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The bole volume of a tree is too onerous to measure in routine forest inventory, therefore
a model is used to predict its volume. The same is true of its aboveground biomass. This
practice has implications for the statistical properties of estimators of per unit area
volume and biomass. Their properties differ from those of analogous estimators of tree
frequency and basal area which do not rely on a presumed model. In this presentation we
make an initial attempt to articulate and understand the statistical implications for design-
based inference resulting from a reliance on models in this context. The relevance of this
investigation stems from the current high concern with the use of allometric equations to
predict aboveground biomass of trees as part of the MRV process in implementing the
REDD+ program of the United Nations.

Introduction
Following the appearance of Foundations of Inference in Survey Sampling in 1977 by
Cassell, Särndal, & Wretman, coupled with the later publication of Model ssistedE
Survey Sampling in 1992 by Särndal, Swensson, & Wretman, many of us in forest
biometry suddenly were confronted by the difference in using a presumed model as the
basis for inference and using it to assist estimation in conventional sampling, where
inference has long been based on the sampling design. For many of us the “yellow book”
especially had a formative influence on our understanding of this distinction. Ideas that
seem so rudimentary today were less than obvious nearly a quarter century ago.

Since that time, I and many others have written for audiences such as the one assembled
here on the essential difference between design-based and model-based inference in
forest sampling. Two recent examples include the 2009 article by Stehman in Remote
Sensing of Environment about “Model-assisted estimation as a unifying framework for
estimating the area of land cover and land-cover changes from remote sensing.”
McRoberts writing also in RSE in 2010 addressed “Probability- and model-based
approaches to inference for proportion forest using satellite imagery as ancillary data.”

Wherever professional forestry is well established around the globe, I believe that those
who specialize in forest inventory have a very good grasp of precepts of sampling and the
manner in which the sampling design influences the assessment of sampling variation,
the consequent construction of confidence intervals, and other tools of statistical
inference within the design-based framework. When model predictions are used in place
of actual measurements for the purpose of estimating population parameters, our
collective understanding becomes obscured.

In model-assisted estimation one or more covariates are used to model the variable of
interest, . The model is not of inherent interest nor is it used to predict the value of  forC C
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unsampled elements of the population, but rather to improve the precision of the
estimator of aggregate , say . In model-assisted estimation, as advanced by the authorsC 7
cited above, the reference distribution for probability statements about the likely value of
7  is the distrbution of all possible estimates permissible under the sampling design.

The situation we consider in this presentation arises when the values of the variable of
interest are predicted rather than measured.

Forest inventory
In Sampling Strategies for Natural Resources and the Environment (2008), Valentine and
I wrote about equal probability sampling with fixed-area plots, as well as Bitterlich
sampling and line intersect sampling which select trees with unequal probability. Once
trees are selected at one location, the Horwitz-Thompson estimator may be used to
estimate a design-unbiased estimator of number of trees or basal area for the entire
population. Since the sampling is replicated at a number, say , of different sampling7
locations, the arithmetic average of the  estimates is likewise design-unbiased. To the7
best of my knowledge Barabesi & Fattorini (1998) introduced the term “replicated
estimator” for this average, a nomenclature that we adopted in our book. Moreover they
assert that the Central Limit Theorem assures that the replicated estimator converges in
distribution to a Gaussian distributed random variable.

Bole volume or tree biomass almost always has been predicted by using a fitted
regression model in a non-assisted fashion. The usual methods of forest inventory rely on
a previously fitted model (formerly, a row and column table) to predict the bole volume
of the standing tree. It is the fact that volume is predicted not measured that impacts
purely design-based inference for volume-related estimates of the population in a manner
that is difficult to discern. The same is true of individual tree biomass predictions and
their effect on the estimation of aggregate biomass.

As a brief side commentary, it was Lew Grosenbaugh's distrust in the accuracy of so-
called volume equations that prompted him to devise 3P sampling in the early 1960s as
an alternative. This was a novel method of unequal probability sampling, despite its
superficial resemblance to Hajek's (1958) Poisson sampling, which was presented in
Hajek's posthumously published 1981 sampling text as an alternative form of list
sampling. With a few exceptions, the adoption of 3P has never been widespread.

