On generalized sparse grids

Michael Griebel

Outline

- 1. High-dimensional problems and curse of dimensionality
- 2. Dimension decomposition of functions
- 3. Sparse grids
- 4. Energy-norm based sparse grids
- 5. Adaptive sparse grids
- 6. Applications

High(er) dimensional problems

- Classical physics: most problems in 3d space+time, compl. geometry
- Higher dimensional problems ?
 - PDEs from mathematical modelling, stochastics
 - diffusion equation, Fokker-Planck equation,
 - diffusion approximation of discrete processes, networks (Mitzlaff, Dai)
 - viscoelasticity in polymer fluids (Rousse), reaction mechanisms in biology and chemistry (Sjoeberg, Loetstedt, Hegland),, Option pricing,
 - homogenization with multiple scales (Cioranescu,, Hoang, Matache, Schwab)
 - quantum mechanics, Schrödinger equation (Yserentant, Flad)
 - data analysis, statistical learning (Garcke, Hegland)
 - stochastic PDEs (Todor,Schwab,Matthies)
 - Domain simple, product structure
 - [0,1]^d, [-a,a]^d, hypersphere S_d, R^d with decay for $x_i \rightarrow \pm \infty$

Curse of dimension

- $f: \Omega^{(d)} \to \Re$, $f \in V^{(r)}$, r isotropic smoothness
- Bellmann '61: curse of dimension

$$\|f - f_N\|_{H^s} = C(d) \cdot N^{-r/d} \|f\|_{H^{s+r}} = O(N^{-r/d})$$

- Find situations where curse can be broken ?
- Trivial: restrict to r = O(d)

$$|| f - f_N || = O(N^{-cd/d}) = O(N^{-c})$$

but practically not very relevant

Curse of dimension

- Consider class of functions of \Re^d with $\nabla f \in FL_1$ where FL_1 class of functions with Fourier transform in L_1
 - $\Rightarrow expect || f f_N || = O(N^{-1/d})$
- But Barron '93 showed $\parallel f f_N \parallel = O(N^{-1/2})$
- Meanwhile other function classes known
 - Radial basis schemes, Gaussian bumps, (Y. Meyer) Niyogi, Girosi ´98: ball in Besov space $B^d_{1,1}(\mathfrak{R}^d) \Longrightarrow r = d$
 - Stochastic sampling techniques, MC
 - Spaces with bounded mixed derivatives
- In any case: some smoothness changes with d

Concentration of measure

- What means smoothness for $d \rightarrow \infty$ anyway?
- Concentration of measure: (Milman '88, Talagrand '95, Gromov '99)

f Lipschitz with constant L on d-sphere,

P normalized Lebesgue measure,

X uniformly distributed

Then: $P(|f(X) - Ef(X)| > t) \le c_1 \exp(-c_2 t^2 / L^2)$

=> every Lipschitz function on sufficiently highdimensional domain is well approximated by constant function ! (Hegland, Pozzi '05)

Lemma of Kolmogorov

• Kolmogorov '56:

ex. 2d+1 cont. strictly increasing functions $\varphi_i : (0,1) \rightarrow (0,1)$ ex. d constants $\lambda_i, \sum \lambda_i \leq 1$

$$f(x_1,...,x_d) = \sum_{i=1}^{2d+1} g(\sum_{j=1}^d \lambda_j \varphi_i(x_j))$$

for some (non-smooth) $g \in C(0,1)$ dependent on f

but: non-constructive result,

G., Braun 2009: recent constructive proof in Constructive Approximation

• IBC, weighted RK Hilbert spaces, Wozniakowski, Sloan =>There is hope for high-dimensional problems

Approach

- Basic principles:
 - 1dim series expansion with decay
 - d-dim product construction
 - Trunctation of resulting multivariate expansion
- Effect:
 - reduction of cost complexity
 - nearly same accuracy as "full" product
 - necessary: certain smoothness requirements

Introductory examples

- Napier's multiplication (John Napier (1550 1617)
- Archimedes' approach for pi and Cavalieri's/Fubini's theorem

• Sparse grids for integration, approximation of functions and PDEs, etc.

