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Fullerenes
A fullerene is a polyhedral molecule consisting only of carbon atoms and
containing only pentagonal and hexagonal faces.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Fullerenes
A fullerene is a polyhedral molecule consisting only of carbon atoms and
containing only pentagonal and hexagonal faces.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Fullerene graphs
A fullerene graph is a planar, 3-regular and 3-connected graph, twelve of whose
faces are pentagons and any remaining faces are hexagons.
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Number of fullerenes
n Isomers IPR isomers

20 1 -
30 3 -
40 40 -
50 271 -
60 1812 1
70 8149 1
80 31924 7
90 99918 46

100 285914 450
110 713319 2355
120 1674171 10774
130 3580637 39393
140 7341204 121354
150 14059173 335569
160 26142839 836497
170 46088148 1902265
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Benzenoids and benzenoid graphs
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Resonance in benzenoids

C

C C

CC

CH H

H

H

C

C C

CC

CH H

H

H

H

H

H



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Stability of benzenoid compounds

4 05



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Perfect matchings and stability of benzenoids

A matching M in a graph G is a set of edges from E(G) such that no two edges
from M have a vertex in common.

A matching M is perfect if every vertex of G is incident with an edge from M .

Φ(G) denotes the number of perfect matchings in G.

For benzenoids B1 and B2 and their corresponding benzenoid graphs B1 and B2
we have:

Φ(B1) > Φ(B2) =⇒ B1 is “more stable” than B2.
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Number of perfect matchings in fullerene
graphs

C60 has 1812 isomers.

Φ(C60 : 1812(Ih)) = 12500 (21) – The most stable isomer.

Φ(C60 : 1(D5h)) = 16501 (1) – The “least stable” isomer.
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Candidates

• Independence number

• Second moment of the hexagon signature

• Separator

• The smallest eigenvalue

• Combinatorial curvature

• Bipartite edge frustration

• Bipartivity

• Average hexagon abundance
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Stability of benzenoid compounds

4 05
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Partition of π-electrons
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Importance and redundancy of an edge

Let G be a graph with a perfect matching and e an edge of G. Importance of e,
denoted by ι(e), is the number of perfect matchings of G that contain e, while the
redundancy of e, denoted by ρ(e), is the number of perfect matchings of G that
do not contain e.

ι(e) = Φ(G\e)

ρ(e) = Φ(G− e)

ι(e) + ρ(e) = Φ(G) for every e ∈ E(G)

∑
e={u,v} ι(e) = Φ(G) for every v ∈ V (G)
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Richness and abundance of a face

Let G be a planar graph with a given plane embedding and F a face of G. The
richness of F with respect to a perfect matching M is the number of electrons
given to F by M .

The abundance π(F ) of a face F is the richness of F averaged over all perfect
matchings of G.

Randić, Balaban, Gutman, et al considered π−electron content of rings in
polycyclic conjugated hydrocarbons.

Theorem

π(F ) =

∑
e∈∂F ι(e)

Φ(G)
.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Average n-gon abundance

Let G be a fullerene graph on n vertices.

π6(G) = 1
n/2−10

∑
H π(H)

π5(G) = 1
12

∑
P π(P )
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Prisms
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ι(r) = Fn, ι(c) = Fn−1 + 1+(−1)n

2

Φ(Zn) = ι(r) + 2ι(c) = Fn+1 + Fn−1 + 1 + (−1)n
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Prisms

π(B) =
n · ι(c)
Φ(Zn)

, π(S) = 2
ι(r) + ι(c)

Φ(Zn)

lim
n→∞

π(B) =
n

φ2 + 1
, lim

n→∞
π(S) = 2− 2

φ2 + 1

Here φ = 1+
√

5
2 is the Golden Section.