In 1986 Gregoire, Valentine and Furnival wrote about the “Estimation of bole volume by
importance sampling” as an alternative sampling procedure that would likewise enable
design-unbiased estimation of volume. In our exposition of importance sampling (IS) for
this purpose, a model is used to assist estimation in the conventional sense articulated in
the yellow book. This was followed by a series of related papers, yet the method never
was adopted in practice.

Nor was a method of three stage sampling by the same authors in 1993, wherein trees
were selected proportional to basal area in stage one; in stage two, a subset was selected
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with probability proportional to height; and in stage three, IS was applied to the trees
selected in the second stage.

Consequences of volume/biomass prediction

Preliminary reflections
To set the stage to explore the impact of model-based predictions on design-based infer-
ence, consider a population, , of  trees of interest occupying a region  with landh TR
area  The aggregate basal area of the  trees is denoted by , and aggregateE œ Þ R K T
bole volume (or aboveground biomass) by .F

The HT estimator based on the sample selected at location  isc T= −

7
1

s œ
C

=

5−

5

5


c=

,

where  indicates inclusion in the sample with probability . The restriction that5 − c 1= 5

c T= −  is not strictly necessary, yet it conforms to widespread practice. It is important,
however, that , inasmuch as this is integrally associated with the population of5 − T
interest.

When , then .C œ "a5 − I œ Rs5 : =h 7 
Likewise when , where  signifies the basal area of the thI œ K C œ 1 a5 − 1 5s: = 5 5 5 7 h
tree in . In making this assertion we are presuming that the measurement of treeh
diameter and subsequent computation of its circular cross-sectional area introduces
negligible error in . In this regard, Matérn's 1956 monograph “On the geometry of the1k

cross-section of a stem” is well worth reading again.

When  is obtained by 3P sampling with negligible measurement error of stemC œ ,5 5

volume/biomass, , then . Or, when  is replaced by , an, I œ F C œ , C œ ,s s
5 : = 5 5 5 5 7

estimate of bole volume (biomass) from applying IS as a second or third stage, then it is
straightforward to show that . Henceforth, I will speak in terms of tree'sI œ Fs: = 7
volume, with the tacit understanding that I could refer as well to biomass.

In contrast to the above, when , where  signifies the tree's˜ ˜I Á F C œ , a5 − ,s: = 5 5 5 7 h
volume predicted from a fitted regression model. The reason for the bias in the latter case
is that  coupled with the absence of any sampling error in the prediction  that˜ ˜, Á , ,5 5 5

becomes nil when averaged over all possible samples of a single tree. Indeed, there is no
sampling variation in the prediction of volume for the th bole.5

Moreover the design-variance of  , denoted as , when  differs from what7 7s sZ C œ ,= : = 5 5 
it is when , and it is difficult to say, in general, which is the more precise.˜C œ ,5 5
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Deducing the effects on  and I s Z s: = : =   7 7
Not very long ago, I adopted the point of view that the HT estimator of aggregate
volume, , was unbiased conditionally on the correctness of the model of bole volumeF
that was being used for prediction. Because of the ambiguity of model “correctness”, I no
longer find that a satisfying or convincing viewpoint.

In discussion with my co-author, we speculated whether the deviation of actual from
predicted volume might usefully be viewed as a measurement error problem. To follow
this line of inquiry, it might be helpful to identify the sources of the error, and more
importantly to trace how they impact the design-based bias, variance, and MSE of the
erstwhile HT estimator of . A version of this has been done before, notably by CuniaF
(1987) in a proceedings paper entitled “Error of forest inventory estimates: its main
components”. The limiting aspect of that contribution is the failure to discern between
statistical properties reckoned with respect to a presumed model and those that are
reckoned with respect to the sampling design. To our way of thinking, an expression of
the variance of an estimator in which the terms are second moments of different
distributions does not make sense.

