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Sparsity and Applications

• We have seen that sparse representations are critical for

– compression

– estimation

– inverse problems

• This talk: Curvelets, a sparse representation for images with geometrical
structure



Image Model

• Images of interest: smooth regions separated by smooth contours

• Geometrical fragment model:

– smooth regions: C2 functions of two variables

– edge contour: C2 functions of one variable



Judging Image Representations

• Representation {ψi}

f(x1, x2) =
∑

i

αiψi(x1, x2)

• fm = best m-term approximation

fm(x1, x2) =
∑

i∈Γ(m)

αiψi(x1, x2)

where Γ is chosen such that |Γ| = m and ‖f − fm‖2
2 is minimized

• How fast does ‖f − fm‖2
2 → 0?

• Fundamental limit:
‖f − fm‖2

2 � m−2

– No basis can do better than this

– No depth-search limited dictionary can do better

– No pre-existing basis does anything near this well



Fourier is Awful

• Discontinuities in the image lead to slow decay of the Fourier coefficients
(edges have a lot of “high frequency content”)

• m-term approximation error

‖f − fm‖2
2 � m−1/2

• Example:

original 1% of Fourier coeffs 10% of Fourier coeffs



Wavelets are Bad

• Many wavelets are needed to represent an edge
(number depends on the length of the edge, not the smoothness)

• m-term approximation error

‖f − fm‖2
2 � m−1

• Example:

original 1% of wavelet coeffs 10% of wavelet coeffs



Wavelets and Geometry

• Wavelet basis functions are isotropic
⇒ they cannot “adapt” to geometrical structure

wavelets triangulations

• We need a more refined scaling concept...



Wavelet Pyramids
Canonical Pyramid Ideas (1980-present)

• Laplacian Pyramid (Adelson/Burt)

• Orthonormal Wavelet Pyramid (Mallat/Meyer)

• Steerable Pyramid (Adelson/Heeger/Simoncelli)

• Multiwavelets (Alpert/Beylkin/Coifman/Rokhlin)

Shared features

• Elements at dyadic scales/locations

• Fixed number of elements at each scale/location



Wavelet Pyramid



Limitations of Existing Scaling Concepts
Traditional Scaling

fa(x1, x2) = f(ax1, ax2), a > 0.

Curves exhibit different kinds of scaling

• Anisotropic

• Locally Adaptive

If f(x1, x2) = 1{y≥x2} then

fa(x1, x2) = f(a · x1, a
2x2)

In Harmonic Analysis called Parabolic Scaling.



Curves are invariant under anisotropic scaling

x2

x4

Identical Copies of Planar Curve

Fine Scale
Rectangle



Curvelets
C. and Donoho, 1999–2004

New multiscale pyramid:

• Multiscale

• Multi-orientations

• Parabolic (anisotropy) scaling

width ≈ length2



Space-side Picture

• Start with a waveform ϕ(x) = ϕ(x1, x2).

– oscillatory in x1

– lowpass in x2

• Parabolic rescaling

|Dj|ϕ(Djx) = 23j/4ϕ(2jx1, 2j/2x2), Dj =

2j 0

0 2j/2

 , j ≥ 0

• Rotation (scale dependent)

23j/4ϕ(DjRθj`x), θj` = 2π · `2−bj/2c

• Translation (oriented Cartesian grid with spacing 2−j × 2−j/2);

23j/4ϕ(DjRθj`x− k), k ∈ Z2
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Curvelets parameterized by scale, location, and orientation



Digital Curvelets
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Digital Curvelets
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Frequency-side Picture
Frequency-domain definition

ϕ̂µ(ξ) = w(2−j|ξ|)ν(2bj/2cθ − π`)ei〈kj,`,ξ〉

• w(·) = window for scale j

• ν(·) = window for orientation θ

• ei〈kj,`,ξ〉 shifts to location (k, `)



Curvelet Tiling
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Compare to Wavelet Tiling
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Curvelet Properties

• Tight frame, the curvelet transform obeys Parseval

f =
∑
µ

〈f, ϕµ〉ϕµ ||f ||22 =
∑
µ

〈f, ϕµ〉2

• Geometric pyramid structure

– dyadic scale

– dyadic location

– direction (angular resolution doubles every other scale)

• “Needle shaped”: width ∼ 2−j , length ∼ 2−j/2



Curvelet Approximation

• Curvelets build up edges in images using “broad strokes”