Under uniform distribution, a face with n vertices receives n/3 electrons. Hence,
the bases are poorer, and the sides are richer in π-electrons than under the
uniform distribution.
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Barrels
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Φ(Bn) = ι(r) + 2ι(c) = ι(r) + 2ι(e) =⇒ ι(c) = ι(e)

π(B) =
n · ι(c)
Φ(Bn)

, π(P ) = 2− ι(c)

Φ(Bn)
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Barrels

For ι(c) one obtains
ι(c) = rn−1 + sn−3,

where rk and sk satisfy following recurrences:

rk = rk−1 + 2rk−2 − rk−4 for k ≥ 5
r1 = 1, r2 = 3, r3 = 5, r4 = 10.

sk = 2sk−2 + sk−3 − sk−4 for k ≥ 7
s3 = 1, s4 = 3, s5 = 4, s6 = 5.

Asymptotic behavior of rn and sn is given by

rn ∼ γn, sn ∼ δn,

where γ ≈ 1.905 and δ ≈ 1.490 are obtained by solving the characteristic
equations x4 − x3 − 2x2 + 1 = 0 and x4 − 2x2 − x + 1 = 0, respectively.
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Barrels

Now

lim
n→∞

ι(c)

Φ(Bn)
=

2γ2 − 2

γ3 + 4γ2 − 4
≈ 0.302 = τ∞.

Hence,
lim
n→∞

π(B) = n · τ∞, lim
n→∞

π(P ) = 2− τ∞.

Again, the bases are poorer, and the side faces richer in π-electrons than under
the uniform distribution.
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Tubular fullerenes C10n : 1
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Again, all circular edges are equally important.
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Explicit formulas for C10n : 1

ι(r) = 5n−1 + 3

[(
5+
√

5
2

)n−2
+

(
5−
√

5
2

)n−2
]

+ 1

ι(c) = 2 · 5n−1 +
(

5+
√

5
2

)n−2
+

(
5−
√

5
2

)n−2

π(PP ) → 2, π(CPP ) → 1.6, π(H) = 2

Φ(C10n : 1) = ι(r) + 2ι(c)

Φ(C10n : 1) = 5n + 5

[(
5+
√

5
2

)n−2
+

(
5−
√

5
2

)n−2
]

+ 1
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Average abundances in C60

π6(C60 : 1812(Ih)) = 2.16, π5(C60 : 1812(Ih)) = 1.40

π6(C60 : 1(D5h)) = 2.00, π5(C60 : 1(D5h)) = 1.67

Observation

π6(C60 : 1(D5h)) < π6(C60 : p) < π6(C60 : 1812(Ih))

The same pattern is observed for C70.
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Hypothesis

π6(Cn : p) > π6(Cn : q) =⇒ Cn : p is more stable than Cn : q.
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Test space
IPR isomers – experimentally verified

• C60 : 1(Ih)

• C70 : 1(D5h)

• C76 : 1(D2)

• C78 : 1(D3), 2(C2v), 3(C2v)

• C80 : 1(D5d), 2(D2)

• C82 : 3(C2)

• C84 : 22(D2), 23(D2d)

Non-IPR isomers – energy calculations

• C32 : 6(D3)

• C36 : 15(D6h)

• C40 : 38(D2), 39(D5d)
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Results
n (# of isomers) Isomer no. π(Cn)

60 ( 1) 1 1
70 ( 1) 1 1
76 ( 2) 1 1
78 ( 5) 1 3

2 2
3 4

80 ( 7) 1 1
2 2

82 ( 9) 3 3
84 (24) 22 16

23 15

32 ( 6) 6 1
36 (15) 15 15
40 (40) 38 2

39 1
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Comments and conclusions

Stability of fullerenes is likely to depend on both local and global properties in an
intricate way.

Fullerene graphs are all very much alike.

No indicator considered so far seems to be perfect.

“Law of Small Numbers”

Further search for more sensitive generic indicators is needed.

Indicators based on pentagon and hexagon abundances are promising, since
they offer a possibilty of quantifying local effects.
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Further developments

Bi-indices
(M. Randić, Bled 2007)

Generalized combinatorial curvature
(T. Reti, E. Bitay, Prediction of Fullerene Stability Using Topological Descriptors,
Materials Science Forum 537–538 (2007) 439–448)

Locally sensitive indicators based on partitons of π-electrons

...
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faces of polyhedral carbon aggregates, J. Math. Chem., 43 (2008) 773–779.
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