
On Split Cuts from Elementary Disjunctions

Everything You Always Wanted to Know About BUT
Were Afraid to Ask Egon

Andrea Lodi
University of Bologna, Italy & ILOG SA

andrea.lodi@unibo.it

Joint work with Matteo Fischetti & Andrea Tramontani

August 2nd, 2007 @ MIP 2007

A. Lodi, On Split Cuts from Elementary Disjunctions



Notation & Assumptions

• We consider:

min{cT
x : Ax ≥ b, x integer} (1)

with bounds on x included in Ax ≥ b and x∗ as the optimal solution of the continuous

relaxation P .
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Notation & Assumptions

• We consider:

min{cT
x : Ax ≥ b, x integer} (1)

with bounds on x included in Ax ≥ b and x∗ as the optimal solution of the continuous

relaxation P .

• We are also given an elementary disjunction on the form xj ≤ π0 OR xj ≥ π0 + 1 such that

x∗j ∈ ]π0, π0 + 1[.

• The plan is derive the “strongest” cut, γx ≥ γ0 violated by x∗, by using such a disjunction

and doing it by the classical disjunctive approach of Balas:

P0

(u) Ax ≥ b

(u0) −xj ≥ −π0

P1

(v) Ax ≥ b

(v0) xj ≥ π0 + 1

which is a valid cutting plane for the union of the two polyhedra P0 and P1.
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Notation & Assumptions (cont.d)

• Such a cut can be separated by solving the so-called Cut Generating Linear Program:

(CGLP) min γx∗ − γ0

γ = uTA − u0ej

γ = vTA + v0ej

γ0 = uTb − u0π0

γ0 = vTb + v0(π0 + 1)

u, w, v, z, u0, v0 ≥ 0

which is however a cone and must be truncated in order to get a cut.
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• Such a cut can be separated by solving the so-called Cut Generating Linear Program:

(CGLP) min γx∗ − γ0

γ = uTA − u0ej

γ = vTA + v0ej

γ0 = uTb − u0π0

γ0 = vTb + v0(π0 + 1)

u, w, v, z, u0, v0 ≥ 0

which is however a cone and must be truncated in order to get a cut.

• The truncation of such a cone can be obtained in many different ways through a so-called

normalization constraint and Balas, Ceria & Cornuéjols (1996) – BCC for short – used∑
u +

∑
v + u0 + v0 = 1. (2)
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Notation & Assumptions (cont.d)

• Such a cut can be separated by solving the so-called Cut Generating Linear Program:

(CGLP) min γx∗ − γ0

γ = uTA − u0ej

γ = vTA + v0ej

γ0 = uTb − u0π0

γ0 = vTb + v0(π0 + 1)

u, w, v, z, u0, v0 ≥ 0

which is however a cone and must be truncated in order to get a cut.

• The truncation of such a cone can be obtained in many different ways through a so-called

normalization constraint and Balas, Ceria & Cornuéjols (1996) – BCC for short – used∑
u +

∑
v + u0 + v0 = 1. (2)

• Lately, Balas & Perregaard (2002) developed an elegant and efficient way of solving the CGLP

in the space of the original variables which represents a crucial speed-up.
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A good exploitation of the elementary disjunction

• Another way of thinking at the procedure of Balas & Perregaard is the following:
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A good exploitation of the elementary disjunction

• Another way of thinking at the procedure of Balas & Perregaard is the following:

1. solve the continuous relaxation

2. for every fractional variable

(a) consider the elementary disjunction associated with the corresponding row

(b) strengthen the associated Gomory Mixed Integer cut (GMI) by performing a sequence of

pivots to (possibly infeasible) alternative basis so as to implicitly solve the CGLP.
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2. for every fractional variable

(a) consider the elementary disjunction associated with the corresponding row

(b) strengthen the associated Gomory Mixed Integer cut (GMI) by performing a sequence of

pivots to (possibly infeasible) alternative basis so as to implicitly solve the CGLP.

