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Introduction

We describe a rather surprising, yet powerful, com-
bination of

e exponential sums

e lattice basis reduction algorithms.

This combination has led to a number of cryp-
tographic applications, helping to make rigorous
several heuristic approaches.

It provides a two edge sword to:

e prove important security results;

e Create powerful attacks



Examples:

e Bit security of the
— Diffie—Hellman key exchange system,
— Shamir message passing scheme,
— XTR cryptosystem,

— Rivest—Shamir—Wagner timed-release crypto.

e Attacks on the
— Digital Signature Scheme (DSA),

— Nyberg—Rueppel Signature Scheme.



Notation

p = prime number
IF, = finite field of p elements.
|s],,, = the remainder of s on division by m.

For £ > 0, MSBy ,(z) denotes any integer u such
that

L)), —ul < p/2F.

MSBy () =~ £ most significant bits of z.
However this definition is more flexible.
In particular, £ need not be an integer.

¢ = 0 gives no information
¢ = [logp/log 2] identifies [z|, uniquely.

Everything in between is nontrivial.



Hidden Number Problem (HNP)

Boneh & Venkatesan (1996):
HNP: Recover a € IFp such that for many
known random t € IF, we are given MSB, ,(at) for

some ¢ > 0.

Boneh & Venkatesan (1996): a polynomial time
algorithm to solve HNP with ¢ ~ logl/2p.

Note: ¢ =~ logp is trivial.

The algorithm is based on the lattice basis re-
duction.



Lattices

Let {by,...,bs} be a set of linearly independent
vectors in R%. The set of vectors

S
L:{Z | ZZZ C,L'bz', Cl,...,CSEZ}
i=1
is called an s-dimensional full rank lattice. The set
{b1,...,bs} is called a basis of L.




The volume of the parallelogram defined by the
basic vectors is the invariant, called the discrimi-
nant.

=




he closest vector problem

CVP: Given a vectorr € RS find a lattice vector
v € L with

|lr — v|| = min ||r — z||.
zc L




CVP is NP-complete.
Approximate solution?

L enstra, Lenstra & lLovasz (1982)
Kannan (1987)
Schnorr (1987)

Lemma 1 T here exists a deterministic polynomial
time algorithm which, for a given lattice L and a
vectorr € R?®, finds a lattice vector v € L satisfying
the inequality

min ||r — z||

z€ L

log? |
Ir — v|| < exp (CS °F” ©9 8)
log s

for some absolute constant C > 0.
LLL: stretch factor 25/2 (can be used as well)

Working with 20(s) jsg technically easier



HNP and CVP
Boneh & Venkatesan (1996):

Let d > 1 be integer. Given t;, u; = MSBy ,(at;),
i = 1,...,d, we build the lattice L(p, ¥4, t1,...,t )
spanned by the rows of the matrix:

(p O ... 0 0 )
O p - : :
0O 0 ... p O
\tl to ... 14 1/2£+1)
The unknown vector v = ([at1],, ..., [aty],, o/20T1)

e belongs to L(p, 0, t1,...,t3);

e is close to the known vector u = (uq,...,ug,0):

Iv—ul| =0 (p27).

Idea: Apply a CVP algorithm and hope that
it will output v.



How to make it rigorous?

We show that for almost all ¢1,...,t4, v is the only
lattice vector which can be so close to u.

In fact, even within the approximation factor of
Lemma 1, that is within the distance of order
p2—ttold) this is still the only lattice vector.



Analysiz

Note that any vector

w = (w1,...,wg, wg4+1 € L(p,4,t1,...,1q)

satisfies

(wi,...,wg) = (Bt1,...,Bty) (Mod p)

with some integer 3

Assume that w € L(p,4,t1,...,t5), with 8 # «
(mod p) is another lattice vector with

|w — u|| < p2~ ol
Then, by the triangle inequality
lw — || < p2~fFeld), (1)
Therefore for each 1 =1,...,d
(o = B)t; € [-p2~Hold) po=thold] - (mod p)
For every fixed v Z 0 (mod p)

Pr (vt € [=h,h] (mod p)) < 21
teF,

(2)




Thus

Pr  (~vt; € [-h,h] (modp), i=1,...,d)
t1,.-,tg€Fyp

In our settings

N=a—f and h = p2_£+0(d).