Summary

Classical approach: d = 1,..,3/4curse of dimension and intractability

$$\|f - f_N\|_{H^s} = c(d) \cdot N^{-r/d} |f|_{H^{s+r}} = O(N^{-r/d})$$

Stronger regularity/norms curse only wrt log-terms

$$\|f - f_N\|_{H^s} = c(d) \cdot N^{-r} (\log(N))^{(d-1)/2} |f|_{H^{s+r}_{mix}}$$

or no curse at all

 $\| f - f_N \|_{H^s} = c(d) \cdot N^{-r} \| f \|_{H^{s+r}_{mix}}$ but still not tractable, constant grows exponentially

d = 1,..,10/12

Lower effective dimension and lower-dim. manifolds no curse due to effective dimension $\|f - f_N\|_{H^s} = c(d^{eff}) \cdot N^{-r/d^{eff}} \|f\|_{H^{s+r}}$ and constant grows

exponentially only wrt effective dimension

$$d = 1,...100..$$

 $d^{eff} = 1,...,10$

Function decomposition

- splitting of one-dimensional space $V = C \oplus W$ projection $P: V \rightarrow C$ onto subspace of constants
- splitting of d-dim. space by tensor product

$$V^{(d)} = \bigotimes_{i=1}^{d} (C^{(i)} \oplus W^{(i)}) = C^{(1)} \times \dots \times C^{(d)} + \sum_{i=1}^{d} C^{(1)} \times \dots \times W^{(i)} \times \dots \times C^{(d)} + \sum_{i=1}^{d} \sum_{i < j} C^{(1)} \times \dots \times W^{(i)} \times \dots \times W^{(j)} \times \dots \times C^{(d)} + \sum_{i=1}^{d} \sum_{i < j} \sum_{j < k} C^{(1)} \times \dots \times W^{(i)} \times \dots \times W^{(j)} \times \dots \times W^{(k)} \times C^{(d)} + \sum_{i=1}^{d} \sum_{i < j} \sum_{j < k} C^{(1)} \times \dots \times W^{(i)} \times \dots \times W^{(j)} \times \dots \times W^{(k)} \times C^{(d)}$$

Function decomposition

• splitting of associated d-dim function

$$f(x_1,...,x_d) = \sum_{u \subseteq \{1,...,d\}} f_u(x_u)$$

= $f_0 + \sum_{i=1}^d f_i(x_i) + \sum_{i=1}^d \sum_{i < j} f_{i,j}(x_i, x_j) + \sum_{i=1}^d \sum_{i < j} \sum_{j < k} f_{i,j,k}(x_i, x_j, x_k) + \dots + f_{1,...,d}(x_1,...,x_d)$

- 2^d subspaces, 2^d terms
- decomposition into correlations, clusters
- Choice of one-dimensional projector P?
 - integral mean => ANOVA decomposition, induces decomposition of variance of f

(Efron, Stein, Wahba, Owen, Hickernell)

– evaluation at one fixed point => Anchor ANOVA

Function decompositions

- 2d Example: $V^{(2)} = \begin{bmatrix} C_1 \times W_2 & W_1 \times W_2 \\ C_1 \times C_2 & W_1 \times C_2 \end{bmatrix}$ $f(x_1, x_2) = f_0 + f_1(x_1) + f_2(x_2) + f_{1,2}(x_1, x_2) \end{bmatrix}$
- 3d Example: $C_1 \times W_2 \times W_3 \quad W_1 \times W_2 \times W_3$ $C_1 \times C_2 \times W_3 \quad W_1 \times C_2 \times W_3$ $C_1 \times W_2 \times C_3 \quad W_1 \times W_2 \times C_3$ $C_1 \times C_2 \times C_3 \quad W_1 \times W_2 \times C_3$

 $f(x_1, x_2, x_3) = f_0 + f_1(x_1) + f_2(x_2) + f_3(x_3) + f_{1,2}(x_1, x_2) + f_{1,3}(x_1, x_3) + f_{2,3}(x_2, x_3) + f_{1,2,3}(x_1, x_2, x_3)$

Function decompositions

approximation by truncation after q-order terms

$$f(x_1,...,x_d) \approx \sum_{u \subseteq \{1,...,d\}, |u| \le q} f_u(x_u)$$

 $f(x_1, x_2, x_3) = f_0 + f_1(x_1) + f_2(x_2) + f_3(x_3) + f_{1,2}(x_1, x_2) + f_{1,3}(x_1, x_3) + f_{2,3}(x_2, x_3) + f_{1,2,3}(x_1, x_2, x_3)$

Function decompositions

- Fast decay of series or even finite order q << d?
- surely not in general, but: consider f as input-output model

$$(x_1, \dots, x_d) \rightarrow f(x_1, \dots, x_d)$$

- "Correlated" effects of the input variables ?
- Many body expansion of potential energy surface of molecular systems: mostly only two-, three- or fourbody potentials (i.e. q=4) for physical reasons
- Cluster expansions in statistical mechanics
- Statistics: second order, covariances but i.g. not more
- Data-mining: MARS, only up to q=5,...,7 for real data

Truncation

- Truncation after q terms introduces a modelling error
- The remaining subspaces needs to be finitely represented => discretization error
- After truncation after q terms no more balancing of modelling error and subsequent discretization error possible.
- Unnatural distinction between modelling error and subsequent discretization error
- better: relate it somehow