The  approach:7
In the yellow book, Särndal et al devote Chapter 16 to the problem of measurement
errors. While they speculate on various sources and causes of such errors, they do not
explicitly treat the case where the error arises from a model-based prediciton of the true
value. This may be nothing more than a curiosity, but surely the applictions with which
we in this audience are involved must have analogs in other fields, do they not? It may be
a moot point, inasmuch as the approach advanced by these authors may have utility to
our investigation. To paraphrase from p. 603 of the yellow book, “The statistical
properties of  can only be studied by making assumptions about the errors. It become7s=

necessary to formulate stochastic measurement error models.”

The sample survey “is viewed as a two-stage process with each stage contributing
randomness.” In stage one, the sample is selected, and stochastic structure is given by the
sampling design, symbolized by . In stage two, the measurement procedure generates an:
observed value , and the stochastic structure is given by the measurement error model,C5
7.

That strikes me as plausible, and I wish to see whether it leads to a useful solution to the
problem we face with volume/biomass predictions at the tree level. Based on my prior
investigation related to the work of our LiDAR team of researchers (Ståhl et al, 2011)
since 2004, I am skeptical in the absence of so many simplifying assumptions as to
render the approach nugatory. Nonetheless, let me explain the way advanced by Särndal
et al further. For the expected value of   in this two-stage view, they present7s=

     (1)I œ I I l=s s:7 = : 7 =    7 7

where   is the expectation conditionally on the observed sample with respect toI l=s7 = 7
the measurement error model , and  •  is the usual design-based expectation, so that7 I: 
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I s:7 =   signifies the expectation with respect to the sampling design and measurement7
model jointly. They refer to this as the  expectation. The  bias is:7 :7

    ,F œ I  Ð#Ñs s:7 = :7 =   7 7 7

where  is the population parameter of interest, that is, the value being estimated by  7 7s=

Similarly, the  variance is,:7

      . ( )Z œ I Z l=  Z I l= $s s s:7 = : 7 = : 7 =        7 7 7

In forestry, we have seen an identical construction in the work of Daniel Mandallaz.

The mean square error:7

     ( )QWI œ I  Þ %s s:7 = :7 =
#    7 7 7

The measurement error model considered in the yellow book stipulate moments that do
not depend on the observed sample, namely

    . ( ).5 7 5œ I C l= & 
    ( )55 7 5œ Z C l= ' 
    . ( )5 . .55 5 5 57 5 7 5 5w w w wœ G C ß C l= œ I C C l=  (   
Let's see where the  framework leads us when using the proffered model for:7
measurement error, arising from using a fitted regression model to predict bole volume
because of the infeasability of actually measuring bole volume.

Applying moments:7

A general model for bole volume, , of an individual tree is,

   2Ð,Ñ œ 1Ð\ à Ñ  Ð)Ñw
5" %

where  is a -element covariate vector.\ ;5
w

When both  and  are the identity functions, then  is the familiar linear model2ÐÑ 1ÐÑ ' 
   ., œ \  Ð*Ñw

5" %

A nonlinear model arises when  is the identity function but  is nonlinear in , for2ÐÑ 1ÐÑ "
example
   ., œ \  Ð"!Ñ" %1 " 5

"#
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Another special case arises when  is a nonlinear transformation (reciprocal, loga-2ÐÑ
rithmic, square root, Box-Cox) of , for example,

   ln lnÐ,Ñ œ  \  Ð""Ñ" " %! " " 5 
Assessed with respect to the presumed model,

   I , œ 2 1Ð\ à Ñ  Ð"#Ñ0   " w " %

Strictly speaking, model bias arises when the actual mean, namely , does not9,l\

coincide with .I ,0 
Generalized linear models offer an attractive alternative to (1 ), but are not considered in#
this presentation.

The fitted model is used to predict the value of by,5

   ,̃ œ 2 1Ð\ à Ñ Ð""Ñs
5

" w
5 "

where  is estimated with data extraneous to the inventory sample. For sake of later"
reference, let the model-fitting data be labelled .H

Let me restate the task at hand.

