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• Classical physics: most problems in 3d space+time, 

compl. geometry 

• Higher dimensional problems ? 

– PDEs from mathematical modelling, stochastics 

• diffusion equation, Fokker-Planck equation,  

– diffusion approximation of discrete processes, networks (Mitzlaff,Dai) 

– viscoelasticity in polymer fluids (Rousse), reaction mechanisms in 

biology and chemistry (Sjoeberg, Loetstedt, Hegland),, option pricing,  

– homogenization with multiple scales (Cioranescu,, Hoang, Matache, Schwab)   

• quantum mechanics, Schrödinger equation (Yserentant, Flad)  

• data analysis, statistical learning (Garcke, Hegland) 

• stochastic PDEs (Todor,Schwab,Matthies)  

– Domain simple, product structure  

•  [0,1]d, [-a,a]d, hypersphere Sd, R
d with decay for  

High(er) dimensional problems 
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Curse of dimension 
 

•   

• Bellmann ´61: curse of dimension 

 

 

• Find situations where curse can be broken ? 

• Trivial: restrict to  

 

 

   but practically not very relevant  
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Curse of dimension 

 

 

• Consider class of functions of        with 

   where          class of functions with Fourier transform 

in 

 => expect  

• But Barron ´93 showed 

• Meanwhile other function classes known 

– Radial basis schemes, Gaussian bumps, (Y. Meyer)  

   Niyogi, Girosi ´98: ball in Besov space  

– Stochastic sampling techniques, MC 

– Spaces with bounded mixed derivatives 

• In any case: some smoothness changes with d  
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Concentration of measure 
 

• What means smoothness for             anyway? 

• Concentration of measure:(Milman´88, Talagrand´95, Gromov ´99) 

   f Lipschitz with constant L on d-sphere,  

       P normalized   Lebesgue measure,  

       X uniformly distributed 

   Then: 

    => every Lipschitz function on sufficiently high-

dimensional domain is well approximated by 

constant function !   (Hegland, Pozzi ´05) 
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Lemma of Kolmogorov 

 

 

 

• Kolmogorov ´56: 

 ex. 2d+1 cont. strictly increasing functions 

    ex. d constants 

 

 

 

    for some (non-smooth)                   dependent on f  

   but: non-constructive result,  
 G.,Braun 2009:  recent constructive proof in Constructive Approximation 

• IBC, weighted RK Hilbert spaces, Wozniakowski, Sloan  

=>There is hope for high-dimensional problems 
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Approach 

 
• Basic principles: 

– 1dim series expansion with decay 

– d-dim product construction 

– Trunctation of resulting multivariate expansion 

• Effect: 

– reduction of cost complexity 

– nearly same accuracy as „full“ product 

– necessary: certain smoothness requirements 



Introductory examples 

 
• Napier´s multiplication (John Napier (1550 –1617) 

• Archimedes´ approach for pi and 

Cavalieri´s/Fubini´s theorem  

 

• Sparse grids for integration, approximation 

of functions and PDEs, etc. 

 



Summary 
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Classical approach: 
curse of dimension and intractability 

Stronger regularity/norms 
curse only wrt log-terms  

 

 

or  no curse at all 

 

but still not tractable,  

constant grows exponentially 

Lower effective dimension 

and lower-dim. manifolds  
no curse due to effective 

dimension  

 

and constant grows 

exponentially only wrt effective 

dimension   
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Function decomposition 

• splitting of one-dimensional space 

   projection                  onto subspace of constants 

• splitting of d-dim. space by tensor product  
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CVP :
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Function decomposition 

 • splitting of associated d-dim function 
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• 2d subspaces, 2d terms 

• decomposition into correlations, clusters 

• Choice of one-dimensional projector P ? 

– integral mean => ANOVA decomposition,                    

induces decomposition of variance of  
– evaluation at one fixed point => Anchor ANOVA 

f
(Efron, Stein, Wahba,  

Owen, Hickernell) 



Function decompositions 

 
 

• 2d Example: 
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• 3d Example: 
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Function decompositions 

 
 

• approximation by truncation after q-order terms 
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Function decompositions 

 
 

• Fast decay of series or even finite order q << d?  

• surely not in general, but: consider    as input-output 

model  

 

• „Correlated“ effects of the input variables ? 

• Many body expansion of potential energy surface of 

molecular systems: mostly only two-, three- or four- 

body potentials (i.e. q=4) for physical reasons 

• Cluster expansions in statistical mechanics 

• Statistics: second order, covariances but i.g. not more 

• Data-mining: MARS, only up to q=5,..,7 for real data 
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Truncation 

 
 

• Truncation after q terms introduces a modelling error 

• The remaining subspaces needs to be finitely 

represented => discretization error 

• After truncation after q terms no more balancing  of 

modelling error and subsequent discretization error 

possible. 

