On generalized sparse grids

Michael Griebel

Outline

1. High-dimensional problems and curse of dimensionality
2. Dimension decomposition of functions
3. Sparse grids
4. Energy-norm based sparse grids
5. Adaptive sparse grids
6. Applications

High(er) dimensional problems

- Classical physics: most problems in 3d space+time, compl. geometry
- Higher dimensional problems ?
- PDEs from mathematical modelling, stochastics
- diffusion equation, Fokker-Planck equation,
- diffusion approximation of discrete processes, networks (Mitzlaff,Dai)
- viscoelasticity in polymer fluids (Rousse), reaction mechanisms in biology and chemistry (Sjoeberg, Loetstedt, Hegland),, option pricing,
- homogenization with multiple scales (Cioranescu,, Hoang, Matache, Schwab
- quantum mechanics, Schrödinger equation (Yserentant, Flad)
- data analysis, statistical learning (Garcke, Hegland)
- stochastic PDEs (Todor,Schwab,Mathies)
- Domain simple, product structure
- $[0,1]^{\mathrm{d}},[-\mathrm{a}, \mathrm{a}]^{\mathrm{d}}$, hypersphere $\mathrm{S}_{\mathrm{d}}, \mathrm{R}^{\mathrm{d}}$ with decay for $x_{i} \rightarrow \pm \infty$

Curse of dimension

- $f: \Omega^{(d)} \rightarrow \mathfrak{R}, \quad f \in V^{(r)}, \quad r$ isotropic smoothness
- Bellmann '61: curse of dimension
$\left\|f-f_{N}\right\|_{H^{s}}=C(d) \cdot N^{-r / d}|f|_{H^{s+r}}=O\left(N^{-r / d}\right)$
- Find situations where curse can be broken?
- Trivial: restrict to $r=O(d)$

$$
\left\|f-f_{N}\right\|=O\left(N^{-c d / d}\right)=O\left(N^{-c}\right)
$$

but practically not very relevant

Curse of dimension

- Consider class of functions of \mathfrak{R}^{d} with $\nabla f \in F L_{1}$ where $F L_{1}$ class of functions with Fourier transform in L_{1}
=> expect $\left\|f-f_{N}\right\|=O\left(N^{-1 / d}\right)$
- But Barron '93 showed $\left\|f-f_{N}\right\|=O\left(N^{-1 / 2}\right)$
- Meanwhile other function classes known
- Radial basis schemes, Gaussian bumps, (Y. Meyer)

Niyogi, Girosi '98: ball in Besov space $B_{1,1}^{d}\left(\mathfrak{R}^{d}\right) \Rightarrow r=d$

- Stochastic sampling techniques, MC
- Spaces with bounded mixed derivatives
- In any case: some smoothness changes with d

Concentration of measure

-What means smoothness for $d \rightarrow \infty$ anyway?

- Concentration of measure:(Milman's8, Talagrand'95, Gromov' '99)
f Lipschitz with constant L on d-sphere,
P normalized Lebesgue measure,
X uniformly distributed
Then: $\quad P(|f(X)-E f(X)|>t) \leq c_{1} \exp \left(-c_{2} t^{2} / L^{2}\right)$
$=>$ every Lipschitz function on sufficiently highdimensional domain is well approximated by constant function! (Hegland, Pozzi 05)

Lemma of Kolmogorov

- Kolmogorov '56:
ex. $2 \mathrm{~d}+1$ cont. strictly increasing functions $\varphi_{i}:(0,1) \rightarrow(0,1)$
ex. d constants $\lambda_{i}, \sum \lambda_{i} \leq 1$

$$
f\left(x_{1}, \ldots, x_{d}\right)=\sum_{i=1}^{2 d+1} g\left(\sum_{j=1}^{d} \lambda_{j} \varphi_{i}\left(x_{j}\right)\right)
$$

for some (non-smooth) $g \in C(0,1)$ dependent on f
but: non-constructive result,
G.,Braun 2009: recent constructive proof in Constructive Approximation

- IBC, weighted RK Hilbert spaces, wozniakowski, Sloan =>There is hope for high-dimensional problems

Approach

- Basic principles:
- 1dim series expansion with decay
- d-dim product construction
- Trunctation of resulting multivariate expansion
- Effect:
- reduction of cost complexity
- nearly same accuracy as „full" product
- necessary: certain smoothness requirements

Introductory examples

- Napier's multiplication (John Napier (1550-1617)
- Archimedes' approach for pi and Cavalieri's/Fubini's theorem
- Sparse grids for integration, approximation of functions and PDEs, etc.

Summary

Classical approach: $d=1, ., 3 / 4$ curse of dimension and intractability

$$
\left\|f-f_{N}\right\|_{H^{s}}=c(d) \cdot N^{-r / d}|f|_{H^{s++}}=O\left(N^{-r / d}\right)
$$

Stronger regularity/norms
 Lower effective dimension

 curse only wrt log-terms$\left\|f-f_{N}\right\|_{H^{s}}=c(d) \cdot N^{-r}(\log (N))^{(d-1) / 2}|f|_{H_{\text {mitr }}^{\text {tr }}}$
or no curse at all

$$
\left\|f-f_{N}\right\|_{H^{s}}=c(d) \cdot N^{-r}|f|_{H_{m t r}^{\text {str }}}
$$

but still not tractable, constant grows exponentially

$$
d=1, ., 10 / 12
$$ and lower-dim. manifolds no curse due to effective dimension