Because B (and thus v = a — 8) may belong to
p — 1 distinct residue classes we conclude that (1)
holds with probability at most

P<p (2—€+0(d)>d‘

Choose f =d =2 [Iogl/2 p-‘. Then

P <

N =

CVP algorithm returns v with prob. > 1—-1/p




Extended HNP

HNP: Recover a € [Fp such that for many
known random t € IF, we are given MSB, ,(at) for
some ¢ > 0.

The condition that t is selected uniformly at ran-
dom from IF, is too restrictive for applications.

Typically t is selected from some finite sequence
T of elements of I, which:

e may have a nice and well-studied number the-
oretic structure (bit security of Diffie—Hellman

key),

e may be rather “ugly” looking (attacks on DSA).

EHNP: Recover o € IFp such that for many
known random t € T we are given MSBy ,(at) for
some ¢ > 0.



The same arguments as above apply to the EHNP
... but one needs an analogue of (2).

U

T must have some uniformity of distribution
properties.

J
Nontrivial bounds of exponential sums
Z exp (2mict/p)| < 6#7T, 9gcd(c,p) =1, (3)
teT

with some nontrivial saving § < 1.
We say that 7 is §-good is (3) holds.

Koksma (1950) and Sziisz (1950) independently

U

For a §-good sequence 7 instead of (2) we get

2h +1
Pr(yt€[-hA] (modp))< =T

+0 (5 |og(5—1))



Putting Together

Nguyen & Shparlinski (2000) :

Theorem 2 Let ¢ = [logl/2p] + [loglogp] and
d=?2 [Iogl/2 pw. Let T be 2-199"%p_good. There
exists a deterministic polynomial time algorithm A
such that for any fixed integer o € [0,p — 1], given
2d Iintegers

t; and U; = MSB&p (Oéti), 1=1,...,d,
its output satisfies

Pr A(t1,...,t5u1,...,uy) = «
tl,...,tdeT[ (t1 i U1 d) ]

~ 1 _ o—(logp)1/2loglogp

ifty,...,tq are chosen uniformly and independently
at random from the elements of T.



Using Very Weak Bounds

Usually we prove that 7 if -good with § ~ #T7 ¢
for some fixed o > 0 or nothing at all. However in
some important cases (e.g. 7 = a small subgroup
of ]F;’;) only very weak bounds are know with § very
close to 1.

Shparlinski & Winterhof (2003)
Modifications to the Algorithm

Choose

t11,-->t1k> - - > td1s -5tk € G

and get integers U j with

<p/2Tl i=1,....d j=1,... ,k

' {atiij — Ujj

For:=1,2,...,d we put

v; = zk: {atijjp, t; = Lz: tij‘

k
U= ) ug

The rest of the algorithm remains the same.



We work with k-fold Cartesian product 7% of 7.
So we have
k

Y exp (2wict/p)
teT

VS.

> exp (2wict/p)
teT

If

> exp (2wict/p)| < §#T

teT

then
k

> exp (2mict/p)| < 6F (#T)F = oF#TH

teT

If 7 if 5-good (but § is close to 1) then T if §k-
good and adjusting k one can make it work.



Good News: Bit Security of the
Diffie—Hellman Key

Diffie—Hellman (DH) problem:

Given an element g of order = modulo p, recover
K = |g"¥], from |g%], and |g¥],.

Typically, either r=p—1 or r = q — a large prime
divisor of p— 1

The size of p and 7 is determined by the present
state of art in the discrete logarithm problem.
Typically, p is about 500 bits, 7 is at least 160 bits.

However after the common DH key K = g%V is
established, only a small portion of bits of K will
be used as a common key for some private key
cryptosystem.