• Unnatural distinction between modelling error and 

subsequent discretization error 

• better: relate it somehow 

 

 



 

• decompose 1d  subspace       further 

Further decomposition of W: Sparse grids 

  
 

• tensor product and subsequent truncation 

   => sparse grid representation 

• Fourier series or polynomials (global) 

   => Korobov-spaces, hyperbolic cross approximation 

• piecewise polynomials (local) 

    hierarchical basis, interpolets, wavelets, multilevel basis 

   => sparse grid finite element spaces 
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History of Sparse Grids 

re-invented several times: 

1957  Korobov, Babenko 

1963  Smolyak 

1971  Gordon 

1980  Delvos, Posdorf 

1990  Zenger, G. 

1998  Stromberg, deVore  

hyperbolic cross points 

 

blending method 

Boolean interpolation 

sparse grids 

hyperbolic wavelets 

application areas include: 

• solution of PDEs 

• integral equations 

• eigenvalue problems 

• quadrature (Novak, Ritter) 

• interpolation 

• data compression 



Example: Hierarchical basis 

parabola )1)(1()(  xxxf in   [-1,1] 

conventional coefficients 

no decay from level to level 

hierarchical coefficients  

decay by ¼  from level to level 
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Tensor product hierarchical basis 

Generalization to higher dimension by tensor product 

decay in x- and y-direction by 1/4 

decay in diagonal direction by 1/16 
Idea: 

Omit points with small associated hierarchial coefficient values 

Table of subspaces 

11 l 21 l 31 l

12 l

22 l

32 l
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 Regular sparse grids 
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Accuracy: 
Table of subspaces 
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Properties of sparse grids 

 

 

Cost:  

Accuracy: 

breaks curse  of dimension of conventional full grids 

at least to some extent 

Note: higher regularity in mixed derivative, r~d 
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• For orthogonal wavelets and general stable multiscale 

systems we can even obtain 

 

– Hint: estimate directly for squared error. 

• Complexities with boundary terms: 

– Cost: same order but additional factor of 

– Accuracy same order 

– Smoothness assumptions related to variation of Hardy and 

Krause  

– Start multiscale series with constant then linear etc. 

 

norm-based sparse grids 2L
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• Representation 

 

 

• cost per subspace 

• benefit for accuracy 

• choice of best subspaces ? 

   => restricted global optimization problem,  

   => local benefit2/cost ratio 

 

 

norm-based sparse grids 
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 regular sparse grid space 



Energy-norm based sparse grids 

 
 

• energy norm 

• benefit for accuracy 

 

 

 

 

 

 

 

2/1

1

2

)(
:||||
































  




x
x

x
d

f
f

d

j j

E

2

l

l ||22
122

1
||||

1

2||2

2/)1(
1 ff

d

j

l

dE
j 















 

















d

j

l jcb
1

2

||

||4
2 2

2

2
)(/)(

1

1

l

l

ll

))2(2( 2/1

1

2||2 1 





d

j

l jO
l

2l

isolines: 
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• Properties: complexities now independent of 

 

 

 

 

 

 

 

 

• What about the constants ? 

 

 

 

   Thus: 

 

 

 





Energy-norm based sparse grids 
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Further generalizations 

 • Hs-norm based optimal sparse grid spaces (G., Knapek )  

  

 

• More general subspace patterns 
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Further generalizations 

 •          spaces and regularity assumption (G., Knapek )  

  

 

 

 

Mixture of the standard Sobolev space 

 

and  the space of dominating mixed derivative 

 

 

Norm equivalency (for  stable decompositions, wavelets)   
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Further generalizations 

 • Otimization allows again to determine the best sparse 

grid spaces  

 

 with approximations like 

 

 

• For a large range of smoothness parameters  s,t,l any 

log-term is avoided in the cost and accuracy estimates  

• But the constants may depend strongly on d  

 

• BTW: The solution of Schrödinger ´s equation lives in  
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Dimension-adapted sparse grids 

 • So far: function class known, and a-priori choice of 

best subspaces by optimization 

• Size of benefit/cost ratio indicated if subspace is 

active => patterns for  

• Now: for single given function adaptively build up a 

set     of active indices 

• Needed:  
– „local“ error indicator for subspace 

–  refinement strategy to build new index set 

–  global stopping criterion   

 





lW



•  A proper adaptive algorithm then  

– uses lower resolution in less important dimensions and 

correlations 

    and thus automatically detects 

– important dimensions 

– important correlations between the dimensions 

• large reduction of cost if important dimensions are 

few (small effective dimension, finite order weight 

spaces), curse of dimensionality broken  

• But: no need to know function class a-priori 

 Dimension-adaptive methods 

(Hegland ´01, Gerstner,G. ´03, Garcke ´04) 