Further decomposition of W: Sparse grids

- decompose 1d subspace W further
- tensor product and subsequent truncation
 => sparse grid representation
- Fourier series or polynomials (global)
 => Korobov-spaces, hyperbolic cross approximation
- piecewise polynomials (local)

hierarchical basis, interpolets, wavelets, multilevel basis

 $W = \sum W_l$

=> sparse grid finite element spaces

History of Sparse Grids

re-invented several times:

- 1957 Korobov, Babenko
- 1963 Smolyak
- 1971 Gordon
- 1980 Delvos, Posdorf
- 1990 Zenger, G.
- 1998 Stromberg, deVore

hyperbolic cross points

blending method Boolean interpolation sparse grids hyperbolic wavelets

application areas include:

- quadrature (Novak, Ritter)
- interpolation
- data compression

- solution of PDEs
- integral equations
- eigenvalue problems

Example: Hierarchical basis

Tensor product hierarchical basis Generalization to higher dimension by tensor product

Table of subspaces $W_{l_1l_2}$

decay in x- and y-direction by 1/4 decay in diagonal direction by 1/16

Idea:

Omit points with small associated hierarchial coefficient values

Regular sparse grids

			1
• •	• •	• •	•
			1
	•	•	
			- 1
		•	1
			_ 3
	••••••		
			_ 1
			_
]
			- 1
	•	•	
•			- 1
	•	• •	1
•			• •

cost complexity (d=2,interior points)

N + 2*N/2 + 4*N/4 + ...

 $\cong \log(N) * N$

Properties of sparse grids

Sparse grids Full grids $O(N(\log N)^{d-1})$ instead of $O(N^d)$ Cost: $O(N^{-2})$ Accuracy: $O(N^{-2}(\log N)^{d-1})$ L_2 -norm $O(N^{-1})$ $O(N^{-1})$ energy-norm $|\sum_{i=1}^{d} \frac{\partial^2 f}{\partial x_i^2}| \le c$ Smoothness: $\left|\frac{\partial^{2d} f}{\partial x^2 \partial x^2}\right| \leq c$ $H^{2}, |f|_{2}$ Space and seminorm: H_{mix}^2 , $|f|_2$

breaks curse of dimension of conventional full grids at least to some extent Note: higher regularity in mixed derivative, r~d

L^2 norm-based sparse grids

• For orthogonal wavelets and general stable multiscale systems we can even obtain

 $O(N^{-2}(\log N)^{(d-1)/2})$

- Hint: estimate directly for squared error.
- Complexities with boundary terms:
 - Cost: same order but additional factor of 3^d
 - Accuracy same order
 - Smoothness assumptions related to variation of Hardy and Krause
 - Start multiscale series with constant then linear etc.

L^2 norm-based sparse grids

• Representation $f(\mathbf{x}) = \sum_{\mathbf{l}} f_{\mathbf{l}}(\mathbf{x}) \quad f_{\mathbf{l}}(\mathbf{x}) \in W_{\mathbf{l}}$

$$\mathbf{x} = (x_1, ..., x_d)$$
 $\mathbf{l} = (l_1, ..., l_d)$

- cost per subspace $\dim(W_1) = 2^{|\mathbf{l}-\mathbf{1}|_1}$
- benefit for accuracy $\|f_1\|_2 \le 3^{-d} \cdot 2^{-2|\mathbf{l}|_1} \cdot \|f\|_2 = O(2^{-2|\mathbf{l}|_1})$
- choice of best subspaces ?
 - => restricted global optimization problem,

$$=> \text{ local benefit}^{2}/\text{cost ratio} \qquad n \\ |\mathbf{l}|_{1} = n + d - 1 \quad \text{isoline} \\ V_{n}^{(d,opt)} = \bigoplus_{|\mathbf{l}|_{1} = n + d - 1} W_{\mathbf{l}} \qquad \Rightarrow \text{ regular sparse grid space}$$

Energy-norm based sparse grids

- energy norm $|| f ||_E := \left(\int_{\Omega} \sum_{j=1}^d \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_j} \right)^2 d\mathbf{x} \right)^{1/2}$ benefit for accuracy

$$\|f_{\mathbf{l}}\|_{E} \leq \frac{1}{2 \cdot 12^{(d-1)/2}} \cdot 2^{-2|\mathbf{l}|_{1}} \cdot \left(\sum_{j=1}^{d} 2^{2l_{j}}\right) \cdot \|f\|_{2} = O(2^{-2 \cdot |\mathbf{l}|_{1}} \cdot (\sum_{j=1}^{d} 2^{2 \cdot l_{j}})^{1/2})$$

Now benefit/cost ratio

$$b^{2}(\mathbf{l})/c(\mathbf{l}) \approx \frac{2^{-4 \cdot |\mathbf{l}|_{1}}}{2^{-|\mathbf{l}|_{1}}} \cdot \sum_{j=1}^{d} 2^{2 \cdot l_{j}}$$