Private Key | Public Key

Question: Assume that finding K is infeasible. Is
it still infeasible to find certain bits of K7

Boneh & Venkatesan (1996) :
for r=p—1 (- small gap in the proof)

Gonzalez VVasco & Shparlinski (2000) :
for “any” 7 (4 fixing the gap in BV)

YES!I

Assume we know how to recover ¢ most significant
bits of [g*¥], from from X = |¢*], and Y = [¢¥],,.

Select a random « € [0,7 — 1] and apply this algo-

rithm to X = |¢g*], and U = |Yg"|, = {gy‘k“Jp:

MSB, (gx(y+u)) = MSBy,, (g"¥g"") = MSB, ), (at)

EHNP with aa = ¢*Y and ¢t = ¢*%, u € [0, 7 — 1]!!



/

When is ~4 >—log? 2p—good? (v = g%)

Shparlinski & Winterhof (2003)

Theorem 3 For any € > 0 there exists ¢ > 0
such that for kK = C|092p any v € I, of order
> (logp)lte the sequence

E:{7U1++ryuk, ul)“‘?“k:O,...,T—l}
is p~9-good.

If p is an n-bit prime and 7 > (log p)1te then ~ nl/2
most significant bits of the DH key are as secure
as the whole key.



Bad News: Attack on DSA

DSA: Proposed NIST, August 1991; US Federal
Information Processing Standard 186, May 1994

Public Data:

g and p = primes with glp — 1
gclFp, = a fixed element of order q.
M = set of messages to be signed
h: M —IF,; = a hash-function.

The secret key is a € ]F;; which is known only to
the signer (and publishes A = [¢g%],, — to be used
for signature verification).

To sign a message p € M, the signer chooses a
random integer k & ]F;k] usually called the nonce,
and which must be kept secret and computes:

rk) = |[g"],| stk = (K71 00 + et

(r(k),s(k,un)) is the DSA signature of the message
@ with a nonce k.



Assume that some bits of k£ are ‘“leaked”

Howgrave-Graham & Smart (1998)
Heuristic lattice based attack.

Nguyen (1999) .
Simpler and more powerful but still heuristic |lat-
tice based attack.

Nguyen & Shparlinski (1999) :
Rigorous lattice based attack.

Idea Nguyen (1999) :

s(k, 1) = k7 (h(p) + ar(k))  (mod q)

o =k — (mod q).

If £ most significant bits of £ are known then we
know MSBy , (ozr(k)s(k,,u)_1>.

EHNP with

tk, ) = |r(R)s(k, )™t . (ko) € [1,9 = 1] x M.



Nguyen & Shparlinski (1999) + Recent bounds of
Bourgain, Glibichuk & Konyagin (2004) :
Let

W = #{h(u1) = h(p2), p1,u2 € M}

W/#M? = probability of collision

Typically
VV/bVHQ:%:q_l.

Theorem 4 For any € > 0 there exists 6 > 0 such
that for any g € IF, of order q > p* the sequence

t(k, ) = [r(k)sCh, )] o (ko) € [1,g = 1] x M.
is g—°-good, provided

#M?

W < |
q1—5




We need to estimnate double exponential sums
> > exp (2mier(k)s(k, i)~ /g).
with gcd(e,q) = 1.

The proof uses:

e bounds of exponential sums with exponential
functions: Konyagin & Shparlinski (1999) in
the original work, nowaday one should use Bour-
gain, Glibichuk & Konyagin (2004) ;

e Weil’'s bound;

e Vinogradov’s method of estimates of double
sums.

Main difficulty: The double modular reduction
modulo p then modulo q destroys any number the-
oretic structure among the values of r(k).



Theoretically: If q is an n-bit prime and ~ nl/2
most significant bits of k£ are known for = nl/2
signatures then o« can be recovered in polynomial
time.

Practically (dates back to 2000): 4 bits of k are
always enough, 3 bits are often enough, 2 bits are
possibly enough as well.