$\left\|f-f_{N}\right\|_{H^{s}}=c\left(d^{e f f}\right) \cdot N^{-r / d^{d f}}|f|_{H^{s+r}}$ and constant grows exponentially only wrt effective dimension

$$
\begin{aligned}
& d=1, \ldots 100 . . \\
& d^{e f f}=1, . ., 10
\end{aligned}
$$

Function decomposition

- splitting of one-dimensional space $V=C \oplus W$ projection $P: V \rightarrow C$ onto subspace of constants
- splitting of d-dim. space by tensor product

$$
\begin{gathered}
V^{(d)}=\bigotimes_{i=1}^{d}\left(C^{(i)} \oplus W^{(i)}\right)=C^{(1)} \times \cdots \times C^{(d)}+ \\
\sum_{i=1}^{d} C^{(1)} \times \cdots \times W^{(i)} \times \cdots \times C^{(d)}+ \\
\sum_{i=1}^{d} \sum_{i<j} \sum_{j=1}^{d} \sum_{i<j} C^{(1)} \times \cdots \times W^{(i)} \times \cdots \times W^{(i)} \times \cdots \times W^{(j)} \times \cdots \times C^{(d)}+ \\
\vdots \\
\vdots \\
\vdots \\
\quad . \\
W^{(1)} \times \cdots \times W^{(k)} \times C^{(d)}
\end{gathered}
$$

Function decomposition

- splitting of associated d-dim function

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{d}\right)= & \sum_{u \subseteq\{1, \ldots, d\}} f_{u}\left(x_{u}\right) \\
= & f_{0}+\sum_{i=1}^{d} f_{i}\left(x_{i}\right)+\sum_{i=1}^{d} \sum_{i<j} f_{i, j}\left(x_{i}, x_{j}\right)+ \\
& \sum_{i=1}^{d} \sum_{i<j} \sum_{j<k} f_{i, j, k}\left(x_{i}, x_{j}, x_{k}\right)+\cdots+f_{1, \ldots, d}\left(x_{1}, \ldots, x_{d}\right)
\end{aligned}
$$

- 2^{d} subspaces, 2^{d} terms
- decomposition into correlations, clusters
- Choice of one-dimensional projector P ?
- integral mean => ANOVA decomposition, induces decomposition of variance of f
(Efron, Stein, Wahba, Owen, Hickernell)
- evaluation at one fixed point => Anchor ANOVA

Function decompositions

- 2d Example:

$$
\begin{array}{c|c}
C_{1} \times W_{2} & W_{1} \times W_{2}
\end{array}
$$

$$
C_{1} \times C_{2} \quad W_{1} \times C_{2}
$$

- 3d Example:

$V^{(3)}=$| $C_{1} \times W_{2} \times W_{3}$ | $W_{1} \times W_{2} \times W / 3$ |
| :--- | :--- |
| $C_{1} \times C_{2} \times W_{3}$ | $W_{1} \times C_{2} \times W_{3}$ |
| $C_{1} \times W_{2} \times C_{3}$ | $W_{1} \times W_{2} \times C_{3}$ |
| $C_{1} \times C_{2} \times C_{3}$ | $W_{1} \times C_{2} \times C_{3}$ |

$$
f\left(x_{1}, x_{2}, x_{3}\right)=f_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)+f_{1,2}\left(x_{1}, x_{2}\right)+f_{1,3}\left(x_{1}, x_{3}\right)+f_{2,3}\left(x_{2}, x_{3}\right)+f_{1,2,3}\left(x_{1}, x_{2}, x_{3}\right)
$$

Function decompositions

- approximation by truncation after q-order terms

$$
f\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{u \subseteq\{1, \ldots, d\},|u| \leq q} f_{u}\left(x_{u}\right)
$$

$$
\begin{aligned}
& q=0 \\
& q=1 \\
& q=2 \\
& q=2
\end{aligned}
$$

$f\left(x_{1}, x_{2}, x_{3}\right)=f_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)+f_{1,2}\left(x_{1}, x_{2}\right)+f_{1,3}\left(x_{1}, x_{3}\right)+f_{2,3}\left(x_{2}, x_{3}\right)+f_{1,2,3}\left(x_{1}, x_{2}, x_{3}\right)$

Function decompositions

- Fast decay of series or even finite order $\mathrm{q} \ll \mathrm{d}$?
- surely not in general, but: consider f as input-output model

$$
\left(x_{1}, \ldots, x_{d}\right) \rightarrow f\left(x_{1}, \ldots, x_{d}\right)
$$

- „Correlated" effects of the input variables ?
- Many body expansion of potential energy surface of molecular systems: mostly only two-, three- or fourbody potentials (i.e. $q=4$) for physical reasons
- Cluster expansions in statistical mechanics
- Statistics: second order, covariances but i.g. not more
- Data-mining: MARS, only up to $q=5, . ., 7$ for real data

Truncation

- Truncation after q terms introduces a modelling error
- The remaining subspaces needs to be finitely represented => discretization error
- After truncation after q terms no more balancing of modelling error and subsequent discretization error possible.
- Unnatural distinction between modelling error and subsequent discretization error
- better: relate it somehow

Further decomposition of W: Sparse grids

- decompose 1d subspace W further $W=\sum_{l=1}^{\infty} W_{l}$
tensor product and subsequent truncation
=> sparse grid representation
- Fourier series or polynomials (global)
=> Korobov-spaces, hyperbolic cross approximation piecewise polynomials (local)
hierarchical basis, interpolets, wavelets, multilevel basis
=> sparse grid finite element spaces

History of Sparse Grids

re-invented several times:

1957 Korobov, Babenko
1963 Smolyak
1971 Gordon
1980 Delvos, Posdorf
1990 Zenger, G.
1998 Stromberg, deVore
application areas include:

- quadrature (Novak, Ritter)
- interpolation
- data compression
hyperbolic cross points
blending method
Boolean interpolation
sparse grids
hyperbolic wavelets
- solution of PDEs
- integral equations
- eigenvalue problems

Example: Hierarchical basis

parabola $f(x)=-(x-1)(x+1)$ in $[-1,1]$

conventional coefficients no decay from level to level

hierarchical coefficients decay by $1 / 4$ from level to level

Tensor product hierarchical basis

Generalization to higher dimension by tensor product

Table of subspaces $W_{l_{1} l_{2}}$ Idea:
Omit points with small associated hierarchial coefficient values

Regular sparse grids

cost complexity (d=2,interior points)

 Table of subspaces $W_{l_{1} l_{2}}$
Contribution

$$
\left\|f_{l_{1}, 2}\right\|_{2} \leq 3^{-2} \cdot 2^{-2\left(l_{1}+l_{2}\right)} \cdot|f|_{2, \text { mix }}
$$

truncate at level n

$\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right) \cdot|f|_{2, \text { mix }} \cdot 3^{-2}$

$$
\left(2^{-2(n+1)}\right) .
$$

$$
\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right) \cdot|f|_{2, \text { mix }} \cdot 3^{-2}
$$

$2^{-2(n+1)} \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right) \cdot|f|_{2, \text { mix }} \cdot 3^{-2}$
$2^{-2(n+1)} \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right) \cdot|f|_{2, \text { mix }} \cdot 3^{-2}$
further summation results in
$2^{-2(n+3)} \cdot \ldots$
$\left\|f-f_{n}^{S G}\right\|_{0} \leq c_{2} \cdot n \cdot 2^{n}|f|_{2, \text { mix }}$

Properties of sparse grids

Cost:

$$
O\left(N(\log N)^{d-1}\right) \text { instead of } O\left(N^{d}\right)
$$

Accuracy: $\quad O\left(N^{-2}(\log N)^{d-1}\right)$
L_{2}-norm

$$
O\left(N^{-1}\right)
$$

$O\left(N^{-1}\right) \quad$ energy-norm
Smoothness: $\left|\frac{\partial^{2 d} f}{\partial x_{1}^{2} \ldots \partial x_{d}^{2}}\right| \leq c$
Space and seminorm: $H_{m i x}^{2},|f|_{2}$

$$
\left|\sum_{i=1}^{d} \frac{\partial^{2} f}{\partial x_{i}^{2}}\right| \leq c
$$

$$
H^{2},|f|_{2}
$$

breaks curse of dimension of conventional full grids at least to some extent
Note: higher regularity in mixed derivative, $\mathrm{r} \sim \mathrm{d}$

L^{2} norm-based sparse grids

- For orthogonal wavelets and general stable multiscale systems we can even obtain

$$
O\left(N^{-2}(\log N)^{(d-1) / 2}\right)
$$

- Hint: estimate directly for squared error.
- Complexities with boundary terms:
- Cost: same order but additional factor of 3^{d}
- Accuracy same order
- Smoothness assumptions related to variation of Hardy and Krause
- Start multiscale series with constant then linear etc.

L^{2} norm-based sparse grids

- Representation

$$
\begin{aligned}
& f(\mathbf{x})=\sum_{\mathbf{1}} f_{\mathbf{1}}(\mathbf{x}) \\
& \mathbf{x}=\left(f_{1}(\mathbf{x}) \in W_{\mathbf{1}}\right. \\
&\left.x_{d}\right) \mathbf{l}=\left(l_{1}, \ldots, l_{d}\right)
\end{aligned}
$$

- cost per subspace $\quad \operatorname{dim}\left(W_{1}\right)=2^{\left[1-1 \|_{1}\right.}$
- benefit for accuracy $\left\|f_{1}\right\|_{2} \leq 3^{-d} \cdot 2^{-2\| \|_{1}} \cdot|f|_{2}=O\left(2^{-2\| \|_{1}}\right)$
- choice of best subspaces ?
=> restricted global optimization problem,
=> local benefit $2 /$ cost ratio

$$
V_{n}^{(d, o p t)}=\bigoplus_{\mid \mathbb{l}_{1}=n+d-1} W_{\mathbf{l}}
$$

\Rightarrow regular sparse grid space

Energy-norm based sparse grids

- energy norm $\|f\|_{E}:=\left(\int_{\Omega} \sum_{j=1}^{d}\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_{j}}\right)^{2} d \mathbf{x}\right)^{1 / 2}$
- benefit for accuracy

$$
\left\|f_{1}\right\|_{E} \leq \frac{1}{2 \cdot 12^{(d-1) / 2}} \cdot 2^{-2 \|_{1}} \cdot\left(\sum_{j=1}^{d} 2^{2 l_{j}}\right) \cdot|f|_{2}=O\left(2^{-2 \cdot\| \|_{1}} \cdot\left(\sum_{j=1}^{d} 2^{2 \cdot l_{j}}\right)^{1 / 2}\right)
$$

- Now benefit/cost ratio

$$
b^{2}(\mathbf{l}) / c(\mathbf{l}) \approx \frac{2^{-4 \cdot \mid \|_{1}}}{2^{-\|_{1}}} \cdot \sum_{j=1}^{d} 2^{2 \cdot l_{j}}
$$