 \Rightarrow energy-norm based sparse grid space

$$V_n^{(d,E)} = \bigoplus W_{\mathbf{l}}^{(d,E)}$$

$$|\mathbf{l}|_1 - 1/5 \cdot \log_2(\sum_{j=1}^d 4^{l_j}) \le n + d - 1 - 1/5 \cdot \log_2(4^n + 4d - 4)$$

isolines:
$$n l_1$$

Energy-norm based sparse grids

- Properties: complexities now independent of d $\dim(V_n^{d,E}) = O(2^n) \qquad \| f - f_n^E \|_E = O(2^{-n})$
- What about the constants ? $\dim(V_n^{d,E}) \le \frac{d}{2} (1 - 2^{-2/3})^{-d} \cdot 2^n \le \frac{d}{2} e^d \cdot 2^n$ $\| f - f_n^E \|_E \leq \frac{d}{3^{(d-1)/2} \cdot 4^{d-1}} \cdot (\frac{1}{2} + (\frac{5}{2})^{d-1}) \cdot \| f \|_2 \cdot 2^{-n}$ Thus: C_1 $\| f - f_n^E \|_E \le c_1 \cdot 2^{-n} \| f \|_2 \le c_1 \cdot c_2 \cdot \| f \|_2 \cdot \dim(V_n^{d,E})^{-1}$ $2^{-n} \leq c_2 \cdot \dim(V_{\cdot}^{d,E})^{-1}$

with constant $c_1 \cdot c_2 = O(d^2 \cdot 0.97515^d)$

Further generalizations

• H^s-norm based optimal sparse grid spaces (G., Knapek)

• More general subspace patterns Anisotropic sparse grids l_1 l_1 general subset of subspaces $<math>V_3^{(d)} = \bigoplus_{l \in \Im} W_l$ $\Im = \text{ set of indices}$

Further generalizations

• $H_{mix}^{t,l}$ spaces and regularity assumption (G., Knapek) $H_{mix}^{t,l}(I^d) \coloneqq H^{t1+le_1}(I^d) \cap \ldots \cap H^{t1+le_d}(I^d)$ $H_{mix}^{\mathbf{k}}(I^d) \coloneqq H^{k_1}(I) \otimes \ldots \otimes H^{k_d}(I)$ Mixture of the standard Sobolev space

$$H^{s}(I^{d}) = H^{0,s}_{mix}(I^{d})$$

and the space of dominating mixed derivative
$$H^{t}_{mix}(I^{d}) = H^{t,0}_{mix}(I^{d})$$

Norm equivalency (for stable decompositions, wavelets)

$$\| f \|_{H^{t,l}_{mix}}^{2} \approx \sum_{\mathbf{l}} 2^{2t \|\mathbf{l}\|_{1} + 2l\|\mathbf{l}\|_{\infty}} \| f_{\mathbf{l}} \|_{0}^{2}$$

Further generalizations

• Otimization allows again to determine the best sparse grid spaces $V_n^T = \bigoplus_{\mathbf{l} \in I_n^T} W_{\mathbf{l}}$ $I_n^T = \{\mathbf{l} \in N^d : -|\mathbf{l}|_1^{I} + \frac{s}{t} |\mathbf{l}|_{\infty} \ge -(d+n-1) + \frac{s}{t}n\}$ $l_1 n$

 $I_n^T = \{\mathbf{l} \in N^d : -|\mathbf{l}|_1^{\mathbf{l} \in I_n} + \frac{s}{t} |\mathbf{l}|_{\infty} \ge -(d+n-1) + \frac{s}{t} n\} \qquad l_1 \qquad n$ with approximations like T

$$\inf_{v \in V_n^T} \| f - v \|_{H^s}^2 \le c 2^{-2(l+t-s)n} \| u \|_{H^{t,l}_{mix}}^2$$

- For a large range of smoothness parameters s,t,l any log-term is avoided in the cost and accuracy estimates
- · But the constants may depend strongly on d
- BTW: The solution of Schrödinger 's equation lives in $H^{1,1}_{mix}((\Re^3)^d) = H^{3/4-\varepsilon,1}_{mix}((\Re^3)^d)$

Dimension-adapted sparse grids

- So far: function class known, and a-priori choice of best subspaces by optimization
- Size of benefit/cost ratio indicated if subspace is active => patterns for S
- Now: for single given function adaptively build up a set $\ensuremath{\mathfrak{T}}$ of active indices
- Needed:
 - "local" error indicator for subspace W_{I}
 - refinement strategy to build new index set
 - global stopping criterion

Dimension-adaptive methods

- A proper adaptive algorithm then
 - uses lower resolution in less important dimensions and correlations
 - and thus automatically detects
 - important dimensions
 - important correlations between the dimensions
- large reduction of cost if important dimensions are few (small effective dimension, finite order weight spaces), curse of dimensionality broken
- But: no need to know function class a-priori

