Playing "Hide-and-Seek" in Finite Fields: Hidden Number Problem and Its Applications

Igor E. Shparlinski
Macquarie University

Introduction

We describe a rather surprising, yet powerful, combination of

- exponential sums
- lattice basis reduction algorithms.

This combination has led to a number of cryptographic applications, helping to make rigorous several heuristic approaches.

It provides a two edge sword to:

- prove important security results;
- create powerful attacks

Examples:

- Bit security of the
- Diffie-Hellman key exchange system,
- Shamir message passing scheme,
- XTR cryptosystem,
- Rivest-Shamir-Wagner timed-release crypto.
- Attacks on the
- Digital Signature Scheme (DSA),
- Nyberg-Rueppel Signature Scheme.

Notation

$p=$ prime number
$\mathbb{F}_{p}=$ finite field of p elements.
$\lfloor s\rfloor_{m}=$ the remainder of s on division by m.

For $\ell>0, \mathrm{MSB}_{\ell, p}(x)$ denotes any integer u such that

$$
\left|\lfloor x\rfloor_{p}-u\right| \leq p / 2^{\ell+1}
$$

$\operatorname{MSB}_{\ell, p}(x) \approx \ell$ most significant bits of x.

However this definition is more flexible.

In particular, ℓ need not be an integer.
$\ell=0$ gives no information
$\ell=\lceil\log p / \log 2\rceil$ identifies $\lfloor x\rfloor_{p}$ uniquely.
Everything in between is nontrivial.

Hidden Number Problem (HNP)

Boneh \& Venkatesan (1996):

HNP: \quad Recover $\alpha \in \mathbb{F}_{p}$ such that for many known random $t \in \mathbb{F}_{p}$ we are given $\mathrm{MSB}_{\ell, p}(\alpha t)$ for some $\ell>0$.

Boneh \& Venkatesan (1996): a polynomial time algorithm to solve HNP with $\ell \approx \log ^{1 / 2} p$.

Note: $\ell \approx \log p$ is trivial.

The algorithm is based on the lattice basis reduction.

Lattices

Let $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{s}\right\}$ be a set of linearly independent vectors in \mathbb{R}^{s}. The set of vectors

$$
L=\left\{\mathbf{z} \mid \mathbf{z}=\sum_{i=1}^{s} c_{i} \mathbf{b}_{i}, \quad c_{1}, \ldots, c_{s} \in \mathbf{Z}\right\}
$$

is called an s-dimensional full rank lattice. The set $\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{s}\right\}$ is called a basis of L.

The volume of the parallelogram defined by the basic vectors is the invariant, called the discriminant.

The closest vector problem

CVP: Given a vector $\mathbf{r} \in \mathbb{R}^{s}$ find a lattice vector $\mathbf{v} \in L$ with

$$
\|\mathbf{r}-\mathbf{v}\|=\min _{\mathbf{z} \in L}\|\mathbf{r}-\mathbf{z}\|
$$

CVP is NP-complete.

Approximate solution?

Lenstra, Lenstra \& Lovász (1982)
Kannan (1987)
Schnorr (1987)

Lemma 1 There exists a deterministic polynomial time algorithm which, for a given lattice L and a vector $\mathbf{r} \in \mathbb{R}^{s}$, finds a lattice vector $\mathbf{v} \in L$ satisfying the inequality

$$
\|\mathbf{r}-\mathbf{v}\| \leq \exp \left(C \frac{s \log ^{2} \log s}{\log s}\right) \min _{\mathbf{z} \in L}\|\mathbf{r}-\mathbf{z}\|
$$

for some absolute constant $C>0$.
LLL: stretch factor $2^{s / 2}$ (can be used as well)
Working with $2^{o(s)}$ is technically easier

HNP and CVP

Boneh \& Venkatesan (1996):

Let $d \geq 1$ be integer. Given $t_{i}, u_{i}=\operatorname{MSB}_{\ell, p}\left(\alpha t_{i}\right)$, $i=1, \ldots, d$, we build the lattice $\mathcal{L}\left(p, \ell, t_{1}, \ldots, t_{d}\right)$ spanned by the rows of the matrix:

$$
\left(\begin{array}{ccccc}
p & 0 & \ldots & 0 & 0 \\
0 & p & \ddots & \vdots & \vdots \\
\vdots & \cdots & \ddots & 0 & \vdots \\
0 & 0 & \cdots & p & 0 \\
t_{1} & t_{2} & \cdots & t_{d} & 1 / 2^{\ell+1}
\end{array}\right) .
$$