• The first set of experiments we designed is intended at understanding how and how much one

can really gain from such a strengthening and in order to do this we avoided strengthening the

cuts a posteriori through the Balas & Jeroslow procedure.
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A good exploitation of the elementary disjunction

• Another way of thinking at the procedure of Balas & Perregaard is the following:

1. solve the continuous relaxation

2. for every fractional variable

(a) consider the elementary disjunction associated with the corresponding row

(b) strengthen the associated Gomory Mixed Integer cut (GMI) by performing a sequence of

pivots to (possibly infeasible) alternative basis so as to implicitly solve the CGLP.

• The first set of experiments we designed is intended at understanding how and how much one

can really gain from such a strengthening and in order to do this we avoided strengthening the

cuts a posteriori through the Balas & Jeroslow procedure.

• Within 10 rounds of cuts, the indicators we report are:

1. quality of the lower bound

2. average cuts’ density

3. cuts’ rank

4. average cardinality of (u, v), i.e., how many constraints used on average to generate a cut
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Instance p0201: lower bound
Bound for instance p0201
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Instance p0201: average cuts’ density
avg. cut's density for instance p0201
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Instance p0201: cuts’ rank
Rank of cuts for instance p0201
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Instance p0201: average cardinality of (u, v)
avg. cardinality of (u,v) for instance p0201
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In Summary

Table 1: 10 iterations of cuts. At each iteration one cut is generated from any fractional variable.

No strengthening in the cut computation.

Unstrengthened GMI vs. “Classical” BCC approach

Unstrengthened GMI “Classical” BCC
Instance n.cuts gap% #(u, v) n.cuts gap% #(u, v)

bell3a 137 70.74 59.49 71 70.74 43.72
bell5 202 28.18 31.20 178 94.29 11.75

blend2 156 28.73 11.70 192 30.51 8.10
flugpl 93 15.15 7.57 92 18.36 5.85

gt2 191 98.71 14.52 196 93.46 10.28
lseu 152 32.94 14.34 196 41.33 9.17

∗m.share1 68 0.00 1.00 74 0.00 1.39
mod008 104 12.09 10.40 139 17.05 12.41

p0033 103 58.33 5.72 113 67.86 4.81
p0201 574 18.58 56.03 767 93.82 13.43

rout 445 8.52 135.39 434 24.26 68.07
∗stein27 235 0.00 19.74 252 0.00 6.53

vpm1 255 36.95 9.03 263 55.84 5.39
vpm2 424 42.08 71.72 403 74.96 17.27
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In Summary

Table 1: 10 iterations of cuts. At each iteration one cut is generated from any fractional variable.

No strengthening in the cut computation.

Unstrengthened GMI vs. “Classical” BCC approach

Unstrengthened GMI “Classical” BCC
Instance n.cuts gap% #(u, v) n.cuts gap% #(u, v)

bell3a 137 70.74 59.49 71 70.74 43.72
bell5 202 28.18 31.20 178 94.29 11.75

blend2 156 28.73 11.70 192 30.51 8.10
flugpl 93 15.15 7.57 92 18.36 5.85

gt2 191 98.71 14.52 196 93.46 10.28
lseu 152 32.94 14.34 196 41.33 9.17

∗m.share1 68 0.00 1.00 74 0.00 1.39
mod008 104 12.09 10.40 139 17.05 12.41

p0033 103 58.33 5.72 113 67.86 4.81
p0201 574 18.58 56.03 767 93.82 13.43

rout 445 8.52 135.39 434 24.26 68.07
∗stein27 235 0.00 19.74 252 0.00 6.53

vpm1 255 36.95 9.03 263 55.84 5.39
vpm2 424 42.08 71.72 403 74.96 17.27

avg. 236.333 37.583 35.593 253.667 56.873 17.521
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Why does it work so well?

• The normalization (2) used by Balas, Ceria & Cornuéjols has the following very nice properties:
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using the separated cuts in the derivation of new ones is penalized (sum of multipliers

= 1)
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using the separated cuts in the derivation of new ones is penalized (sum of multipliers
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2. since low-rank inequalities are preferred and since the original inequalities (rank-0) are

generally sparse, the separated cuts remain sparse (overall (2) makes also sure that a limited

number of constraints are used in the derivation).
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the variables outside the support is “safe”, i.e., those coefficients remain under control.
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1. the norm of the separated cuts becomes smaller and smaller (each multiplier < 1), thus

using the separated cuts in the derivation of new ones is penalized (sum of multipliers

= 1) ⇒ low-rank inequalities are separated.