\Rightarrow energy-norm based sparse grid space

$$
\begin{array}{ll}
\mathbf{V}_{\boldsymbol{n}}(\boldsymbol{d}, \boldsymbol{E})= & l_{2} \\
|\mathbf{l}|_{1}-1 / 5 \cdot \log _{2}\left(\sum_{j=1}^{d} 4^{l_{j}}\right) \leq n+d-1-1 / 5 \cdot \log _{2}\left(4^{n}+4 d-4\right) &
\end{array}
$$

Energy-norm based sparse grids

- Properties: complexities now independent of d

$$
\operatorname{dim}\left(V_{n}^{d, E}\right)=O\left(2^{n}\right) \quad\left\|f-f_{n}^{E}\right\|_{E}=O\left(2^{-n}\right)
$$

- What about the constants ?

$$
\begin{aligned}
& \operatorname{dim}\left(V_{n}^{d, E}\right) \leq \frac{d}{2}\left(1-2^{-2 / 3}\right)^{-d} \cdot 2^{n} \leq \frac{c_{2}}{2} e^{d} \cdot 2^{n} \\
& \left\|f-f_{n}^{E}\right\|_{E} \leq \frac{d}{3^{(d-1) / 2} \cdot 4^{d-1}} \cdot\left(\frac{1}{2}+\left(\frac{5}{2}\right)^{d-1}\right) \cdot|f|_{2} \cdot 2^{-n}
\end{aligned}
$$

Thus:

c_{1}

$$
\left\|f-f_{n}^{E}\right\|_{E} \leq c_{1} \cdot 2^{-n}\left|\underset{2^{-n} \leq c_{2} \cdot \operatorname{dim}\left(V_{n}^{d, E}\right)^{-1}}{ } f\right|_{2} \leq c_{1} \cdot c_{2} \cdot|f|_{2} \cdot \operatorname{dim}\left(V_{n}^{d, E}\right)^{-1}
$$

with constant $c_{1} \cdot c_{2}=O\left(d^{2} \cdot 0.97515^{d}\right)$

Further generalizations

- H^{s}-norm based optimal sparse grid spaces (G., Knapek)

$$
s \in(-\infty, \infty)
$$

- More general subspace patterns

Anisotropic
sparse grids

general subset of subspaces

$$
V_{\mathfrak{J}}^{(d)}=\bigoplus_{\mathbf{l} \in \mathfrak{I}} W_{\mathbf{I}} \quad \mathfrak{I}=\text { set of indices }
$$

Further generalizations

- $H_{m i x}^{t, l}$ spaces and regularity assumption (G., Knapek)

$$
\begin{aligned}
& H_{\text {mix }}^{t, l}\left(I^{d}\right):=H^{t+l_{1}}\left(I^{d}\right) \cap \ldots \cap H^{t+e_{\mathrm{e}}}\left(I^{d}\right) \\
& H_{\text {mix }}^{\mathrm{k}}\left(I^{d}\right):=H^{k_{1}}(I) \otimes \ldots \otimes H^{k_{d}}(I)
\end{aligned}
$$

Mixture of the standard Sobolev space

$$
\underset{H^{s}\left(I^{d}\right)=H_{m i x}^{0, s}\left(I^{d}\right)}{ }
$$

and the space of dominating mixed derivative

$$
H_{m i x}^{t}\left(I^{d}\right)=H_{m i x}^{t, 0}\left(I^{d}\right)
$$

Norm equivalency (for stable decompositions, wavelets)

$$
\|f\|_{H_{m i x}^{\prime t}}^{2} \approx \sum_{1} 2^{2 t\left\|_{1}+2 / 2\right\|_{\infty}}\left\|f_{1}\right\|_{0}^{2}
$$

Further generalizations

- Otimization allows again to determine the best sparse grid spaces $V_{n}^{T}=\underset{1 \in I^{T}}{\oplus} W_{\mathbf{l}}$

$$
I_{n}^{T}=\left\{\mathbf{l} \in N^{d}:-|\mathbf{l}|_{1}^{\mathbf{l} \in I_{n}^{T}}+\frac{s}{t}|\underline{\mathbf{l}}|_{\infty} \geq-(d+n-1)+\frac{s}{t} n\right\}
$$

with approximations like

$$
\inf _{v \in V_{n}^{T}}\|f-v\|_{H^{s}}^{2} \leq c 2^{-2(l+t-s) n}\|u\|_{H_{m i x}^{t l}}^{2}
$$

$$
T
$$

- For a large range of smoothness parameters s,t,l any log-term is avoided in the cost and accuracy estimates
- But the constants may depend strongly on d
- BTW: The solution of Schrödinger 's equation lives in

$$
H_{m i x}^{1,1}\left(\left(\mathfrak{R}^{3}\right)^{d}\right) \quad H_{m i x}^{3 / 4, \varepsilon, 1}\left(\left(\mathfrak{R}^{3}\right)^{d}\right)
$$

Dimension-adapted sparse grids

- So far: function class known, and a-priori choice of best subspaces by optimization
- Size of benefit/cost ratio indicated if subspace is active => patterns for \mathfrak{J}
- Now: for single given function adaptively build up a set \mathfrak{I} of active indices
- Needed:
- „local" error indicator for subspace W_{1}
- refinement strategy to build new index set
- global stopping criterion

Dimension-adaptive methods

- A proper adaptive algorithm then
- uses lower resolution in less important dimensions and correlations
and thus automatically detects
- important dimensions
- important correlations between the dimensions
- large reduction of cost if important dimensions are few (small effective dimension, finite order weight spaces), curse of dimensionality broken
- But: no need to know function class a-priori
(Hegland '01, Gerstner,G. '03, Garcke '04)