From the measurements taken at sampling location ,  is estimated by the HTc T 7= −
estimator

7
1

s œ
C

=

5−

5

5


c=

,

in which  from the previously fitted model to predict bole volume. Treating the˜C œ ,5 5

difference between actual and predicted volume, namely , as measurement error,˜,  ,5 5

we ask whether the yellow book's measurement error model and strategy for:7
inference is a useful one to enable us to deduce the statistical properties of .7s=

I think there are two critical disjunctures that impede our efforts, and thereby prevent us
from immediate adoption.

To understand the first impediment, let me cite again from p. 607 of Särndal et al (1992):

It is important to have a clear notion of the frequency interpretation of the simple
measurement model  given above. There is a given probability sample  and a7 =
given measurement procedure that generates an observed value for each element
5 − =. Suppose measurements could be independently repeated many times on the
same sample , thus generating a long series of measurements on each element=
5 − = C 5. The observed -values for a particular  would not necessarily be the same
in all repetitions, but would vary in a random fashion around a long run mean
value  and with a long run variance .. 55

#
5
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That is not true of the error with which we are dealing, . Unless one considers˜,  ,5 5

errors in the measurement of tree diameter that causes  to be different for each dbh,̃5
measurment,  will not change. The difference  with which we are dealing does˜ ˜, ,  ,5 5 5

not have a stochastic component of the sort imagined in the yellow book's Chapter 16. It
has, instead, a distinctly model-based component which is largely determined by the
fitting data, .H

Secondly, in the design-based framework, the mantra is that the  elements comprisingR
the population are fixed, and their  values likewise are fixed. Yet in the modeling frame-C
work, the  values are considered to be random variables with expected values that vary,

smoothly with covariate . The prediction of by  in forest˜\ , , œ 2 1Ð\ à Ñs5 5
" w

5 "

inventory is a convenient tool. Yet it seems reasonable to ask what the model-based
properties of  have to do with the design-based properties of,̃5

    7s œ=
5−


c=

,̃5
51

Ð"#Ñ

as an estimator of . The  could have been my seat-of-the-pants guesses, and the˜7 ,5
essential question would be unchanged: how does the use of a value that is not measured
affect the design-based properties of  ?7s=

Reconsider the measurement error model
While not abandoning the  approach yet, my current direction is to look at the HT:7
estimator of the prediction error, , itself.˜$5 5 5œ ,  ,

At the risk of complicating our notation for the sake of greater explicitness, let me use

    7s Ð,Ñ œ=
5−


c=

,5
51

Ð"$Ñ

    ˜7s Ð,Ñ œ=
5−


c=

,̃5
51

Ð"%Ñ

    7 $s œ=
5−

  
c=

$
1
5

5
Ð"&Ñ

Therefore
    ˜7 7 7 $s s sÐ,Ñ œ Ð,Ñ  Ð"'Ñ= = = 
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Expressing (16) in words, the usual estiamtor of aggregate volume  decomposed as˜7s Ð,Ñ=

the sum of the estimator, , we would like to use, plus an unbiased estimator of the7s Ð,Ñ=

population difference in the actual versus predicted volume.

That latter difference might be attributable to applying the linear model in (9), namely
, œ \ w

5" % , to a subportion of the physiographic growing region represented in H
exhibits morphologically different volume accretion patterns from the population as a
whole. Or it might be attriabutable to applying it to a single species in the suite of species
in  to which the model was fitted.H

Or the expectation of 7 $ "s=  might be due to the bias in the estimates of  after having
fiited a nonlinear mean function, such as  in ., œ \  Ð"!Ñ" %1 " 5

"#

Or the expectation of 7 $s=  might be due to the back-transformation bias after having
fitted a model with a nonlinear transformation , such as ln ln , asÐ,Ñ œ  \ " " %! " " 5 
in 1 .Ð" Ñ

The possible utility of (16), , is that it separates what we know˜7 7 7 $s s sÐ,Ñ œ Ð,Ñ = = = 
how to deal with, namely , and allows us to focus squarely on the causes and7s Ð,Ñ=

consequences of the prediction error, .$

Evidently, much more needs to be done before evidence of its utility can be presented.
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