• m-term approximation error

‖f − fm‖2
2 � m−2 log3m

within log factors of optimal rate m−2

• Example:

original 1% of curvelet coeffs 10% of curvelet coeffs



Application: Curvelet Denoising

Zoom-in on piece of phantom

noisy wavelet thresholding curvelet thresholding



Application: Curvelet Denoising

Photograph-like image:

noisy wavelet thresholding curvelet thresholding



wavelet thresholding curvelet thresholding



Curvelet Thresholding

y = f + σz

• Model: f is C2 away from C2 edges

• Curvelet shrinkage attains the risk (up to log factors)

inf
m

‖f − fm‖2 +mσ2 � σ4/3

• No estimator can do fundamentally better!



The Fast Digital Curvelet Transform



Digital Curvelets and Sampling

• Digital images are sampled on a Cartesian grid

• Main difficulty: rotations are not natural (grid is not closed under rotation)

• Use shearing in place of rotation

• Use pseudo-polar grid in place of polar grid



Curvelet Tilings
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2

2

j/2

j

-250 -200 -150 -100 -50 0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

100

150

200

250

polar grid pseudo-polar grid



Discrete Curvelet Coefficients
Assume that window Wj0(n1, n2) is supported within a sheared rectangle

Pj = {(n1, n2) : 0 ≤ n1 − n0 < Lj, −lj/2 ≤ n2 < lj/2}.

curvelet support

sheared rectangle

Discrete curvelet coefficient

θD
j,`,k =

∑
n1,n2∈Pj

f̂(n1, n2+n1 tan θj,`)Wj0(n1, n2)e−i2π(n1k1/Lj+n2k2/lj),

Need to evaluate f̂ inside the sheared rectangle



FFTs on Parallelograms

• Samples inside each parallelogram tile by periodic wrap-around
⇒ can be calculated by taking FFTs on rectangular tiles

Periodic wrap around

• This makes the whole transform an isometry (inverse=adjoint)



DCT: Putting it Together
Initial data: Cartesian array f(i1, i2), 0 ≤ i1, i2 ≤ N − 1.

1. FFT: Apply the 2D FFT and obtain Fourier samples f̂(n1, n2),
−N/2 ≤ n1, n2 < N/2.

2. Resample: For each scale/angle pair (j, `), calculate the sample values
inside the parallelipiped Pj,` := {(n1, n2 + n1 tan θj,`)}, n1, n2 ∈ Pj .

3. Multiply the interpolated (or sheared) object f̂ with the parabolic window
W̃j0, effectively localizing f̂ near the parallelipiped with orientation θj,`,
and obtain

f̃j,`(n1, n2) = f̂(n1, n2 + n1 tan θj,`)Wj0(n1, n2).

4. Inverse FFT: Apply the inverse 2D FFT to each f̃j,`, hence collecting the
discrete coefficients θD

j,`,k.



Digital Curvelets
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Digital Curvelets: Frequency Localization
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Digital Curvelets: : Frequency Localization
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DCT: Architecture
1. Each coefficient is defined by a direct summation over a parallelipipedal,

anisotropic ’tilted’ lattice in the frequency domain.

2. The regions obey the parabolic scaling relation width ≈
√
length.

3. The coefficients associated with a single orientation and scale ‘tile’ the
spatial domain according to a dual ’tilted’ lattice. The corresponding basis
functions sharing that orientation and scale have support tiling the space
according to a dual tilted lattice.

Freq-domain parallelogram Spatial-domain tilingFrequency-Domain Parallelogram Spatial-Domain TilingFrequency-Domain Parallelogram Spatial-Domain Tiling



4. The Riesz representers of the coefficients obey sharp frequency
localization.

5. The transform is a near-isometry; all steps except one involve either
orthogonal transforms or tight frames.

6. The transform is cache-aware: all component steps involve processing n
items in the array in sequence, e.g. there is frequent use of 1-D FFTs to
compute n intermediate results simultaneously.

7. Transform can be made arbitrarily tight at the cost of oversampling.



DCT: Summary

• Cartesian data structure

• For practical purposes, algorithm runs O(n2 log(n)) flops, where n2 is the
number of pixels. (Runs in about 5s for a 512 by 512 image on my MAC).

• The approach is flexible, and can be used with a variety of choices of
parallelipipedal tilings, for example, including based on principles besides
parabolic scaling.