Example (Index Sets) 

index sets: 

corresponding 

       grids: 

Evolution of the algorithm: 

Special data structures for the bookkeeping of the 

different index sets required. )( 2dO



Error Estimation 

• differential integral for index l 

 

can be used as local error estimate 

• problem: too early stopping (no saturation) 

• solution: consider also involved work 

 

and use as estimate 
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A simple example 



High nominal but low effective dimension 

• Model problem 

 

• We expect a behavior of the method as for a 

smooth q-dimensional function and cost                      

with      cost for one smooth q-dimensional problem  
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High nominal but low effective dimension 

Cost increase factors for a fixed error 0.0001, right cloumn 



Decay of importance of the dimensions 

• Weighted model problem 
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Decay of importance of the dimensions 

• Weighted model problem 
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PDE solver  

• Problem  
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right hand side of finite order q=4 



Locally adaptive sparse grids for PDEs 

 
• principle: refine near points with large hierarchical coefficient                           

nonlinear N-term approximation 

• for Besov spaces: same rates as isotropic nonlinear refinement schemes 
(wavelets, adaptive finite elements)   (Nitsche, Schwab) 

• line/face singularities aligned with coordinate axes are cheap to resolve 

 



2D Navier-Stokes equation 

• 2D mixing  layer 

• Chorin projection scheme, incompressible flow 

• Re=U/n = 16000 

• pertubations for initial condition 

• evolution of  |vorticity|  and  adaptive grids 

 

 

 

 

 

 



• 3D Mixing layer 

• initial conditions analogous to 2D 

• Re=4000 

• discretization as before 

• number of DOF between 1 ... 2 million 

• three  different  isosurfaces of vorticity 

 

3D Navier-Stokes equations 



• naive implementation of sparse grids for PDEs: 
 

 

• new data structures and multigrid algorithms, 

use of unidirectional principle, hash techniques 

• separable, non-constant coefficient functions 
now: 

Implementation for higher dimensional PDEs 

 

• elliptic PDEs possible with up to 120 dimensions 

with homogeneous bc and product-type right 

hand side (Feuersänger). 
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• implementation uses semi-orthogonal 
prewavelets instead of piecewise linear hat 
functions  
 

 

 

• orthogonality between levels simplifies mass 
matrix contributions and results in improved 
complexity w.r.t dimension 

• Full orthogonal wavelets would reduce 
complexity to just               but are more difficult 
to work with 

Implementation for higher dimensional PDEs 

d

)
~

( NdO



Here: regular     norm  

          based sparse grid 

          convergene rates  

          with up to 

Example: 2nd order PDE 

We see the influence of the                -terms  

an energy norm approach and adaptivity is necessary 
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• the regularity term             might cause problems 
and can postpone the onset of convergence 

• Example 1: 
 

 

 

 

 

 

• Thus at most 15-18 dimensions treatable in practice 

 

 

Caveat 
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• Example: 

 

• Energy-norm based sparse grid in 

 

 

Gaussian 
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• Rate for relative error 
in energy norm is 
asymptotically 

 

 

• Necessary: 
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Tensor product sparse grids 

• So far: one-dimensional  domain, multiscale basis,  

   d-fold tensor product, proper truncation 

•  Now: E.g. two general domains           , each with  

– its dimension          and its smoothness 

– its isotropic multilevel basis (one level index)  

– tensor product between the two domains and 

multiscale bases 

 

 

– Mixed regularity  
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Tensor product sparse grids 

• Examples:   
– space   time,                     ,   parabolic problems 

– space   angle                    ,   radiosity  

– space   parameters                               

                                     but smooth in parameter variables 

– space   stochastics                        

                                     but analytic in stochastic variables 

• Main result: curse of dimension only w.r.t. the 

larger dimension and/or the lower smoothness 

• Time comes for free, angle space comes for free, 

parametrization/stochastics comes for free, just 

space dimension matters 
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Optimized general sparse grid space 

• Multiscale analyses on                  with associated 

approximation order  

 

• Complementary spaces: 

 

• Anisotropic sparse grid space: 

 

 

• Parameter      now allows to optimize  

    with respect to dimensions    

    and smoothness  
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                      Properties (G.+Harbrecht 2011) 

• The sparse grid space       possesses 

     

 

    degrees of freedom. 