Example (Index Sets)

Evolution of the algorithm:
index sets:

Special data structures for the bookkeeping of the different index sets required. $=>O\left(d^{2}\right)$

Error Estimation

- differential integral for index I

$$
d_{1}=\left\|f_{1}\right\|
$$

can be used as local error estimate

- problem: too early stopping (no saturation)
- solution: consider also involved work

$$
n_{1}=\left|W_{1}\right|
$$

and use as estimate

$$
\max \left\{w \frac{d_{1}}{d_{1}},(1-w) \frac{n_{1}}{n_{1}}\right\}
$$

with weight

$$
w \in[0,1] .
$$

A simple example

Figure 4.14: Dimension adaptive refinement with the new ANOVA based admissibility criterion for $f(x, y)=x^{2}+y^{2}$ (top row) and $f(x, y)=x^{2} \cdot y^{2}$ (bottom row). Here, indicates a vanishing contribution $f_{l} \equiv 0$ whereas indicates a non-vanishing contribution $f_{l} \not \equiv 0$.

High nominal but low effective dimension

- Model problem

$$
f(\mathbf{x})=\sum_{\substack{u \in(1,1, d\} \\|x|=q}} \prod_{j \in u} g\left(x_{j}\right)
$$

$$
g(x)=B(\alpha, \beta)^{-1} x^{\alpha-1}(1-x)^{\beta-1} \text {, here with } \alpha=2, \beta=5
$$

- We expect a behavior of the method as for a smooth q-dimensional function and cost $O\left(\binom{d}{q} N_{q}\right.$
with N_{q} cost for one smooth q-dimensional problem
effective $q=1$ dimensional

d	$N_{d}^{1^{-4}}$	$N_{d}^{\bar{\epsilon}} / N_{1}^{\bar{\epsilon}}$	$\binom{d}{1}$
1	223	1.0	1
2	413	1.8	2
3	590	2.6	3
4	762	3.4	4
5	930	4.2	5
6	1,096	4.9	6
7	1,260	5.6	7
8	1,424	6.4	8
9	1,586	7.1	9
10	1,748	7.8	10

Dof

High nominal but low effective dimension

effective $q=5$ dimensional

d	$N_{d}^{1^{-2}}$	$N_{d}^{\bar{\epsilon}} / N_{5}^{\bar{\epsilon}}$	$\binom{d}{5}$
5	$2,904,750$	1.0	1
6	$12,153,200$	4.2	6
7	$35,269,600$	12.1	21
8	$85,576,500$	29.5	56
9	$173,730,000$	59.8	126
$10342,084,000$	117.8	252	

Cost increase factors for a fixed error 0.0001, right cloumn

Decay of importance of the dimensions

- Weighted model problem $\quad f(\mathbf{x})=\sum_{\substack{u[1,(d) \\\langle\mu=4 \\ u=q}} \prod_{j \in u} w_{j} g\left(x_{j}\right)$
$g(x)=\frac{1}{\gamma \pi}\left(1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right)^{-1}$ with $\gamma=1 / 2, \mathrm{x}_{0}=0.8, w_{j}=2 \cdot 2^{3 / 2(j-1)}$

Figure 4.18: Dimension adaptive interpolation of the weighted superposition (4.118) for dimensions $d=1,2, \ldots, 10$ and the associated weights for the case $d=5$ (ordered by magnitude). See Figure 4.19 for dimension adaptive index sets.

Decay of importance of the dimensions

Figure 4.19: Dimension adaptive index sets for the experiment of Figure 4.18 in dimensions $d=2, d=3$. Each level $n(1)$ has the same color.

PDE solver

- Problem
$-\Delta u=h$ in $[0,1]^{d}$
$\frac{\partial}{\partial n} f=$ on $\partial[0,1]^{d}$
$f(0, \ldots, 0)=f_{0}$
right hand side of finite order $\mathrm{q}=4$

$$
f(\mathbf{x})=\sum_{\substack{u[\{1,1, d, d\} \\|x|=q}} \prod_{j \in u} g\left(x_{j}\right)
$$

$$
g(x)=\frac{1}{\gamma \pi}\left(1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right)^{-1} \text { with } \gamma=1 / 2, \mathrm{x}_{0}=0.8
$$

Effective four-dimensional PDE

Dof

Locally adaptive sparse grids for PDEs

- principle: refine near points with large hierarchical coefficient nonlinear N -term approximation
- for Besov spaces: same rates as isotropic nonlinear refinement schemes (wavelets, adaptive finite elements) (Nitsche, Schwab)
- line/face singularities aligned with coordinate axes are cheap to resolve

2D Navier-Stokes equation

- 2D mixing layer
- Chorin projection scheme, incompressible flow
- $\mathrm{Re}=\mathrm{U} / \mathrm{v}=16000$
- pertubations for initial condition
- evolution of |vorticity| and adaptive grids

3D Navier-Stokes equations

- 3D Mixing layer
- initial conditions analogous to 2D
- $\mathrm{Re}=4000$
- discretization as before
- number of DOF between 1 ... 2 million
- three different isosurfaces of vorticity

Implementation for higher dimensional PDEs

- naive implementation of sparse grids for PDEs: $\begin{array}{ll}\text { work count } & O\left(d^{2} 2^{d} \tilde{N}\right) \\ \text { storage } & O(d \tilde{N})\end{array}$

$$
\tilde{N}=O(d o f)
$$

- new data structures and multigrid algorithms, use of unidirectional principle, hash techniques
- separable, non-constant coefficient functions now: work count $O\left(d^{2} \tilde{N}\right)$ storage $\quad O(d \tilde{N})$
- elliptic PDEs possible with up to 120 dimensions with homogeneous bc and product-type right hand side (Feuersänger).

