Computing square roots
in nice field extensions

Javad Doliskani, Eric Schost

ORCCA, UWO



Context: genus 2 point-counting

With P. Gaudry: Schoof algorithm in F,, p = 2% — 1.

To find the characteristic polynomial ¢ of the Frobenius:

e find ¢ modulo large primes
bivariate resultants

e find ¢ modulo powers of 2
square roots

e find ¢ modulo powers of 3
homotopy techniques, root finding

e find ¢ modulo powers of 5, 7
bivariate resultants

@ random walk
cockroaches



Schoot’s algorithm modulo powers of 2

Main task: lifting the 2*-torsion

e division by two on the Kummer surface

e invert doubling formulas
Chudnovky?, Gaudry

@ each step requires 4 square roots, over increasing extensions of I,
2t =16 = 2272

@ each step, 1 out of 4 requires to extend the base field
after k steps, we are in Iszk

e the cost of each step is A1), d = 2k,

Remark: would work the same using Jacobian coordinates



This talk

Computing square roots in ]szk
@ O(M(d)log(d)) (expected) operations in [, with d = 2k, if we are
allowed to build ]szk as we want
Factoring over ]szk
o factor f in Fx[x] with deg(f) =nand d = 2k
@ n,p fixed: O(M(d) log(d)) operations in IF,
@ cost quadratic in n, linear in log(p)

M(d): cost of multiplying polynomials in degree d
@ M(d) = O(dlog(d)) or M(d) = O(dlog(d) loglog(d))



Previous work: taking square roots

To compute a square root of v in F;: compute something to a power
something, somewhere.

Examples
e if g mod 4 = 3, compute a(™*V/4in F,
O(log(q)) products in [F,

o otherwise, compute (x + )7~1/2in A = Fy[x]/(x? — @)
O(log(q)) products in A — O(log(q)) products in I,

o Cipolla-Lehmer, Atkin, Tonelli-Shanks, Miiller, Han et al., ...

Cost
e dM(d), with g = p*



Previous work: factoring

Kaltofen, Shoup, 1997: factoring in high-degree field extensions

e factor f € IF,[x] of degree n
@ uses Cantor-Zassenhaus’ approach (DDF / EDF)

Main contribution: Frobenius and trace
o a— of inFy[x]/f

o aratal - +a inFx/f

Cost
e n,p fixed: O(C(d)log(d))
@ C(d) = cost of modular composition f, g, — f(g) mod h
o C(d) € O(VAM(d) + Vd/ad*)

e Kedlaya-Umans: C(d) quasi-linear in d



Previous work: taking square roots

Wang, Nogami, Morikawa, 2005
e dedicated to g = p?, with d = 2F

@ tests quadratic residuosity and computes square roots in ]szd

@ Tonelli-Shanks: computes o°, such that ka —1=2'sand s odd
@ reduces to computations in szi, i=0,...,k. Dominant factors
o O(M(d)log(d)?)
o O(log(d)?) Frobeniuses

Kato, Nogami, Morikawa, 2009

@ extensions to g = pd, withd =7y --- 752"



Defining F

Assumptions
@ p=1mod 4.
@ we know a non-quadratic residue r € F)

Consequence
o x¥ — risirreducible for all k

Remark
e if p = 3 mod 4, replace the base field F,, by F,[z]/(z* + 1)

e most likely, not too many differences

Seen in Shoup, 1994



Bases for ]FPZk

Multivariate basis: {x{' - - - x;*}, for ¢; € {0,1}, modulo the relations

2
Xig — Xk—1
x% — X1

2
X1 —r

Univariate basis: {xi}, fori € {0,...,2% — 1}, modulo x¥ — r

Change of basis
@ no arithmetic operation

e shuffling coefficients (bit reversal)
Multiplication in szk

e M(d) + O(d), withd = 2k
cf. work with De Feo on Artin-Schreier extensions



Inverse in szk

To invert A(xy) in szk, write

A = Ag(x}) + xA1(x7) = Ao(xx_1) + 1A (Xk_1).

Then,
1 1 A() — XkAl

AT Ay-xmA T A2 AT

e shuffling
e multiplications in IszzH
@ one inversion in szk—l
Total: O(M(d)), instead of O(M(d) log(d)) for a general IF,.

Inspired by Schénhage, 2000 (power series inverse)



Frobenius

To compute 7(A,i, k) = A(xk)pzl in IFPQk:
@ if i > k, do nothing

@ else, write
A = Ao(x3) + 1 A1 (x5) = Ao(xk—1) + %A1 (k1)
then, w(A,i,k) = n(Ag,i,k — 1) + m(xk, i, k)m (A1, i,k —1).

1

b 2k_ k o p2 — ik Si k h
@ because xi =7, w(x,i,k) = x = riikx”", wit
2! k
p° = qix2" +sik

Two recursive calls and O(d) multiplications by constants.
e Total: O(dlog(d))
@ Or maybe O(d)



Norm and QR test

Given a in ]szk, to compute

ok _1 a2k
N(a,k)=a-aP---of"  =altrt-tp

(a simplified version of von zur Gathen, Shoup, 1992)

e compute N(a,k —1)
k-1

o then N(«a, k) = N(a,k — 1)N(a, k — 1)7

Total:
@ k Frobenius and k products = O(M(d) log(d)), since k = log(d).

—1
Quadratic residuosity test: compute N(c, k)pT



Square root, factoring, etc

Given « in ]F;zk and 3 = By + xB; in ]szk [x], to compute

k

T(B,k) =B+ B +---+ " mod (x* - )
(a simplified version of von zur Gathen, Shoup, 1992)
® O(M(d)log(d))

p—1

Square root: compute ged(x? — o, T(B,k) = — 1)
Isomorphisms between towers describing szk [x]

Factoring: same approach to factor f € ]P‘ka [x]



Timings for square root

Naive root-finding in [, vs. Kaltofen, Shoup, 1997

a non quadratic residue

a quadratic residue

NTL | Kaltofen, Shoup || NTL | Kaltofen, Shoup
4 | 0.012 0.0008 0.05 0.0036
8 || 0.039 0.0052 0.22 0.009
16 || 0.23 0.026 1.6 0.037
32 1.5 0.078 94 0.12
64 6.3 0.18 51 0.36
128 32 0.64 155 0.9
256 124 1.7 823 3.3
512 || 512 49 3353 10




Timings to lift 2*-torsion

Curve of genus 2, defined over F,, with p ~ 2128

index H 210 ‘ 211 ‘ 212 ‘ 213 ‘ 214 ‘ 215 ‘ 216 ‘ 217
degree d 29 210 211 212 213 214 215 216
square root 23 | 77 | 280 | 1100 | 5000 | 22000
new square root || 45 | 10 | 23 | 80 70 190 | 400 | 1200
51,82 15| 36 | 90 | 290 | 900 | 3000 | 6000 | 18000

Bonus: memory

@ the memory in Kaltofen-Shoup’s algorithm is non-linear

@ now, linear memory (up to logs)