Moral:

1. Do not use small k (to cut the cost of expo-
nentiation in r(k)).

2. Protect your software/hardware against tim-
iIng/power attacks when the attacker mea-
sures the time/power consumption and selects
the signatures for which this value is smaller
than “on average” — these signatures are likely
to correspond to small k (~ faster exponenti-
ation in r(k)).

3. Use quality PRNG's to generate k, biased gen-
erators are dangerous.

4. Do not use Arazi’s cryptosystem which com-
bines DSA and Diffie-Hellman protocol — it
leakes some bits of k (Brown & Menezes).

5. Do not buy CryptoLib from AT&T, it always
uses odd values of k thus one bit is leaked
immediately, one more and . ...



Nonlinear Variants

Shparlinski, 2001
HNP with sparse polynomials: “Noisy Interpola-
tion”

Recover the coefficients of a sparse polynomial

m
f(X) = ) ;X9 € FplX]
j=1
with known exponents e; given MSBy ,(f(t)) for
many known random ¢ € IF.

Shparlinski & Winterhof, 2003:
Under some natural (and very wide) conditions on
e;, including the dense case e; =7, results of the
same level as for m =1, e; = 1:

About mlogl/2p queries with £ ~ logl/2p




Howgrave-Graham, Nguyen & Shparlinski, 2000
HNP with approximations to the ‘“test” points ¢,
i.e. We are given

MSB&p(OHf) and MSB&p(t).

Results are naturally weaker.

Applications to

e bit security of the “timed-release crypto”’, Rivest,
Shamir & Wagner (1996)

e ‘‘correcting” noisy exponentiation black-boxes

e ‘‘correcting” noisy Weil pairing on elliptic curves

There are many lose ends which have never been
exploited:

E.g. polynomial interpolation with noisy both val-
ues and arguments.



Boneh, Halevi & Howgrave-Graham (2001):
HNP with inversions:

Recover the hidden shift o given

1
MSBe’p (t -+ a)

for many known random t € IF,.

Boneh, Halevi & Howgrave-Graham (2001):
A heuristic algorithms with

2
¢~ —1lo
3 gp

and, using Coppersmith’s trick with considering
higher powers and this congruences modulo pk
with some k£ > 1, a heuristic algorithms with

1
¢~ —1|o
3 gp

Applications to MAC's (Message Authemtication
Codes) and PRNG (Pseudorandom Number Gen-
erators).

Ling, Shparlinski, Steinfeld & Wang (2010)
A rigorous algorithms with

2
¢~ —|O
3 gp



Recent Developments

e Akavia (2009):
New approach to HNP via Fourier coefficients
of t — MSBy,(at). May even work for any
¢ > 07 Has to be understood better. . ..

It may also work when if we are given MSB, ,(at)
with propobaility 1 — p for some small (?77) p
and a random integer otherwise.



e [ yubashevsky, Peikert & Regev (2010):
LWE, Learning With Errors

Find a = (aq,...,am) € ;" given
MSBy ,({a - t))
for many known random t & ]F;”.

If m is fixed (or grows slowly with p) the HNP
technique applies and seems to lead (to be
checked!) to an algorithm that uses:

about mlogl/2p queries with £ ~ log/2p

Lyubashevsky, Peikert & Regev (2010):
Hardness results in the case of growing m??

What is in between?



Open Problems

e HNP with rational functions?

Recover the coefficients of a rational function
f(X) € Fp(X) given MSB ,,(f(t)) for many
Known random t € IFy.

HNP with polynomials + HNP with inversions:

e HNP with unknown modulus?

All know algorithms build a lattice which de-
pends on the modulus p. Once p is unknown
exactly, the lattice is wrong and everything
falls apart.

e HNP on elliptic curves?
Recover P € E(FFp) given MSBy ,(z(tP))7

Some related results by:
Boneh & Shparlinski (2003) :
Jao, Jetchev & Venkatesan (2009)



