
Computing square roots
in nice field extensions

Javad Doliskani, Éric Schost

ORCCA, UWO



Context: genus 2 point-counting

With P. Gaudry: Schoof algorithm in Fp, p = 2127 − 1.

To find the characteristic polynomial φ of the Frobenius:

find φ modulo large primes
bivariate resultants

find φ modulo powers of 2
square roots

find φ modulo powers of 3
homotopy techniques, root finding

find φ modulo powers of 5, 7
bivariate resultants

random walk
cockroaches



Schoof’s algorithm modulo powers of 2

Main task: lifting the 2k-torsion

division by two on the Kummer surface

invert doubling formulas
Chudnovky2, Gaudry

each step requires 4 square roots, over increasing extensions of Fp
24 = 16 = 22×2

each step, 1 out of 4 requires to extend the base field
after k steps, we are in Fp2k

the cost of each step is dO(1), d = 2k.

Remark: would work the same using Jacobian coordinates



This talk

Computing square roots in Fp2k

O(M(d) log(d)) (expected) operations in Fp, with d = 2k, if we are
allowed to build Fp2k as we want

Factoring over Fp2k

factor f in Fpk [x] with deg(f ) = n and d = 2k

n, p fixed: O(M(d) log(d)) operations in Fp

cost quadratic in n, linear in log(p)

M(d): cost of multiplying polynomials in degree d
M(d) = O(d log(d)) or M(d) = O(d log(d) log log(d))



Previous work: taking square roots

To compute a square root of α in Fq: compute something to a power
something, somewhere.

Examples
if q mod 4 = 3, compute α(q+1)/4 in Fq
O(log(q)) products in Fq

otherwise, compute (x + α)(q−1)/2 in A = Fq[x]/(x2 − α)
O(log(q)) products in A→ O(log(q)) products in Fq

Cipolla-Lehmer, Atkin, Tonelli-Shanks, Müller, Han et al., . . .

Cost
dM(d), with q = pd



Previous work: factoring

Kaltofen, Shoup, 1997: factoring in high-degree field extensions
factor f ∈ Fq[x] of degree n
uses Cantor-Zassenhaus’ approach (DDF / EDF)

Main contribution: Frobenius and trace

α 7→ αpi
in Fq[x]/f

α 7→ α+ αp + · · ·+ αpk−1
in Fq[x]/f

Cost

n, p fixed: O(C(d) log(d))
C(d) = cost of modular composition f , g, h 7→ f (g) mod h

C(d) ∈ O(
√

d M(d) +
√

d
√

d
ω
)

Kedlaya-Umans: C(d) quasi-linear in d



Previous work: taking square roots

Wang, Nogami, Morikawa, 2005
dedicated to q = pd, with d = 2k

tests quadratic residuosity and computes square roots in Fp2d

Tonelli-Shanks: computes αs, such that p2k − 1 = 2ts and s odd

reduces to computations in Fp2i , i = 0, . . . , k. Dominant factors

O(M(d) log(d)2)
O(log(d)2) Frobeniuses

Kato, Nogami, Morikawa, 2009
extensions to q = pd, with d = r1 · · · r`2k



Defining Fp2k

Assumptions
p = 1 mod 4.
we know a non-quadratic residue r ∈ Fp

Consequence
x2k − r is irreducible for all k

Remark
if p = 3 mod 4, replace the base field Fp by Fp[z]/(z2 + 1)
most likely, not too many differences

Seen in Shoup, 1994



Bases for Fp2k

Multivariate basis: {xe1
1 · · · x

ek
k }, for ei ∈ {0, 1}, modulo the relations∣∣∣∣∣∣∣∣∣∣

x2
k − xk−1
...

x2
2 − x1

x2
1 − r

Univariate basis: {xi
k}, for i ∈ {0, . . . , 2k − 1}, modulo x2k

k − r

Change of basis
no arithmetic operation
shuffling coefficients (bit reversal)

Multiplication in Fp2k

M(d) + O(d), with d = 2k

cf. work with De Feo on Artin-Schreier extensions



Inverse in Fp2k

To invert A(xk) in Fp2k , write

A = A0(x2
k) + xkA1(x2

k) = A0(xk−1) + xkA1(xk−1).

Then,
1
A

=
1

A0 − xkA1
=

A0 − xkA1

A2
0 − x2

k−1A2
1
.

shuffling
multiplications in Fp2k−1

one inversion in Fp2k−1

Total: O(M(d)), instead of O(M(d) log(d)) for a general Fq.

Inspired by Schönhage, 2000 (power series inverse)



Frobenius

To compute π(A, i, k) = A(xk)p2i
in Fp2k :

if i ≥ k, do nothing
else, write

A = A0(x2
k) + xkA1(x2

k) = A0(xk−1) + xkA1(xk−1);

then, π(A, i, k) = π(A0, i, k− 1) + π(xk, i, k)π(A1, i, k− 1).

because x2k

k = r, π(xk, i, k) = xp2i

k = rqi,kxsi,k
k , with

p2i
= qi,k2k + si,k

Two recursive calls and O(d) multiplications by constants.
Total: O(d log(d))
Or maybe O(d)



Norm and QR test

Given α in Fp2k , to compute

N(α, k) = α · αp · · ·αp2k−1
= α1+p+···+p2k−1

(a simplified version of von zur Gathen, Shoup, 1992)
compute N(α, k− 1)

then N(α, k) = N(α, k− 1)N(α, k− 1)p2k−1

Total:

k Frobenius and k products = O(M(d) log(d)), since k = log(d).

Quadratic residuosity test: compute N(α, k)
p−1

2



Square root, factoring, etc

Given α in F2
p2k and β = β0 + xβ1 in Fp2k [x], to compute

T(β, k) = β + βp + · · ·+ βp2k−1
mod (x2 − α)

(a simplified version of von zur Gathen, Shoup, 1992)
O(M(d) log(d))

Square root: compute gcd(x2 − α,T(β, k)
p−1

2 − 1)

Isomorphisms between towers describing Fp2k [x]

Factoring: same approach to factor f ∈ Fp2k [x]



Timings for square root

Naive root-finding in Fq vs. Kaltofen, Shoup, 1997

n α non quadratic residue α quadratic residue
NTL Kaltofen, Shoup NTL Kaltofen, Shoup

4 0.012 0.0008 0.05 0.0036
8 0.039 0.0052 0.22 0.009

16 0.23 0.026 1.6 0.037
32 1.5 0.078 9.4 0.12
64 6.3 0.18 51 0.36
128 32 0.64 155 0.9
256 124 1.7 823 3.3
512 512 4.9 3353 10



Timings to lift 2k-torsion

Curve of genus 2, defined over Fp, with p ' 2128.

index 210 211 212 213 214 215 216 217

degree d 29 210 211 212 213 214 215 216

square root 23 77 280 1100 5000 22000
new square root 4.5 10 23 80 70 190 400 1200

s1, s2 15 36 90 290 900 3000 6000 18000

Bonus: memory

the memory in Kaltofen-Shoup’s algorithm is non-linear
now, linear memory (up to logs)