The unknown vector $\mathbf{v}=\left(\left\lfloor\alpha t_{1}\right\rfloor_{p}, \ldots,\left\lfloor\alpha t_{d}\right\rfloor_{p}, \alpha / 2^{\ell+1}\right)$

- belongs to $\mathcal{L}\left(p, \ell, t_{1}, \ldots, t_{d}\right)$;
- is close to the known vector $\mathbf{u}=\left(u_{1}, \ldots, u_{d}, 0\right)$:

$$
\|\mathbf{v}-\mathbf{u}\|=O\left(p 2^{-\ell}\right)
$$

Idea: Apply a CVP algorithm and hope that it will output \mathbf{v}.

How to make it rigorous?

We show that for almost all t_{1}, \ldots, t_{d}, \mathbf{v} is the only lattice vector which can be so close to \mathbf{u}.

In fact, even within the approximation factor of Lemma 1, that is within the distance of order $p 2^{-\ell+o(d)}$, this is still the only lattice vector.

Analysiz

Note that any vector

$$
\mathbf{w}=\left(w_{1}, \ldots, w_{d}, w_{d+1} \in \mathcal{L}\left(p, \ell, t_{1}, \ldots, t_{d}\right)\right.
$$

satisfies

$$
\left(w_{1}, \ldots, w_{d}\right) \equiv\left(\beta t_{1}, \ldots, \beta t_{d}\right) \quad(\bmod p)
$$

with some integer β

Assume that $\mathbf{w} \in \mathcal{L}\left(p, \ell, t_{1}, \ldots, t_{d}\right)$, with $\beta \not \equiv \alpha$ $(\bmod p)$ is another lattice vector with

$$
\|\mathbf{w}-\mathbf{u}\| \leq p 2^{-\ell+o(d)} .
$$

Then, by the triangle inequality

$$
\begin{equation*}
\|\mathbf{w}-\mathbf{v}\| \leq p 2^{-\ell+o(d)} . \tag{1}
\end{equation*}
$$

Therefore for each $i=1, \ldots, d$

$$
(\alpha-\beta) t_{i} \in\left[-p 2^{-\ell+o(d)}, p 2^{-\ell+o(d)}\right] \quad(\bmod p)
$$

For every fixed $\gamma \not \equiv 0(\bmod p)$

$$
\begin{equation*}
\operatorname{Pr}_{t \in \mathbb{F}_{p}}(\gamma t \in[-h, h] \quad(\bmod p)) \leq \frac{2 h+1}{p} \tag{2}
\end{equation*}
$$

Thus
$\underset{t_{1}, \ldots, t_{d} \in \mathbb{F}_{p}}{\mathrm{Pr}_{p}}\left(\gamma t_{i} \in[-h, h] \quad(\bmod p), i=1, \ldots, d\right)$

$$
\leq\left(\frac{2 h+1}{p}\right)^{d}
$$

In our settings

$$
\gamma=\alpha-\beta \quad \text { and } \quad h=p 2^{-\ell+o(d)}
$$

Because β (and thus $\gamma=\alpha-\beta$) may belong to $p-1$ distinct residue classes we conclude that (1) holds with probability at most

$$
P \leq p\left(2^{-\ell+o(d)}\right)^{d}
$$

Choose $\ell=d=2\left\lceil\log ^{1 / 2} p\right\rceil$. Then

$$
P \leq \frac{1}{p} .
$$

CVP algorithm returns \mathbf{v} with prob. $\geq 1-1 / p$

Extended HNP

HNP: Recover $\alpha \in \mathbb{F}_{p}$ such that for many known random $t \in \mathbb{F}_{p}$ we are given $\mathrm{MSB}_{\ell, p}(\alpha t)$ for some $\ell>0$.

The condition that t is selected uniformly at random from \mathbb{F}_{p} is too restrictive for applications.