(Hegland '01, Gerstner, G. '03, Garcke '04)

Example (Index Sets)

Evolution of the algorithm:

Special data structures for the bookkeeping of the different index sets required. => $O(d^2)$

Error Estimation

• differential integral for index I

$$d_{\mathbf{l}} = \parallel f_{\mathbf{l}} \parallel$$

can be used as *local error estimate*

- problem: too early stopping (no saturation)
- solution: consider also *involved work*

$$n_{\mathbf{l}} = |W_{\mathbf{l}}|$$
 and use as estimate

$$\max\left\{ w \frac{d_1}{d_1}, (1-w) \frac{n_1}{n_1} \right\}$$

with weight $w \in [0,1].$

(Gerstner, G. '03)

A simple example

Figure 4.14: Dimension adaptive refinement with the new ANOVA based admissibility criterion for $f(x, y) = x^2 + y^2$ (top row) and $f(x, y) = x^2 \cdot y^2$ (bottom row). Here, \blacksquare indicates a vanishing contribution $f_l \equiv 0$ whereas \blacksquare indicates a non-vanishing contribution $f_l \not\equiv 0$.

High nominal but low effective dimension

 $f(\mathbf{x}) = \sum \prod g(x_i)$ Model problem $u \subseteq \{1, \dots, d\} \quad \overline{j \in u}$ |u| = q

 $g(x) = B(\alpha, \beta)^{-1} x^{\alpha - 1} (1 - x)^{\beta - 1}$, here with $\alpha = 2, \beta = 5$

 We expect a behavior of the method as for a smooth q-dimensional function and cost Owith N_q cost for one smooth q-dimensional problem

High nominal but low effective dimension

Cost increase factors for a fixed error 0.0001, right cloumn

Decay of importance of the dimensions

• Weighted model problem $f(\mathbf{x}) = \sum_{\substack{u \subseteq \{1, \dots, d\} \ j \in u}} \prod_{j \in u} w_j g(x_j)$ $g(x) = \frac{1}{\gamma \pi} (1 + (\frac{x - x_0}{\gamma})^2)^{-1} \text{ with } \gamma = 1/2, x_0 = 0.8, w_j = 2 \cdot 2^{3/2(j-1)}$

Figure 4.18: Dimension adaptive interpolation of the weighted superposition (4.118) for dimensions d = 1, 2, ..., 10 and the associated weights for the case d = 5(ordered by magnitude). See Figure 4.19 for dimension adaptive index sets.

Decay of importance of the dimensions

Figure 4.19: Dimension adaptive index sets for the experiment of Figure 4.18 in dimensions d = 2, d = 3. Each level $n(\mathbf{l})$ has the same color.

PDE solver

 Problem right hand side of finite order q=4 $-\Delta u = h$ in $[0,1]^d$ $f(\mathbf{x}) = \sum \prod g(x_i)$ $u \subseteq \{1, \dots, d\} \quad j \in u$ |u| = q $\frac{\partial}{\partial n}f = \text{ on } \partial [0,1]^d$ $g(x) = \frac{1}{\gamma \pi} (1 + (\frac{x - x_0}{\gamma})^2)^{-1} \text{ with } \gamma = 1/2, x_0 = 0.8$ $f(0,...,0) = f_0$ Effective four-dimensional PDE 10^{0} 10^{-1} relative L_2 error - d = 6 10^{-2} d = 7d = 8 10^{-3} 10^{-4} d = 9 10^{-5} 10^{-6} $10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^7 \ 10^8$ Dof

Locally adaptive sparse grids for PDEs

- principle: refine near points with large hierarchical coefficient nonlinear N-term approximation
- for Besov spaces: same rates as isotropic nonlinear refinement schemes (wavelets, adaptive finite elements) (Nitsche, Schwab)
- line/face singularities aligned with coordinate axes are cheap to resolve

2D Navier-Stokes equation

- 2D mixing layer
- Chorin projection scheme, incompressible flow
- Re=U/v = 16000
- pertubations for initial condition
- evolution of |vorticity| and adaptive grids

2000 - Contra Co	
·····	
	Ē
	2

3D Navier-Stokes equations

- 3D Mixing layer
- initial conditions analogous to 2D
- Re=4000
- discretization as before
- number of DOF between 1 ... 2 million
- three different isosurfaces of vorticity

Implementation for higher dimensional PDEs

- naive implementation of sparse grids for PDEs: work count $O(d^2 2^d \tilde{N})$ storage $O(d\tilde{N})$ $\tilde{N} = O(dof)$
- new data structures and multigrid algorithms, use of unidirectional principle, hash techniques
- separable, non-constant coefficient functions now: work count $O(d^2 \tilde{N})$ storage $O(d\tilde{N})$
- elliptic PDEs possible with up to 120 dimensions with homogeneous bc and product-type right hand side (Feuersänger).

