\right]\left[\phi_{1}, \phi_{4}\right]|0\rangle
$$

Positive \& bounded
cf: [Maldacena, Shenker\&Stanford 'bound on chaos'] [Hartman,Kundu\&Tajdini 'proof of ANEC']

Outline

I. Conformal field theories:

-Numerical bootstrap and spectrum \checkmark
2. Lorentzian inversion formula:

- Why operators are analytic in spin
- Group theory problem: from SO(3) to SO(d,2)

3. Applications:

- Large-spin expansions, and extension to J= 0
- CFTs dual to gravity: causality\&bulk locality

Large-spin expansion

Analyticity in spin: organizing principle for CFT spectrum

Simplest at large-J: integral pushed to corner $(z, \bar{z}) \rightarrow(0,1)$
large spin in s-channel \leftrightarrow low twist in t-channel
\Rightarrow Solve crossing in asymptotic series in I/J
[Komargodski\&Zhiboedov, Fitzpatrick,Kaplan,Poland\&Simmons-Duffin, Alday\&Bissi\&..., Kaviraj,Sen,Sinha\&..., Alday,Bissi,Perlmutter\&Aharony, ...]

Insert cross-channel OPE in inversion formula:

$$
\begin{aligned}
\text { Coefficient [Y] }= & \sum_{\left(J^{\prime}, \Delta^{\prime}\right)} \int> \\
& \left.\sim \int(1-\bar{z})^{\tau^{\prime}} \sim J^{-\tau^{\prime}}, \Delta^{\prime}\right)
\end{aligned}
$$

large J dominated by lowest twists $\tau^{\prime}=\Delta^{\prime}-J^{\prime}$

Large-spin limit in 3D Ising

$\tau_{[\sigma \sigma]_{0}}(\bar{h})$

New: - I/J expansion obtained from convergent integral

- No ‘stick-outs’
- any op. with J>I must be on a trajectory

Best Before J> 1

What about $\mathrm{J}=0$?

Z_{2}-odd operators

Works great for J>I, but seems hopeless for J=0!

What's analytic in spin is generating function $c(J, \Delta)$, whose poles encode spectrum:

$$
c\left(J, \Delta^{\prime}\right) \rightarrow \frac{f_{O O \rightarrow J, n}^{2}}{\Delta-\Delta_{n}(J)}
$$

Has shadow symmetry: $\Delta \rightarrow d-\Delta$

[Brower, Polchinski, Strassler\& Tan]

Z2 even states

(fit accounts for possible square-root branch point)

Conjectures:

In 3D Ising:
I. the shadow of σ is on the $[\sigma \varepsilon]_{0}{ }^{+}$trajectory, that of ε on (a branch of) $[\sigma \sigma]_{0}$
[cf: Zhiboedov+Turiaci ' 18 ; Alday 'I8]
2. Residue of $[\sigma \varepsilon]_{0}$ - has a fine-tuned zero at $\mathrm{J}=\mathrm{I}$
3. Intercept $\mathrm{J}^{*}<1:$ dDisc $\rightarrow 0$ in Regge limit (corrollary: spectrum is regular (non-chaotic))

$$
\lim _{\Delta \rightarrow \infty} \frac{\left\langle a \sin ^{2}(\pi \gamma)\right\rangle_{\Delta}}{\langle a\rangle_{\Delta}} \rightarrow 0
$$

Coefficient [Y] =

To check conjectures numerically:

- Evaluate 'block times block’ integral accurately \Rightarrow either numerically, or use in (I-z) series
- Sum over (known!) cross-channel operators
\Rightarrow control truncation errors
[work in progress: Classens-Howe, Gobeil, Maloney\& Zahraee]

Outline

I. Conformal field theories:
-Numerical bootstrap and spectrum \checkmark
2. Lorentzian inversion formula:

- Why operators are analytic in spin
- Group theory problem: from SO(3) to SO(d,2)

3. Applications:

- Large-spin expansions, and extension to J= 0
- CFTs dual to gravity: causality\&bulk locality

Recall our Lorentzian inversion formula:

‘absorptive part' especially simple in AdS/CFT!

Theories with AdS gravity duals have:

- Large-N expansion (small \hbar in AdS)
- Few light single-traces, all with small spin ≤ 2 (up to a very high dimension $\Delta_{\text {gap }} \gg 1$) [HPPS ‘09]

Theories with AdS gravity duals have:

- Large-N expansion (small \hbar in AdS)
- Few light single-traces, all with small spin ≤ 2 (up to a very high dimension $\Delta_{\text {gap }} \gg 1$) [HPPS ‘09] simple consequence for dDisc:

$$
\mathrm{dDisc} G=\sum_{J^{\prime}, \Delta^{\prime}} \sin ^{2}\left(\frac{\pi}{2}\left(\Delta^{\prime}-2 \Delta\right)\right)\left(\frac{1-\sqrt{\rho}}{1+\sqrt{\rho}}\right)^{\Delta^{\prime}+J^{\prime}}\left(\frac{1-\sqrt{\bar{\rho}}}{1+\sqrt{\bar{\rho}}}\right)^{\Delta^{\prime}-J^{\prime}}
$$

kills double-traces
kills heavy
theories with local AdS dual
dDisc saturated
$\Leftrightarrow \quad$ by few light primaries

Cutting rules for dDisc in AdS/CFT:

 tree:

one-loop:

Excitations = particles in AdS!

Nonperturbative picture:

 dDisc G

$c_{j, \Delta}=\int F_{j, \Delta} \mathrm{dDisc} G=\left.c_{j, \Delta}\right|_{\text {light }}+\left.c_{j, \Delta}\right|_{\text {heavy }}$
'minimal
solution'
correction small for $\mathrm{j}>2$
'Heavy' part depends on nonperturbative UV completion.
It's weighed by $\sim(\rho \bar{\rho})^{J / 2}$. Use positivity + boundedness:

$$
\left|c\left(j, \frac{d}{2}+i \nu\right)_{\text {heavy }}\right| \leq \frac{1}{c_{T}} \frac{\#}{\left(\Delta_{\text {gap }}^{2}\right)^{j-2}}
$$

Establishes EFT power-counting in AdS: HPSS conjecture

for strongly coupled $\mathrm{N}=4$ SYM dual to $\mathrm{AdS}_{5} \times \mathrm{S}_{5}$:
Mixing problem between different S_{5} spherical harmonics has revealed amazingly simple eigenvalues:

$$
\gamma=-\frac{\pi}{c} \frac{\Delta^{(8)}}{\left(J_{\mathrm{Jeff}}+1\right)_{6}}+O\left(1 / c^{2}\right)
$$

[Aprile,Drummond,Heslop\&Paul ‘‘8]
We confirm this conjecture, and make a new one:
$\mathrm{SO}(4,2) \times S O(6) \in \mathrm{SO}(\mathrm{I} 0,2)$ symmetry unifies all harmonics [Anh-Khoi Trinh\& SCH, to appear]
\Rightarrow Amazing structures await in non-planar N=4 SYM!

Summary

- Dispersion relation for OPE coefficients:

$$
\underset{\text { s-channel }}{c(j, \Delta)} \equiv \int_{0}^{1} d \rho d \bar{\rho} g_{\Delta, j} \mathrm{dDisc} G
$$

- -Organizes spectrum into analytic families, works for all operators in 3D Ising?
-Efficient cutting rules for AdS/CFT
- Open directions:
- interplay with numerical bootstrap?
- why/when does it work for $J \leq I$?
- apply to more strongly coupled CFTs; trees and loops in $\operatorname{AdS}: \operatorname{AdS}_{5} \times S_{5}$ hidden symmetries?