2. since low-rank inequalities are preferred and since the original inequalities (rank-0) are

generally sparse, the separated cuts remain sparse (overall (2) makes also sure that a limited

number of constraints are used in the derivation).

3. since each multiplier tends to be small, the lifting – done afterwards – of the coefficients of

the variables outside the support is “safe”, i.e., those coefficients remain under control.

• It can be shown instead that the GMI associated with the same normalization is a basic
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• It can be shown instead that the GMI associated with the same normalization is a basic
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which uses the trivial (and rather bad) normalization:

u0 + v0 = 1.
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Why does it work so well?

• The normalization (2) used by Balas, Ceria & Cornuéjols has the following very nice properties:

1. the norm of the separated cuts becomes smaller and smaller (each multiplier < 1), thus

using the separated cuts in the derivation of new ones is penalized (sum of multipliers

= 1) ⇒ low-rank inequalities are separated.

2. since low-rank inequalities are preferred and since the original inequalities (rank-0) are

generally sparse, the separated cuts remain sparse (overall (2) makes also sure that a limited

number of constraints are used in the derivation).

3. since each multiplier tends to be small, the lifting – done afterwards – of the coefficients of

the variables outside the support is “safe”, i.e., those coefficients remain under control.

• It can be shown instead that the GMI associated with the same normalization is a basic

solution of the CGLP but generally not the optimal one. It is the optimal solution of the CGLP

which uses the trivial (and rather bad) normalization:

u0 + v0 = 1. (3)

• However, nothing is perfect!
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Why does it work so well?

• The normalization (2) used by Balas, Ceria & Cornuéjols has the following very nice properties:

1. the norm of the separated cuts becomes smaller and smaller (each multiplier < 1), thus

using the separated cuts in the derivation of new ones is penalized (sum of multipliers

= 1) ⇒ low-rank inequalities are separated.

2. since low-rank inequalities are preferred and since the original inequalities (rank-0) are

generally sparse, the separated cuts remain sparse (overall (2) makes also sure that a limited

number of constraints are used in the derivation).

3. since each multiplier tends to be small, the lifting – done afterwards – of the coefficients of

the variables outside the support is “safe”, i.e., those coefficients remain under control.

• It can be shown instead that the GMI associated with the same normalization is a basic

solution of the CGLP but generally not the optimal one. It is the optimal solution of the CGLP

which uses the trivial (and rather bad) normalization:

u0 + v0 = 1. (3)

• However, nothing is perfect! Normalization (2) is dependent on the scaling of the constraints.

In the second set of experiments we simply multiplied by 1,000 any generated cut before adding

it to the current relaxation.
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Instance p0201: average cuts’ density
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Instance p0201: cuts’ rank
Rank of cuts for instance p0201
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Instance p0201: average cardinality of (u, v)
avg. cardinality of (u,v) for instance p0201
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In Summary

Table 2: 10 iterations of cuts. At each iteration one cut is generated from any fractional variable.

No strengthening in the cut computation.

“Classical” BCC approach vs. “Scaled” BCC approach

“Classical” BCC “Scaled” BCC
Instance n.cuts gap% #(u, v) n.cuts gap% #(u, v)

bell3a 71 70.74 43.72 69 70.74 44.32
bell5 178 94.29 11.75 214 88.83 17.47

blend2 192 30.51 8.10 166 28.91 11.71
flugpl 92 18.36 5.85 90 15.40 7.40

gt2 196 93.46 10.28 184 93.42 17.22
lseu 196 41.33 9.17 137 38.58 10.88

∗m.share1 74 0.00 1.39 206 0.00 14.60
mod008 139 17.05 12.41 104 3.90 10.21

p0033 113 67.86 4.81 94 57.09 6.40
p0201 767 93.82 13.43 610 49.91 45.72

rout 434 24.26 68.07 435 13.03 152.66
∗stein27 252 0.00 6.53 248 0.00 22.39

vpm1 263 55.84 5.39 244 47.59 8.50
vpm2 403 74.96 17.27 420 54.39 22.27
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In Summary

Table 2: 10 iterations of cuts. At each iteration one cut is generated from any fractional variable.