Implementation for higher dimensional PDEs

 implementation uses semi-orthogonal prewavelets instead of piecewise linear hat functions

- orthogonality between levels simplifies mass matrix contributions and results in improved complexity w.r.t dimension *d*
- Full orthogonal wavelets would reduce complexity to just $O(d\tilde{N})$ but are more difficult to work with

an energy norm approach and adaptivity is necessary

Caveat

- the regularity term $|f|_{2,mix}$ might cause problems and can postpone the onset of convergence
- Example 1: $f(x_1 \dots x_d) = \prod_{j=1}^d \sin(2\pi \ k_j x_j)$ $D^{(2,.2)} f(x_1 \dots x_d) = (-1)^d \prod_{j=1}^d (2\pi k_j)^2 \prod_{j=1}^d \sin(2\pi \ k_j x_j)$ $|f|_{2,mix} = (2\pi)^{2d} \prod_{j=1}^d k_j^2$
- Thus at most 15-18 dimensions treatable in practice

Gaussian

- Example: $f(x_1...x_d) = \frac{1}{(2\pi\sigma)^{d/2}} \exp\left(-\frac{x^T x}{\sigma}\right)$
- Energy-norm based sparse grid in $\Omega = [-5\sigma, 5\sigma]^d$
- Rate for relative error in energy norm is 10⁻¹ asymptotically ע פונס ע פונס ע $\approx 2^{d/2} 2^{-n} = 2^{-(n-d/2)}$ • Necessary: 10^{-3} n - d/2 > 010 10^{2} 10⁶ 10° 10⁶ 10⁴ dof

Tensor product sparse grids

- So far: one-dimensional domain, multiscale basis, d-fold tensor product, proper truncation
- Now: E.g. two general domains Ω_1, Ω_2 , each with
 - its dimension d_1, d_2 and its smoothness s_1, s_2
 - its isotropic multilevel basis (one level index)
 - tensor product between the two domains and multiscale bases

- Mixed regularity $H^{s_1s_2}_{mix}(\Omega) \coloneqq H^{s_1}(\Omega_1) \times H^{s_2}(\Omega_2)$

Tensor product sparse grids

- Examples:
 - space \times time, $d_1 = 3, d_2 = 1$, parabolic problems
 - space \times angle $d_1 = 3, d_2 = 2$, radiosity
 - space × parameters $d_1 = 3, d_2 = 10 20$

but smooth in parameter variables

- space × stochastics $d_1 = 3, d_2 = \infty$

but analytic in stochastic variables

- Main result: curse of dimension only w.r.t. the larger dimension and/or the lower smoothness
- Time comes for free, angle space comes for free, parametrization/stochastics comes for free, just space dimension matters

Optimized general sparse grid space

• Multiscale analyses on Ω_i , i = 1,2 with associated approximation order r_i

$$V_0^{(i)} \subset V_1^{(i)} \subset V_2^{(i)} \subset \ldots \subset L^2(\Omega_i)$$

Complementary spaces:

$$W_{l_i}^{(i)} \qquad V_{l_i}^{(i)} = W_{l_i}^{(i)} \oplus V_{l_i-1}^{(i)}$$

Anisotropic sparse grid space:

$$\widehat{V_n^{\sigma}} = \bigoplus_{l_1 \sigma + l_2 / \sigma \le n} W_{l_1}^{(1)} \oplus W_{l_2}^{(2)}$$

• Parameter σ now allows to optimize with respect to dimensions d_1, d_2 and smoothness s_1, s_2

Properties (G.+Harbrecht 2011)

• The sparse grid space \widehat{V}_{J}^{σ} possesses

 $\widehat{V_n^{\sigma}} \sim \begin{cases} 2^{n \max\{d_1/\sigma, n_2\sigma\}} & \text{if } d_1/\sigma \neq d_2\sigma \\ n \cdot 2^{nd_2\sigma} & \text{if } d_1/\sigma = d_2\sigma \end{cases}$ degrees of freedom.

• For a given $f \in H_{mix}^{s_1,s_2}(\Omega_1 \times \Omega_2)$ with $0 < s_1 \le r_1, 0 < s_2 \le r_2$ we have for the accuracy

$$\inf_{\widehat{f}_n \in \widehat{V}_n^{\sigma}} \| f - \widehat{f}_n \|_{L^2(\Omega_1 \times \Omega_2)} \leq \begin{cases} 2^{-n \min\{s_1/\sigma, s_2\sigma\}} \| f \|_{H^{s_1, s_2}_{mix}(\Omega_1 \times \Omega_2)} & \text{if } s_1/\sigma \neq s_2\sigma \\ \sqrt{n} \cdot 2^{-ns_1/\sigma} \| f \|_{H^{s_1, s_2}_{mix}(\Omega_1 \times \Omega_2)} & \text{if } s_1/\sigma = s_2\sigma \end{cases}$$