Typically t is selected from some finite sequence \mathcal{T} of elements of \mathbb{F}_{p} which:

- may have a nice and well-studied number theoretic structure (bit security of Diffie-Hellman key),
- may be rather "ugly" looking (attacks on DSA).

EHNP: \quad Recover $\alpha \in \mathbb{F}_{p}$ such that for many known random $t \in \mathcal{T}$ we are given $\mathrm{MSB}_{\ell, p}(\alpha t)$ for some $\ell>0$.

The same arguments as above apply to the EHNP ... but one needs an analogue of (2).
\mathcal{T} must have some uniformity of distribution properties.

$$
\Downarrow
$$

Nontrivial bounds of exponential sums

$$
\begin{equation*}
\left|\sum_{t \in \mathcal{T}} \exp (2 \pi i c t / p)\right| \leq \delta \# \mathcal{T}, \quad \operatorname{gcd}(c, p)=1 \tag{3}
\end{equation*}
$$

with some nontrivial saving $\delta<1$.

We say that \mathcal{T} is δ-good is (3) holds.

Koksma (1950) and Szüsz (1950) independently

$$
\Downarrow
$$

For a δ-good sequence \mathcal{T} instead of (2) we get
$\operatorname{Pr}_{t \in \mathcal{T}}(\gamma t \in[-h, h] \quad(\bmod p)) \leq \frac{2 h+1}{p}+O\left(\delta \log \left(\delta^{-1}\right)\right)$

Putting Together

Nguyen \& Shparlinski (2000):
Theorem 2 Let $\ell=\left\lceil\log ^{1 / 2} p\right\rceil+\lceil\log \log p\rceil$ and $d=2\left\lceil\log ^{1 / 2} p\right\rceil$. Let \mathcal{T} be $2^{-\log ^{1 / 2} p_{-g o o d} \text {. There }}$ exists a deterministic polynomial time algorithm \mathcal{A} such that for any fixed integer $\alpha \in[0, p-1]$, given $2 d$ integers
t_{i} and
$u_{i}=\operatorname{MSB}_{\ell, p}\left(\alpha t_{i}\right)$,
$i=1, \ldots, d$,
its output satisfies

$$
\begin{aligned}
\operatorname{Pr}_{t_{1}, \ldots, t_{d} \in \mathcal{T}}
\end{aligned} \quad\left[\mathcal{A}\left(t_{1}, \ldots, t_{d} ; u_{1}, \ldots, u_{d}\right)=\alpha\right] \quad\left[\begin{array}{l}
\\
\quad \geq 1-2^{-(\log p)^{1 / 2} \log \log p}
\end{array}\right.
$$

if t_{1}, \ldots, t_{d} are chosen uniformly and independently at random from the elements of \mathcal{T}.

Using Very Weak Bounds

Usually we prove that \mathcal{T} if δ-good with $\delta \sim \# \mathcal{T}^{-\alpha}$ for some fixed $\alpha>0$ or nothing at all. However in some important cases (e.g. $\mathcal{T}=$ a small subgroup of \mathbb{F}_{p}^{*}) only very weak bounds are know with δ very close to 1 .

Shparlinski \& Winterhof(2003):
Modifications to the Algorithm

Choose

$$
t_{11}, \ldots, t_{1 k}, \ldots, t_{d 1}, \ldots, t_{d k} \in \mathcal{G}
$$

and get integers $u_{i j}$ with
$\left|\left|\alpha t_{i j}\right|_{p}-u_{i j}\right|<p / 2^{\ell+1}, \quad i=1, \ldots, d, j=1, \ldots, k$.
For $i=1,2, \ldots, d$ we put

$$
v_{i}=\sum_{j=1}^{k}\left\lfloor\alpha t_{i j}\right\rfloor_{p}, \quad t_{i}=\left\lfloor\sum_{j=1}^{k} t_{i j}\right\rfloor_{p}, \quad u_{i}=\sum_{j=1}^{k} u_{i j}
$$

The rest of the algorithm remains the same.