No strengthening in the cut computation.

“Classical” BCC approach vs. “Scaled” BCC approach

“Classical” BCC “Scaled” BCC
Instance n.cuts gap% #(u, v) n.cuts gap% #(u, v)

bell3a 71 70.74 43.72 69 70.74 44.32
bell5 178 94.29 11.75 214 88.83 17.47

blend2 192 30.51 8.10 166 28.91 11.71
flugpl 92 18.36 5.85 90 15.40 7.40

gt2 196 93.46 10.28 184 93.42 17.22
lseu 196 41.33 9.17 137 38.58 10.88

∗m.share1 74 0.00 1.39 206 0.00 14.60
mod008 139 17.05 12.41 104 3.90 10.21

p0033 113 67.86 4.81 94 57.09 6.40
p0201 767 93.82 13.43 610 49.91 45.72

rout 434 24.26 68.07 435 13.03 152.66
∗stein27 252 0.00 6.53 248 0.00 22.39

vpm1 263 55.84 5.39 244 47.59 8.50
vpm2 403 74.96 17.27 420 54.39 22.27

avg. 253.667 56.873 17.521 230.583 46.816 29.563
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Nothing is perfect: Example 1

min −x1 −2x2

(1) 4x1 −4x2 ≥ −2

(2) −2x1 −2x2 ≥ −3

(3) 8x1 −4x2 ≥ −1

(4) −x1 ≥ −1

(5) −k x2 ≥ −k (k > 0)

x1, x2 ≥ 0

Cuts from the disjunction x1 ≤ 0 OR x1 ≥ 1:

(c1) 2x2 ≤ 1

(c2) −x1 +4x2 ≤ 1

(c3) −x1 +2x2 ≤ 1

(1) (2) 

(3) 

x*

(4)

(5) 

x1

x2 y*

(c1) 

(c3) 

(c2) 

 

(c1) : corresponds to the basic solution of the CGLP (u1, v2, u0, v0), of value z1 = − 2
11, optimal for

k ≤ 8

(c2) : corresponds to the basic solution of the CGLP (u3, v2, u0, v0), of value z2 = −1
6, never

optimal

(c3) : corresponds to the basic solution of the CGLP (u1, v5, u0, v0), of value z3 = − k
4+5k , optimal

for k ≥ 8
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Nothing is perfect: Example 1 (cont.d)

• By using PORTA we can get a nice picture of what happens:
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Nothing is perfect: Example 1 (cont.d)

• By using PORTA we can get a nice picture of what happens:

1. in the space (γ, γ0, u, v, u0, v0) the cone has 117 extreme rays which results into 117

vertices once normalization (2) is applied.
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vertices once normalization (2) is applied.

2. only 6 of these vertices correspond to violated constraints and 3 are the ones shown in the

previous slide.
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3. in the space (γ, γ0), instead, the cone has only 4 extreme rays corresponding to the facets
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Nothing is perfect: Example 1 (cont.d)

• By using PORTA we can get a nice picture of what happens:

1. in the space (γ, γ0, u, v, u0, v0) the cone has 117 extreme rays which results into 117

vertices once normalization (2) is applied.

2. only 6 of these vertices correspond to violated constraints and 3 are the ones shown in the

previous slide.

3. in the space (γ, γ0), instead, the cone has only 4 extreme rays corresponding to the facets

of the union of P0 and P1.

4. in other words, working on the extended space (γ, γ0, u, v, u0, v0) makes points in the

interior of the polyhedron become vertices but this is independent of the normalization itself.
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Nothing is perfect: Example 1 (cont.d)

• By using PORTA we can get a nice picture of what happens:

1. in the space (γ, γ0, u, v, u0, v0) the cone has 117 extreme rays which results into 117

vertices once normalization (2) is applied.

2. only 6 of these vertices correspond to violated constraints and 3 are the ones shown in the

previous slide.