- No log-terms in many situations
- Analogous results by simple shift for other error norms like $H^{q_1,q_2}_{mix}(\Omega_1 \times \Omega_2)$ than just for $L^2(\Omega_1 \times \Omega_2)$

Space-time sparse grids

Approximation error and necessary regularity

$$\inf_{u_n \in V_n^0} \|u - u_n\|_{H^1(\Omega) \otimes L^2(0,T)} \le c \ 2^{-n} \|u\|_{H^2(\Omega) \otimes H^2((0,T))}$$

- How realistic are these regularity assumptions?
 - $\partial_{\vec{x}}^2 \partial_t^2 u$ is also needed for error estimates of conventional discretization methods
 - classical regularity theory shows (Ladyzenskaja, Wloka)

 $u \in H^2(\Omega) \otimes H^2((0,T))$

 Space-time sparse grids possess the same approximation rate as conventional full space-time grids but only the cost complexity of space problem

=> time coordinate comes for free

Examples of space time sparse grids

space dimension 1, space-time sparse grid, Euler case

space dimension 2, space-time sparse grid, Cranck-Nicolson case, n=4,5:

Instationary distributed control problems space dimension 2, adaptive space time grids

Problem:

 $\partial_t y - \Delta y - 10^3 p = 0$ in $\Omega \times (0,1]$, $-\partial_t p - \Delta p + y = 1$ in $\Omega \times [0,1)$,

with homogeneous initial/end and boundary conditions

Adaptivity with 5 refinement steps starting at level 3

Instationary distributed control problems

Instationary distributed control problems space dimension=3, adaptive space time grids Problem: $\partial_t y - \Delta y - 10^3 p = 0$ in $\Omega \times (0,1]$, $\Omega = (-1,1)^3 \setminus (-1,0)^3$ $-\partial_t p - \Delta p + y = 1$ in $\Omega \times [0,1)$,

with homogeneous initial/end and boundary conditions

Adaptivity with 4 refinement steps starting at level 3

t=0, state variable, four isosurfaces

t=1, control variable, four isosurfaces

Stochastic and parametric PDEs

• Solutions $f(\mathbf{x}_1, \mathbf{x}_2)$ of stochastic/parametric PDEs

$$-\nabla \cdot A(\mathbf{x}_2)\nabla f(\mathbf{x}_1, \mathbf{x}_2) = r(\mathbf{x}_1, \mathbf{x}_2)$$

live on product $(\mathbf{x}_1, \mathbf{x}_2) \in \Omega_1 \times \Omega_2$

- of spatial domain Ω_1 with $d_1 = 1,2,3$
- and stochastic/parametric domain Ω_2 with d_2 large or even infinity.
- Often: Very high smoothness in x₂ -part Here: especially weighted analyticity for the different coordinates due to decay in covariance
- Therefore, even infinite-dimensional Ω_2 become treatable independently of d_2

Stochastic and parametric PDEs

- Sparse grids methods can be used for Ω_2 to cope with its high dimensionality !
 - The stochastic part is smooth or even analytic
 - sparse grids with spectral, polynomial bases
 - The stochastic coordinates are not equally important
 - weights/decay of the different coordinate directions related to the eigenvalues of covariance of parameters, algebraic or exponential!
 - Then, anisotropic sparse grids (with spectral, polynomial bases) and dimension-adaptive sparse grids are successfully used
 - The decay kills the curse, the sparse grid approach then reduces the dimension-dependency of the constant
- Moreover: The two-variate sparse grid product approach works fine between the spatial domain and the parametric/ stochastic domain.

Sparse grids and analytic functions

- What may happen if the function is too smooth ? - 1-D: L_2 -orthogonal polynomial basis $\{\phi_k(x_i)\}_{k \in \mathbb{N}_0}$ - d-D: Product of polynomials $\phi_k(\mathbf{x}) = \phi_{k_1}(x_1) \cdots \phi_{k_d}(x_2)$
- Here: the isotropic case:

• Anisotropic case: no curse, but still d-dependent constants

Stochastic and parametric PDEs

• Weighted analytic approximation space for Ω_2 Let be given an ordered real sequence $\mathbf{a} = (a_i)_{i \in \mathbb{N}}$ with

$$1 = a_{1} \ge a_{2} \ge a_{3} \ge \dots \quad \text{and a fixed base } b > 1$$
$$A_{d_{2},\mathbf{a}}(\Omega_{2}) = \left\{ f \in L^{2}(\Omega_{2}) : \sum_{\mathbf{k} \in \mathbb{N}_{0}^{d_{2}}} b^{2\sum_{i=1}^{d_{2}} k_{i}/a_{i}} |f_{\mathbf{k}}|^{2} \le C < \infty \right\}$$