• For a given                             with   

    we have for the accuracy 

 

 

• No log-terms in many situations 

• Analogous results by simple shift for other error 

norms like                         than just for 
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• Approximation error and necessary regularity 

 

 

• How realistic are these regularity assumptions? 

-            is also needed for error estimates of conventional 

discretization methods  

-  classical regularity theory shows (Ladyzenskaja, Wloka) 

 

• Space-time sparse grids possess the same 

approximation rate as conventional full space-time 

grids but only the cost complexity of space problem 

             => time coordinate comes for free 
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Space-time sparse grids 

utx

22 

)),0(()( 22 THHu 



 

 

 

 

 

 

 

Examples of space time sparse grids  
space dimension 1, space-time sparse grid,  Euler case 

 

space dimension 2, space-time sparse grid, Cranck-Nicolson case, n=4,5: 

 

in each time slice there is a conventional full grid  



space dimension 2, adaptive space time grids 

],1,0(in 0103  pyyt

),1,0[in 1  yppt

     with homogeneous initial/end and boundary conditions 

Problem: 

Adaptivity with 5 refinement steps starting at level 3 

t=0 



Instationary distributed control problems 



Instationary distributed control problems 

control 

state 

t=0 t=0.8 

t=0.2 t=1.0 



Instationary distributed control problems 
space dimension=3, adaptive space time grids 

33 )0,1(\)1,1( ],1,0(in 0103  pyyt

),1,0[in 1  yppt

     with homogeneous initial/end and boundary conditions 

Problem: 

Adaptivity with 4 refinement steps starting at level 3 
t=0, state variable, four isosurfaces t=1, control variable, four isosurfaces 



• Solutions              of stochastic/parametric PDEs 

        

    

    live on product  

• of spatial domain      with               

• and stochastic/parametric domain      with             

large or even infinity. 

• Often: Very high smoothness in    -part   

    Here: especially weighted analyticity for the 

different coordinates due to decay in covariance  

• Therefore, even infinite-dimensional       become 

treatable independently of   

 

     

 

Stochastic and parametric PDEs  
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• Sparse grids methods can be used for       to cope 

with its high dimensionality ! 

– The stochastic part is smooth or even analytic 

• sparse grids with spectral, polynomial bases 

– The stochastic coordinates are not equally important   

• weights/decay of the different coordinate directions related to the 

eigenvalues of covariance of parameters, algebraic or exponential! 

• Then, anisotropic sparse grids (with spectral, polynomial bases) 

and dimension-adaptive sparse grids are successfully used  

• The decay kills the curse, the sparse grid approach then reduces 

the dimension-dependency of the constant  

• Moreover: The two-variate sparse grid product 

approach works fine between the spatial domain and 

the parametric/ stochastic domain. 
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• What may happen if the function is too smooth ? 

– 1-D:     -orthogonal polynomial basis 

– d-D: Product of polynomials 

• Here: the isotropic case: 

– Representation 

 

        regular  

         sparse grid                                 full grid 

 

– cost: 

– accuracy  : 

• Anisotropic case: no curse, but still d-dependent constants 

 

  

 

 

 

 

    

     

 

Sparse grids and analytic functions 
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• Weighted analytic approximation space for 

 Let be given an ordered real sequence                with 

                                     and a fixed base  

 

 

 

• Characterization of    -weighted analytic functions 
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• Index set, brick-type with successively smaller size  

 

 

• Corresponding subspace  

 

 

 

 

 

 

 

 

 

Discrete anisotropic, regular grid subspace 

}1allfor/:{:)( 20,
2

2
dinaknI ii

d

d  ka

)}(),({span: ,,, 22
nIV dnd aka kx  

2k

1k

3k

11 / ak

22 / ak

33 / ak



• Degrees of freedom 

  

 

• With the summability condition 

   we get, independently of    ,  

 

• Accuracy:  about linear in   , mainly independent of  

  

 

 

 

 

Discrete regular grid subspace 
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• With the sequence  

  

   and associated sequence of complimentary spaces  

 

   we get, together with the usual sequence of  

complementary spaces on     , a two-variate sparse 

grid construction on             , which is independent of 

the dimension      (even if           ). 

• The sparse grid product approach works fine 

between the spatial and the parametric/ stochastic 

domains. 
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Summary 
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Classical approach: 
curse of dimension and intractability 

Stronger regularity/norms 
curse only wrt log-terms  

 

 

or no curse at all 

 

 

but still not tractable,  

constant grows exponentially 

Lower effective dimension 

and lower-dim. manifolds  
no curse due to effective 

dimension 

  

 

and constant grows 

exponentially only w.r.t. effective 

dimension   
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