Lecture 2: Curvelets

Emmanuel Candès, California Institute of Technology

Sparsity and Applications

- We have seen that sparse representations are critical for
 - compression
 - estimation
 - inverse problems
- This talk: Curvelets, a sparse representation for images with geometrical structure

Image Model

• Images of interest: smooth regions separated by smooth contours

- Geometrical fragment model:
 - smooth regions: C^2 functions of two variables
 - edge contour: C^2 functions of one variable

Judging Image Representations

• Representation $\{\psi_i\}$

$$f(x_1, x_2) = \sum_i \alpha_i \psi_i(x_1, x_2)$$

• $f_m = \text{best } m\text{-term approximation}$

$$f_m(x_1, x_2) = \sum_{i \in \Gamma(m)} \alpha_i \psi_i(x_1, x_2)$$

where Γ is chosen such that $|\Gamma|=m$ and $\|f-f_m\|_2^2$ is minimized

- How fast does $||f f_m||_2^2 \rightarrow 0$?
- Fundamental limit:

$$||f - f_m||_2^2 \asymp m^{-2}$$

- No basis can do better than this
- No depth-search limited dictionary can do better
- No pre-existing basis does anything near this well

Fourier is Awful

- Discontinuities in the image lead to slow decay of the Fourier coefficients (edges have a lot of "high frequency content")
- *m*-term approximation error

$$||f - f_m||_2^2 \simeq m^{-1/2}$$

• Example:

original

1% of Fourier coeffs

10% of Fourier coeffs

Wavelets are Bad

- Many wavelets are needed to represent an edge (number depends on the length of the edge, not the smoothness)
- *m*-term approximation error

$$||f - f_m||_2^2 \asymp m^{-1}$$

• Example:

original

1% of wavelet coeffs

10% of wavelet coeffs

Wavelets and Geometry

- Wavelet basis functions are isotropic
 - ⇒ they cannot "adapt" to geometrical structure

We need a more refined scaling concept...

Wavelet Pyramids

Canonical Pyramid Ideas (1980-present)

- Laplacian Pyramid (Adelson/Burt)
- Orthonormal Wavelet Pyramid (Mallat/Meyer)
- Steerable Pyramid (Adelson/Heeger/Simoncelli)
- Multiwavelets (Alpert/Beylkin/Coifman/Rokhlin)

Shared features

- Elements at dyadic scales/locations
- Fixed number of elements at each scale/location

Wavelet Pyramid

Limitations of Existing Scaling Concepts

Traditional Scaling

$$f_a(x_1, x_2) = f(ax_1, ax_2), \qquad a > 0.$$

Curves exhibit different kinds of scaling

- Anisotropic
- Locally Adaptive

If
$$f(x_1,x_2)=1_{\{y\geq x^2\}}$$
 then

$$f_a(x_1, x_2) = f(a \cdot x_1, a^2 x_2)$$

In Harmonic Analysis called Parabolic Scaling.

Curves are invariant under anisotropic scaling

Identical Copies of Planar Curve

Curvelets

C. and Donoho, 1999–2004

New multiscale pyramid:

- Multiscale
- Multi-orientations
- Parabolic (anisotropy) scaling

 $width \approx length^2$

Space-side Picture

- Start with a waveform $\varphi(x) = \varphi(x_1, x_2)$.
 - oscillatory in x_1
 - lowpass in x_2
- Parabolic rescaling

$$|D_j|arphi(D_jx)=2^{3j/4}arphi(2^jx_1,2^{j/2}x_2),\quad D_j=egin{pmatrix} 2^j & 0\ 0 & 2^{j/2} \end{pmatrix},\ j\geq 0$$

Rotation (scale dependent)

$$2^{3j/4} arphi(D_j R_{ heta_{j\ell}} x), \quad heta_{j\ell} = 2\pi \cdot \ell 2^{-\lfloor j/2
floor}$$

• Translation (oriented Cartesian grid with spacing $2^{-j} \times 2^{-j/2}$);

$$2^{3j/4}\varphi(D_jR_{\theta_{j\ell}}x-k), \quad k\in\mathbb{Z}^2$$

Curvelets parameterized by scale, location, and orientation

Digital Curvelets

Digital Curvelets

Frequency-side Picture

Frequency-domain definition

$$\hat{arphi}_{\mu}(\xi) = w(2^{-j}|\xi|)
u(2^{\lfloor j/2 \rfloor} heta - \pi \ell) e^{i \langle k^{j,\ell}, \xi
angle}$$

- $w(\cdot) = \text{window for scale } j$
- $\nu(\cdot)$ = window for orientation θ
- $e^{i\langle k^{j,\ell},\xi\rangle}$ shifts to location (k,ℓ)

Curvelet Tiling

Compare to Wavelet Tiling

Curvelet Properties

Tight frame, the curvelet transform obeys Parseval

$$f = \sum_{\mu} \langle f, arphi_{\mu}
angle arphi_{\mu} \qquad ||f||_2^2 = \sum_{\mu} \langle f, arphi_{\mu}
angle^2$$