Implementation for higher dimensional PDEs

- implementation uses semi-orthogonal prewavelets instead of piecewise linear hat functions

- orthogonality between levels simplifies mass matrix contributions and results in improved complexity w.r.t dimension d
- Full orthogonal wavelets would reduce complexity to just $O(d N)$ but are more difficult to work with

Example: 2nd order PDE

$$
\begin{array}{cc}
-\Delta f(x)+\sum_{k=1}^{d} b_{k}(x) \partial^{k} f(x)+c(x) f(x)=r(x), x \in \Omega=[0,1]^{d} \\
f(x)=0, x \in \partial \Omega
\end{array}
$$

We see the influence of the $\log (N)^{(d-1)}$-terms an energy norm approach and adaptivity is necessary

Caveat

- the regularity term $|f|_{2, \text { mix }}$ might cause problems and can postpone the onset of convergence
- Example 1:

$$
\begin{aligned}
& \text { 1: } f\left(x_{1} \ldots x_{d}\right)=\prod_{j=1}^{d} \sin \left(2 \pi k_{j} x_{j}\right) \\
& D^{(2,2)} f\left(x_{1} \ldots x_{d}\right)=(-1)^{d} \prod_{j=1}^{d}\left(2 \pi k_{j}\right)^{2} \prod_{j=1}^{d} \sin \left(2 \pi k_{j} x_{j}\right) \\
& \\
& |f|_{2, m i x}=(2 \pi)^{2 d} \prod_{j=1}^{d} k_{j}^{2}
\end{aligned}
$$

- Thus at most 15-18 dimensions treatable in practice

Gaussian

- Example: $f\left(x_{1} \ldots x_{d}\right)=\frac{1}{(2 \pi \sigma)^{d / 2}} \exp \left(-x^{T} x / \sigma\right)$
- Energy-norm based sparse grid in $\Omega=[-5 \sigma, 5 \sigma]^{d}$
- Rate for relative error in energy norm is asymptotically

$$
\approx 2^{d / 2} 2^{-n}=2^{-(n-d / 2)}
$$

- Necessary:

$$
n-d / 2>0
$$

Tensor product sparse grids

- So far: one-dimensional domain, multiscale basis, d-fold tensor product, proper truncation
- Now: E.g. two general domains Ω_{1}, Ω_{2}, each with
- its dimension d_{1}, d_{2} and its smoothness s_{1}, s_{2}
- its isotropic multilevel basis (one level index)
- tensor product between the two domains and multiscale bases
$\Omega=\Omega_{1} \times \Omega_{2}$

- Mixed regularity $H_{m i x}^{s_{1} s_{2}}(\Omega):=H^{s_{1}}\left(\Omega_{1}\right) \times H^{s_{2}}\left(\Omega_{2}\right)$

Tensor product sparse grids

- Examples:
- space \times time, $d_{1}=3, d_{2}=1$, parabolic problems
- space \times angle $d_{1}=3, d_{2}=2$, radiosity
- space \times parameters $d_{1}=3, d_{2}=10-20$
but smooth in parameter variables
- space \times stochastics $d_{1}=3, d_{2}=\infty$
but analytic in stochastic variables
- Main result: curse of dimension only w.r.t. the larger dimension and/or the lower smoothness
- Time comes for free, angle space comes for free, parametrization/stochastics comes for free, just space dimension matters

Optimized general sparse grid space

- Multiscale analyses on $\Omega_{i}, i=1,2$ with associated approximation order r_{i}

$$
V_{0}^{(i)} \subset V_{1}^{(i)} \subset V_{2}^{(i)} \subset \ldots \subset L^{2}\left(\Omega_{i}\right)
$$

- Complementary spaces:

$$
W_{l_{i}}^{(i)} \quad V_{l_{i}, ~}^{(i)}=W_{l_{i}}^{(i)} \oplus V_{l_{i}-1}^{(i)}
$$

- Anisotropic sparse grid space:

$$
\widehat{V}_{n}^{\sigma}=\underset{l_{1} \sigma+l_{2} / \sigma \leq n}{\oplus} W_{l_{1}}^{(1)} \oplus W_{l_{2}}^{(2)}
$$

- Parameter σ now allows to optimize with respect to dimensions d_{1}, d_{2} and smoothness s_{1}, s_{2}

Properties (G.+Harbrecht 2011)

- The sparse grid space \hat{V}_{J}^{σ} possesses

$$
\widehat{V}_{n}^{\sigma} \sim\left\{\begin{array}{cl}
2^{n \max \left\{d_{1} / \sigma, n_{2} \sigma\right\}} & \text { if } d_{1} / \sigma \neq d_{2} \sigma \\
n \cdot 2^{n d_{2} \sigma} & \text { if } d_{1} / \sigma=d_{2} \sigma
\end{array}\right.
$$

degrees of freedom.