We work with k-fold Cartesian product \mathcal{T}^{k} of \mathcal{T}. So we have
$\left|\sum_{t \in \mathcal{T}} \exp (2 \pi i c t / p)\right| \quad$ vs. $\quad\left|\sum_{t \in \mathcal{T}} \exp (2 \pi i c t / p)\right|^{k}$

If

$$
\left|\sum_{t \in \mathcal{T}} \exp (2 \pi i c t / p)\right| \leq \delta \# \mathcal{T}
$$

then

$$
\left|\sum_{t \in \mathcal{T}} \exp (2 \pi i c t / p)\right|^{k} \leq \delta^{k}(\# \mathcal{T})^{k}=\delta^{k} \# \mathcal{T}^{k}
$$

If \mathcal{T} if δ-good (but δ is close to 1) then \mathcal{T}^{k} if δ^{k} good and adjusting k one can make it work.

Good News: Bit Security of the Diffie-Hellman Key

Diffie-Hellman (DH) problem:

Given an element g of order τ modulo p, recover $K=\left\lfloor g^{x y}\right\rfloor_{p}$ from $\left\lfloor g^{x}\right\rfloor_{p}$ and $\left\lfloor g^{y}\right\rfloor_{p}$.

Typically, either $\tau=p-1$ or $\tau=q$ - a large prime divisor of $p-1$

The size of p and τ is determined by the present state of art in the discrete logarithm problem. Typically, p is about 500 bits, τ is at least 160 bits.

However after the common DH key $K=g^{x y}$ is established, only a small portion of bits of K will be used as a common key for some private key cryptosystem.

Private Key | Public Key

Question: Assume that finding K is infeasible. Is it still infeasible to find certain bits of K ?

Boneh \& Venkatesan (1996):
for $\tau=p-1$ (- small gap in the proof)

González Vasco \& Shparlinski (2000):
for "any" τ (+ fixing the gap in BV)

YES!!!

Assume we know how to recover ℓ most significant bits of $\left\lfloor g^{x y}\right\rfloor_{p}$ from from $X=\left\lfloor g^{x}\right\rfloor_{p}$ and $Y=\left\lfloor g^{y}\right\rfloor_{p}$.

Select a random $u \in[0, \tau-1]$ and apply this algorithm to $X=\left\lfloor g^{x}\right\rfloor_{p}$ and $U=\left\lfloor Y g^{u}\right\rfloor_{p}=\left\lfloor g^{y+u}\right\rfloor_{p}$:
$\operatorname{MSB}_{\ell, p}\left(g^{x(y+u)}\right)=\operatorname{MSB}_{\ell, p}\left(g^{x y} g^{x u}\right)=\operatorname{MSB}_{\ell, p}(\alpha t)$

EHNP with $\alpha=g^{x y}$ and $t=g^{x u}, u \in[0, \tau-1]!!!$

When is $\gamma^{u} 2^{-\log ^{1 / 2} p_{\text {-good? }}} \quad\left(\gamma=g^{x}\right)$

Shparlinski \& Winterhof(2003):

Theorem 3 For any $\varepsilon>0$ there exists $c>0$ such that for $k=c \log ^{2} p$ any $\gamma \in \mathbb{F}_{p}$ of order $\tau \geq(\log p)^{1+\varepsilon}$ the sequence

$$
\mathcal{T}_{k}=\left\{\gamma^{u_{1}}+\ldots+\gamma^{u_{k}}, u_{1}, \ldots, u_{k}=0, \ldots, \tau-1\right\}
$$

is $p^{-\delta}$-good.
If p is an n-bit prime and $\tau \geq(\log p)^{1+\varepsilon}$ then $\approx n^{1 / 2}$ most significant bits of the DH key are as secure as the whole key.

Bad News: Attack on DSA

DSA: Proposed NIST, August 1991; US Federal Information Processing Standard 186, May 1994

Public Data:

q and $p=$ primes with $q \mid p-1$
$g \in \mathbb{F}_{p}=$ a fixed element of order q.
$\mathcal{M}=$ set of messages to be signed
$h: \mathcal{M} \rightarrow \mathbb{F}_{q}=$ a hash-function.

The secret key is $\alpha \in \mathbb{F}_{q}^{*}$ which is known only to the signer (and publishes $A=\left\lfloor g^{\alpha}\right\rfloor_{p}$ - to be used for signature verification).