- Geometric pyramid structure
 - dyadic scale
 - dyadic location
 - direction (angular resolution doubles every other scale)
- "Needle shaped": width $\sim 2^{-j}$, length $\sim 2^{-j/2}$

Curvelet Approximation

- Curvelets build up edges in images using "broad strokes"
- *m*-term approximation error

$$||f - f_m||_2^2 \asymp m^{-2} \log^3 m$$

within \log factors of optimal rate m^{-2}

• Example:

original

1% of curvelet coeffs

10% of curvelet coeffs

Application: Curvelet Denoising

Zoom-in on piece of phantom

wavelet thresholding

curvelet thresholding

Application: Curvelet Denoising

Photograph-like image:

noisy

wavelet thresholding

curvelet thresholding

wavelet thresholding

curvelet thresholding

Curvelet Thresholding

$$y = f + \sigma z$$

- Model: f is C^2 away from C^2 edges
- Curvelet shrinkage attains the risk (up to log factors)

$$\inf_m \|f - f_m\|^2 + m\sigma^2 \asymp \sigma^{4/3}$$

No estimator can do fundamentally better!

The Fast Digital Curvelet Transform

Digital Curvelets and Sampling

- Digital images are sampled on a Cartesian grid
- Main difficulty: rotations are not natural (grid is not closed under rotation)
- Use shearing in place of rotation
- Use pseudo-polar grid in place of polar grid

Curvelet Tilings

continuous time

polar grid

pseudo-polar grid

Discrete Curvelet Coefficients

Assume that window $W_{j0}(n_1,n_2)$ is supported within a sheared rectangle

$$\mathcal{P}_j = \{(n_1, n_2) : 0 \le n_1 - n_0 < L_j, -l_j/2 \le n_2 < l_j/2\}.$$

Discrete curvelet coefficient

$$heta_{j,\ell,k}^D = \sum_{n_1,n_2 \in \mathcal{P}_j} \hat{f}(n_1,n_2 + n_1 an heta_{j,\ell}) W_{j0}(n_1,n_2) e^{-i2\pi(n_1k_1/L_j + n_2k_2/l_j)},$$

Need to evaluate \hat{f} inside the sheared rectangle

FFTs on Parallelograms

Samples inside each parallelogram tile by periodic wrap-around
 ⇒ can be calculated by taking FFTs on rectangular tiles

Periodic wrap around

This makes the whole transform an isometry (inverse=adjoint)

DCT: Putting it Together

Initial data: Cartesian array $f(i_1, i_2)$, $0 \le i_1, i_2 \le N - 1$.

- 1. FFT: Apply the 2D FFT and obtain Fourier samples $\hat{f}(n_1,n_2)$, $-N/2 \leq n_1, n_2 < N/2$.
- 2. Resample: For each scale/angle pair (j,ℓ) , calculate the sample values inside the parallelipiped $\mathcal{P}_{j,\ell} := \{(n_1, n_2 + n_1 \tan \theta_{j,\ell})\}, n_1, n_2 \in \mathcal{P}_j$.
- 3. Multiply the interpolated (or sheared) object \hat{f} with the parabolic window \tilde{W}_{j0} , effectively localizing \hat{f} near the parallelipiped with orientation $\theta_{j,\ell}$, and obtain

$$ilde{f}_{j,\ell}(n_1,n_2) = \hat{f}(n_1,n_2+n_1 an heta_{j,\ell})W_{j0}(n_1,n_2).$$

4. Inverse FFT: Apply the inverse 2D FFT to each $\tilde{f}_{j,\ell}$, hence collecting the discrete coefficients $\theta^D_{j,\ell,k}$.

Digital Curvelets

Digital Curvelets: Frequency Localization

Digital Curvelets: : Frequency Localization

DCT: Architecture

- 1. Each coefficient is defined by a direct summation over a parallelipipedal, anisotropic 'tilted' lattice in the frequency domain.
- 2. The regions obey the parabolic scaling relation $width \approx \sqrt{length}$.
- 3. The coefficients associated with a single orientation and scale 'tile' the spatial domain according to a dual 'tilted' lattice. The corresponding basis functions sharing that orientation and scale have support tiling the space according to a dual tilted lattice.

- 4. The Riesz representers of the coefficients obey sharp frequency localization.
- 5. The transform is a near-isometry; all steps except one involve either orthogonal transforms or tight frames.
- 6. The transform is cache-aware: all component steps involve processing n items in the array in sequence, e.g. there is frequent use of 1-D FFTs to compute n intermediate results simultaneously.
- 7. Transform can be made arbitrarily tight at the cost of oversampling.

DCT: Summary

- Cartesian data structure
- For practical purposes, algorithm runs $O(n^2 \log(n))$ flops, where n^2 is the number of pixels. (Runs in about 5s for a 512 by 512 image on my MAC).
- The approach is flexible, and can be used with a variety of choices of parallelipipedal tilings, for example, including based on principles besides parabolic scaling.