- For a given $f \in H_{m i x}^{s, s, 2}\left(\Omega_{1} \times \Omega_{2}\right)$ with $0<s_{1} \leq r_{1}, 0<s_{2} \leq r_{2}$ we have for the accuracy
- No log-terms in many situations
- Analogous results by simple shift for other error norms like $H_{m i x}^{q_{1}, q_{2}}\left(\Omega_{1} \times \Omega_{2}\right)$ than just for $L^{2}\left(\Omega_{1} \times \Omega_{2}\right)$

Space-time sparse grids

- Approximation error and necessary regularity

$$
\inf _{u_{n} \in V_{n}^{0^{0}}}\left\|u-u_{n}\right\|_{H^{1}(\Omega) \otimes L^{2}(0, T)} \leq c 2^{-n}\|u\|_{H^{2}(\Omega) \otimes H^{2}((0, T))}
$$

- How realistic are these regularity assumptions?
- $\partial_{\vec{x}}^{2} \partial_{t}^{2} u$ is also needed for error estimates of conventional discretization methods
- classical regularity theory shows (Ladyzenskaja, Wloka)

$$
u \in H^{2}(\Omega) \otimes H^{2}((0, T))
$$

- Space-time sparse grids possess the same approximation rate as conventional full space-time grids but only the cost complexity of space problem
=> time coordinate comes for free

Examples of space time sparse grids

space dimension 1, space-time sparse grid, Euler case

space dimension 2, space-time sparse grid, Cranck-Nicolson case, $n=4,5$:

in each time slice there is a conventional full grid

Instationary distributed control problems

space dimension 2, adaptive space time grids

Problem:

$$
\begin{aligned}
& \partial_{t} y-\Delta y-10^{3} p=0 \text { in } \Omega \times(0,1] \\
& -\partial_{t} p-\Delta p+y=1 \text { in } \Omega \times[0,1)
\end{aligned}
$$

with homogeneous initial/end and boundary conditions
Adaptivity with 5 refinement steps starting at level 3

Instationary distributed control problems

state
$\mathrm{t}=1.0$

Instationary distributed control problems space dimension=3, adaptive space time grids

Problem: $\partial_{t} y-\Delta y-10^{3} p=0$ in $\Omega \times(0,1]$,

$$
-\partial_{t} p-\Delta p+y=1 \text { in } \Omega \times[0,1),
$$

with homogeneous initial/end and boundary conditions
Adaptivity with 4 refinement steps starting at level 3 $t=0$, state variable, four isosurfaces

$t=1$, control variable, four isosurfaces

Stochastic and parametric PDEs

- Solutions $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ of stochastic/parametric PDEs

$$
-\nabla \cdot A\left(\mathbf{x}_{2}\right) \nabla f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=r\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

live on product $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \Omega_{1} \times \Omega_{2}$

- of spatial domain Ω_{1} with $d_{1}=1,2,3$
- and stochastic/parametric domain Ω_{2} with d_{2} large or even infinity.
- Often: Very high smoothness in \mathbf{x}_{2}-part Here: especially weighted analyticity for the different coordinates due to decay in covariance
- Therefore, even infinite-dimensional Ω_{2} become treatable independently of d_{2}

Stochastic and parametric PDEs

- Sparse grids methods can be used for Ω_{2} to cope with its high dimensionality !
- The stochastic part is smooth or even analytic
- sparse grids with spectral, polynomial bases
- The stochastic coordinates are not equally important
- weights/decay of the different coordinate directions related to the eigenvalues of covariance of parameters, algebraic or exponential!
- Then, anisotropic sparse grids (with spectral, polynomial bases) and dimension-adaptive sparse grids are successfully used
- The decay kills the curse, the sparse grid approach then reduces the dimension-dependency of the constant
- Moreover: The two-variate sparse grid product approach works fine between the spatial domain and the parametric/ stochastic domain.

Sparse grids and analytic functions

- What may happen if the function is too smooth ?
- 1-D: L_{2}-orthogonal polynomial basis $\left\{\phi_{k}\left(x_{i}\right)\right\}_{k \in \mathrm{~N} 0}$
- d-D: Product of polynomials $\quad \phi_{\mathbf{k}}(\mathbf{x})=\phi_{k_{1}}\left(x_{1}\right) \cdots \phi_{k_{d}}\left(x_{2}\right)$
- Here: the isotropic case:
- Representation $f(\mathbf{x})=\sum_{\mathbf{k} \in \mathrm{N}_{0}^{d}} f_{\mathbf{k}} \cdot \phi_{\mathbf{k}}(\mathbf{x}) \quad\left|f_{\mathbf{k}}\right|^{2} \leq c \cdot 2^{-2\left(k_{1}+\ldots+k_{d}\right)}$
regular
sparse grid
- cost:
- accuracy ${ }^{2}$:

- Anisotropic case: no curse, but still d-dependent constants

Stochastic and parametric PDEs

- Weighted analytic approximation space for Ω_{2}

Let be given an ordered real sequence $\mathbf{a}=\left(a_{i}\right)_{i_{\mathrm{EN}}}$ with

$$
\begin{aligned}
& 1=a_{1} \geq a_{2} \geq a_{3} \geq \ldots \text { and a fixed base } b>1 \\
& A_{d_{2}, \mathbf{a}}\left(\Omega_{2}\right)=\left\{f \in L^{2}\left(\Omega_{2}\right): \sum_{\mathbf{k} \in N_{0}^{N_{0}^{2}}} b^{2 \sum_{i=1}^{k_{i} / a_{i}}}\left|f_{\mathbf{k}}\right|^{2} \leq C<\infty\right\}
\end{aligned}
$$