Characterization of a -weighted analytic functions

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{N}_0^{d_2}} f_{\mathbf{k}} \cdot \phi_{\mathbf{k}}(\mathbf{x}) \qquad |f_{\mathbf{k}}| \leq c \cdot b^{-\sum_{i=1}^{d_2} k_i / a_i}$$

Discrete anisotropic, regular grid subspace

Index set, brick-type with successively smaller size

$$I_{d_2,\mathbf{a}}(n) \coloneqq \{\mathbf{k} \in \mathbb{N}_0^{d_2} : k_i / a_i \le n \text{ for all } 1 \le i \le d_2\}$$

Corresponding subspace

L

Discrete regular grid subspace

Degrees of freedom

$$\dim(V_{d_2,\mathbf{a},n}) = \prod_{i=1}^{d_2} (1 + \lfloor n \cdot a_i \rfloor) \le \exp(n \cdot \sum_i a_i)$$

- With the summability condition $\sum_{i} a_{i} \le A < \infty$ we get, independently of d_{2} , $\dim(V_{d_{2},\mathbf{a},n}) \le \exp(n \cdot A)$
- Accuracy: about linear in n, mainly independent of d_2

$$\| f - f_{V_{d_2,\mathbf{a},n}} \|_{L^2(\Omega_2)} \lesssim \begin{cases} \sqrt{d_2} \cdot b^{-n} & \text{in any case} \\ b^{-\mu(n)} & \text{for} & \mu(n) \coloneqq \min_r \{ \lfloor \underline{n} \cdot a_{\underline{r}} \rfloor = 0 \} \\ b^{-(1-\varepsilon)\cdot n} & \text{if} & 1/a_r - 1/a_s \ge (r-s)\delta \end{cases}$$

Stochastic and parametric PDEs

• With the sequence

$$V_{d_2,\mathbf{a},0} \subset V_{d_2,\mathbf{a},1} \subset V_{d_2,\mathbf{a},2} \subset \ldots \subset L^2(\Omega_2)$$

and associated sequence of complimentary spaces

$$W_{d_2,\mathbf{a},j} \qquad V_{d_2,\mathbf{a},j} = W_{d_2,\mathbf{a},j} \oplus V_{d_2,\mathbf{a},j-1}$$

we get, together with the usual sequence of complementary spaces on Ω_1 , a two-variate sparse grid construction on $\Omega_1 \times \Omega_2$, which is independent of the dimension d_2 (even if $d_2^2 = \infty$).

 The sparse grid product approach works fine between the spatial and the parametric/ stochastic domains.

Summary

Classical approach: d = 1, ..., 3 or 4 curse of dimension and intractability

$$\|f - f_N\|_{H^s} = c(d) \cdot N^{-r/d} |f|_{H^{s+r}} = O(N^{-r/d})$$

Stronger regularity/norms curse only wrt log-terms

$$\|f - f_N\|_{H^s} = c(d) \cdot N^{-r} (\log(N))^{(d-1)/2} |f|_{H^s_m}$$

or no curse at all

$$\| f - f_N \|_{H^s} = c(d) \cdot N^{-r} | f |_{H^{s+r}_{mix}}$$

but still not tractable, constant grows exponentially

d = 1,.., 10 to 12

Lower effective dimension and lower-dim. manifolds no curse due to effective

$$\| f - f_N \|_{H^s} = c(d^{eff}) \cdot N^{-r/d^{eff}} \| f \|_{H^{s+r}}$$

and constant grows exponentially only w.r.t. effective dimension

d = 1,..., 100 $d^{eff} = 1,..., 10$

Literature

- M. Griebel, Sparse tensor product spaces for stochastic and parametric approximations, INS Report, in preparation, to appear 2013.
- M. Griebel, H. Harbrecht, On the construction of sparse tensor product spaces, Math. Comp., 2012.
- M. Griebel and H. Harbrecht. A note on the construction of L-fold sparse tensor product spaces. Constructive Approximation, 2012.
- M. Griebel, H. Harbrecht, Approximation of two-variate functions: singular value decomposition versus sparse grids, IMA Journal of Numerical Analysis, 2012.
- M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations, Math. Comp. 78, 2223-2257, 2009.
- M. Griebel and D. Oeltz. A sparse grid space-time discretization scheme for parabolic problems. *Computing*, 81(1):1-34, 2007.
- D. Oeltz. *Ein Raum-Zeit Dünngitterverfahren zur Diskretisierung parabolischer Differentialgleichungen*. Dissertation, INS, Universität Bonn, 2006.
- M. Griebel. Sparse grids and related approximation schemes for higher dimensional problems. In L. Pardo, A. Pinkus, E. Suli, and M. Todd, editors, *Foundations of Computational Mathematics (FoCM05), Santander*, pages 106-161. Cambridge University Press, 2006.
- H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:1-123, 2004.