To sign a message $\mu \in \mathcal{M}$, the signer chooses a random integer $k \in \mathbb{F}_{q}^{*}$ usually called the nonce, and which must be kept secret and computes:

$$
r(k)=\left\lfloor\left\lfloor g^{k}\right\rfloor_{p}\right\rfloor_{q}, \quad s(k, \mu)=\left\lfloor k^{-1}(h(\mu)+\alpha r(k))\right\rfloor_{q}
$$

$(r(k), s(k, \mu))$ is the DSA signature of the message μ with a nonce k.

Assume that some bits of k are "leaked"

Howgrave-Graham \& Smart (1998)
Heuristic lattice based attack.

Nguyen (1999):
Simpler and more powerful but still heuristic lattice based attack.

Nguyen \& Shparlinski (1999):
Rigorous lattice based attack.

Idea Nguyen (1999):

$$
s(k, \mu) \equiv k^{-1}(h(\mu)+\alpha r(k)) \quad(\bmod q)
$$

\Downarrow $\alpha r(k) s(k, \mu)^{-1} \equiv k-h(\mu) s(k, \mu)^{-1} \quad(\bmod q)$.

If ℓ most significant bits of k are known then we know $\mathrm{MSB}_{\ell, q}\left(\alpha r(k) s(k, \mu)^{-1}\right)$.

EHNP with
$t(k, \mu)=\left\lfloor r(k) s(k, \mu)^{-1}\right\rfloor_{q}, \quad(k, \mu) \in[1, q-1] \times \mathcal{M}$.

Nguyen \& Shparlinski (1999) + Recent bounds of Bourgain, Glibichuk \& Konyagin (2004):
Let

$$
W=\#\left\{h\left(\mu_{1}\right)=h\left(\mu_{2}\right), \quad \mu_{1}, \mu_{2} \in \mathcal{M}\right\}
$$

$$
W / \# \mathcal{M}^{2}=\text { probability of collision }
$$

Typically

$$
W /|\mathcal{M}|^{2} \approx q^{-1} .
$$

Theorem 4 For any $\varepsilon>0$ there exists $\delta>0$ such that for any $g \in \mathbb{F}_{p}$ of order $q \geq p^{\varepsilon}$ the sequence $t(k, \mu)=\left\lfloor r(k) s(k, \mu)^{-1}\right\rfloor_{q}, \quad(k, \mu) \in[1, q-1] \times \mathcal{M}$. is $q^{-\delta}$-good, provided

$$
W \leq \frac{\# \mathcal{M}^{2}}{q^{1-\delta}} .
$$

We need to estimnate double exponential sums

$$
\sum_{k \in \mathbb{F}_{q}} \sum_{\mu \in \mathcal{M}} \exp \left(2 \pi i c r(k) s(k, \mu)^{-1} / q\right)
$$

with $\operatorname{gcd}(c, q)=1$.

The proof uses:

- bounds of exponential sums with exponential functions: Konyagin \& Shparlinski (1999) in the original work, nowaday one should use Bourgain, Glibichuk \& Konyagin (2004);
- Weil's bound;
- Vinogradov's method of estimates of double sums.

Main difficulty: The double modular reduction modulo p then modulo q destroys any number theoretic structure among the values of $r(k)$.

Theoretically: If q is an n-bit prime and $\approx n^{1 / 2}$ most significant bits of k are known for $\approx n^{1 / 2}$ signatures then α can be recovered in polynomial time.

Practically (dates back to 2000): 4 bits of k are always enough, 3 bits are often enough, 2 bits are possibly enough as well.

Moral:

1. Do not use small k (to cut the cost of exponentiation in $r(k))$.
2. Protect your software/hardware against timing/power attacks when the attacker measures the time/power consumption and selects the signatures for which this value is smaller than "on average" - these signatures are likely to correspond to small k (\sim faster exponentiation in $r(k)$).
3. Use quality PRNG's to generate k, biased generators are dangerous.
4. Do not use Arazi's cryptosystem which combines DSA and Diffie-Hellman protocol - it leakes some bits of k (Brown \& Menezes).
5. Do not buy CryptoLib from AT\&T, it always uses odd values of k thus one bit is leaked immediately, one more and....