- Characterization of a-weighted analytic functions

$$
f(\mathbf{x})=\sum_{\mathbf{k} \in \mathbf{N}_{0}^{d_{2}}} f_{\mathbf{k}} \cdot \phi_{\mathbf{k}}(\mathbf{x}) \quad\left|f_{\mathbf{k}}\right| \leq c \cdot b^{-\sum_{i=1}^{d_{2}} k_{i} / a_{i}}
$$

Discrete anisotropic, regular grid subspace

- Index set, brick-type with successively smaller size

$$
I_{d_{2}, \mathbf{a}}(n):=\left\{\mathbf{k} \in \mathrm{N}_{0}^{d_{2}}: k_{i} / a_{i} \leq n \text { for all } 1 \leq i \leq d_{2}\right\}
$$

- Corresponding subspace

$$
V_{d_{2}, \mathbf{a}, n}:=\operatorname{span}\left\{\phi_{\mathbf{k}}(\mathbf{x}), \mathbf{k} \in I_{d_{2}, \mathbf{a}}(n)\right\}
$$

Discrete regular grid subspace

- Degrees of freedom

$$
\operatorname{dim}\left(V_{d_{2}, \mathrm{a}, n}\right)=\prod_{i=1}^{d_{2}}\left(1+\left\lfloor n \cdot a_{i} \mid\right) \leq \exp \left(n \cdot \sum_{i} a_{i}\right)\right.
$$

- With the summability condition $\sum_{i} a_{i} \leq A<\infty$ we get, independently of d_{2},

$$
\operatorname{dim}\left(V_{d_{2}, \mathbf{a}, n}\right) \leq \exp (n \cdot A)
$$

- Accuracy: about linear in n, mainly independent of d_{2}

$$
\left\|f-f_{V_{d_{2,2, n}, n}}\right\|_{L^{2}\left(\Omega \Omega_{2}\right)} \leq\left\{\begin{array}{ccc}
\sqrt{d_{2}} \cdot b^{-n} & \text { in any case } \\
b^{-\mu(n)} & \text { for } & \mu(n):=\min _{r}\left\{\left|n \cdot a_{r}\right|=0\right. \\
b^{-(1-\varepsilon) \cdot n} & \text { if } & 1 / a_{r}-1 / a_{s} \geq(r-s) \delta
\end{array}\right\}
$$

Stochastic and parametric PDEs

- With the sequence

$$
V_{d_{2}, \mathbf{a}, 0} \subset V_{d_{2}, \mathbf{a}, 1} \subset V_{d_{2}, \mathbf{a}, 2} \subset \ldots \subset \mathrm{~L}^{2}\left(\Omega_{2}\right)
$$

and associated sequence of complimentary spaces

$$
W_{d_{2}, \mathbf{a}, j} \quad V_{d_{2}, \mathbf{a}, j}=W_{d_{2}, \mathbf{a}, j} \oplus V_{d_{2}, \mathbf{a}, j-1}
$$

we get, together with the usual sequence of complementary spaces on Ω_{1}, a two-variate sparse grid construction on $\Omega_{1} \times \Omega_{2^{2}}$, which is independent of the dimension d_{2} (even if $d_{2}^{2^{2}}=\infty$).

- The sparse grid product approach works fine between the spatial and the parametric/ stochastic domains.

Summary

Classical approach: $d=1, \ldots, 3$ or 4 curse of dimension and intractability

$$
\left\|f-f_{N}\right\|_{H^{s}}=c(d) \cdot N^{-r / d}|f|_{H^{s+r}}=O\left(N^{-r / d}\right)
$$

Stronger regularity/norms

 curse only wrt log-terms$\left\|f-f_{N}\right\|_{H^{s}}=c(d) \cdot N^{-r}(\log (N))^{(d-1) / 2}|f|_{H_{n i x}^{++t}}$ no curse due to effective
Lower effective dimension and lower-dim. manifolds dimension
or no curse at all

$$
\left\|f-f_{N}\right\|_{H^{s}}=c(d) \cdot N^{-r}|f|_{H_{m i t}^{\text {str }}}
$$

$$
\left\|f-f_{N}\right\|_{H^{s}}=c\left(d^{e f f}\right) \cdot N^{-r / d^{d f}}|f|_{H^{s+r}}
$$

and constant grows
but still not tractable, constant grows exponentially

$$
d=1, . ., 10 \text { to } 12 \quad d=1, \ldots, 100 \quad d^{\text {eff }}=1, . ., 10
$$

Literature

- M. Griebel, Sparse tensor product spaces for stochastic and parametric approximations, INS Report, in preparation, to appear 2013.
- M. Griebel, H. Harbrecht, On the construction of sparse tensor product spaces, Math. Comp., 2012.
- M. Griebel and H. Harbrecht. A note on the construction of L-fold sparse tensor product spaces. Constructive Approximation, 2012.
- M. Griebel, H. Harbrecht, Approximation of two-variate functions: singular value decomposition versus sparse grids, IMA Journal of Numerical Analysis, 2012.
- M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations, Math. Comp. 78, 2223-2257, 2009.
- M. Griebel and D. Oeltz. A sparse grid space-time discretization scheme for parabolic problems. Computing, 81(1):1-34, 2007.
- D. Oeltz. Ein Raum-Zeit Dünngitterverfahren zur Diskretisierung parabolischer Differentialgleichungen. Dissertation, INS, Universität Bonn, 2006.
- M. Griebel. Sparse grids and related approximation schemes for higher dimensional problems. In L. Pardo, A. Pinkus, E. Suli, and M. Todd, editors, Foundations of Computational Mathematics (FoCM05), Santander, pages 106161. Cambridge University Press, 2006.
- H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:1-123, 2004.