Nonlinear Variants

Shparlinski, 2001
HNP with sparse polynomials: "Noisy Interpolation"

Recover the coefficients of a sparse polynomial

$$
f(X)=\sum_{j=1}^{m} \alpha_{j} X^{e_{j}} \in \mathbb{F}_{p}[X]
$$

with known exponents e_{j} given $\mathrm{MSB}_{\ell, p}(f(t))$ for many known random $t \in \mathbb{F}_{p}$.

Shparlinski \& Winterhof, 2003:
Under some natural (and very wide) conditions on e_{j}, including the dense case $e_{j}=j$, results of the same level as for $m=1, e_{1}=1$:

$$
\text { About } m \log ^{1 / 2} p \text { queries with } \ell \sim \log ^{1 / 2} p
$$

Howgrave-Graham, Nguyen \& Shparlinski, 2000 HNP with approximations to the "test" points t, i.e. We are given

$$
\mathrm{MSB}_{\ell, p}(\alpha t) \quad \text { and } \quad \mathrm{MSB}_{\ell, p}(t)
$$

Results are naturally weaker.

Applications to

- bit security of the "timed-release crypto", Rivest, Shamir \& Wagner(1996)
- "correcting" noisy exponentiation black-boxes
- "correcting" noisy Weil pairing on elliptic curves

There are many lose ends which have never been exploited:
E.g. polynomial interpolation with noisy both values and arguments.

Boneh, Halevi \& Howgrave-Graham (2001): HNP with inversions:

Recover the hidden shift α given

$$
\operatorname{MSB}_{\ell, p}\left(\frac{1}{t+\alpha}\right)
$$

for many known random $t \in \mathbb{F}_{p}$.

Boneh, Halevi \& Howgrave-Graham (2001):
A heuristic algorithms with

$$
\ell \sim \frac{2}{3} \log p
$$

and, using Coppersmith's trick with considering higher powers and this congruences modulo p^{k} with some $k \geq 1$, a heuristic algorithms with

$$
\ell \sim \frac{1}{3} \log p
$$

Applications to MAC's (Message Authemtication Codes) and PRNG (Pseudorandom Number Generators).

Ling, Shparlinski, Steinfeld \& Wang (2010):
A rigorous algorithms with

$$
\ell \sim \frac{2}{3} \log p
$$

Recent Developments

- Akavia (2009) :

New approach to HNP via Fourier coefficients of $t \mapsto \mathrm{MSB}_{\ell, p}(\alpha t)$. May even work for any $\ell>0$? Has to be understood better....

It may also work when if we are given $\operatorname{MSB}_{\ell, p}(\alpha t)$ with propobaility $1-\rho$ for some small (???) ρ and a random integer otherwise.

- Lyubashevsky, Peikert \& Regev (2010): LWE, Learning With Errors

Find $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{F}_{p}^{m}$ given

$$
\mathrm{MSB}_{\ell, p}(\langle\alpha \cdot \mathbf{t}\rangle)
$$

for many known random $\mathbf{t} \in \mathbb{F}_{p}^{m}$.
If m is fixed (or grows slowly with p) the HNP technique applies and seems to lead (to be checked!) to an algorithm that uses:
about $m \log ^{1 / 2} p$ queries with $\ell \sim \log ^{1 / 2} p$
Lyubashevsky, Peikert \& Regev (2010): Hardness results in the case of growing m ?

What is in between?

Open Problems

- HNP with rational functions?

Recover the coefficients of a rational function $f(X) \in \mathbb{F}_{p}(X)$ given $\mathrm{MSB}_{\ell, p}(f(t))$ for many known random $t \in \mathbb{F}_{p}$.

HNP with polynomials + HNP with inversions:

- HNP with unknown modulus?

All know algorithms build a lattice which depends on the modulus p. Once p is unknown exactly, the lattice is wrong and everything falls apart.

- HNP on elliptic curves?

Recover $P \in E\left(\mathbb{F}_{p}\right)$ given $\mathrm{MSB}_{\ell, p}(x(t P))$?
Some related results by:
Boneh \& Shparlinski (2003):
Jao, Jetchev \& Venkatesan (2009)