3. in the space (γ, γ0), instead, the cone has only 4 extreme rays corresponding to the facets

of the union of P0 and P1.

4. in other words, working on the extended space (γ, γ0, u, v, u0, v0) makes points in the

interior of the polyhedron become vertices but this is independent of the normalization itself.

5. however, the normalization changes the ranking of these vertices in terms of violation and

this can result in very bad choices in terms of separated cuts.
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Nothing is perfect: Example 2

min −x1 −2x2

(1) 2x1 −2x2 ≥ −1

(2) −2x1 −2x2 ≥ −3

(3) 4x1 +4x2 ≥ 3

(4) −x1 ≥ −1

(5) −x2 ≥ −1

x1, x2 ≥ 0

Cuts from the disjunction x1 ≤ 0 OR x1 ≥ 1:

(c1) 2x2 ≤ 1

(c2) x1 ≥ 1

(c3) −x1 +2x2 ≤ 1

(1) (2) 

(3)

x*

(5) 

x1

x2

(c1) 

(c3) 

(c2) 

 

(c1) : corresponds to the basic solution of the CGLP (u1, v2, u0, v0), of value z1 = −1
6

(c2) : corresponds to the basic solution of the CGLP (u1, u3, u0, v0), of value z2 = − 1
22

(c3) : corresponds to the basic solution of the CGLP (u1, v5, u0, v0), of value z3 = − 1
10

P0 = ∅ ⇒ x1 ≥ 1 is a valid cut, but is not the best one for the CGLP
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BCC eliminating redundant constraints

• Redundant constraints hurt!
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• Geometrically, they forbid the intersection cut to go as deep as possible and generally speaking

the separated cuts can be NON supporting (as in the examples), i.e., slack with respect to P0

and/or P1.
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the separated cuts can be NON supporting (as in the examples), i.e., slack with respect to P0

and/or P1.

• From a mathematical viewpoint, a redundant constraint can be obtained by conic combination

of other constraints. If the sum of the multipliers used to obtain it is > 1, then using a

redundant constraint is cheaper (wrt normalization (2)) than using the constraints that

generate it and it is a way of cheating wrt the normalization.
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BCC eliminating redundant constraints

• Redundant constraints hurt!

• Geometrically, they forbid the intersection cut to go as deep as possible and generally speaking

the separated cuts can be NON supporting (as in the examples), i.e., slack with respect to P0

and/or P1.

• From a mathematical viewpoint, a redundant constraint can be obtained by conic combination

of other constraints. If the sum of the multipliers used to obtain it is > 1, then using a

redundant constraint is cheaper (wrt normalization (2)) than using the constraints that

generate it and it is a way of cheating wrt the normalization.

• Redundant constraints do not introduce new cuts but scaled copies of already existent cuts,

i.e., additional vertices that, due to the cheating in the normalization, have a higher objective

function (violation) and are then selected.
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• The effect can be mitigated by getting rid of redundant constraints in the derivation of the cut.
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i.e., additional vertices that, due to the cheating in the normalization, have a higher objective

function (violation) and are then selected.

• The effect can be mitigated by getting rid of redundant constraints in the derivation of the cut.

• In Example 1 with PORTA, the CGLP without redundant constraints has only 9 extreme rays

and 9 vertices. Only 1 corresponds to a violated constraint: (c2) : −x1 + 4x2 ≤ 1.
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• Geometrically, they forbid the intersection cut to go as deep as possible and generally speaking

the separated cuts can be NON supporting (as in the examples), i.e., slack with respect to P0

and/or P1.

• From a mathematical viewpoint, a redundant constraint can be obtained by conic combination

of other constraints. If the sum of the multipliers used to obtain it is > 1, then using a

redundant constraint is cheaper (wrt normalization (2)) than using the constraints that

generate it and it is a way of cheating wrt the normalization.

• Redundant constraints do not introduce new cuts but scaled copies of already existent cuts,

i.e., additional vertices that, due to the cheating in the normalization, have a higher objective

function (violation) and are then selected.

• The effect can be mitigated by getting rid of redundant constraints in the derivation of the cut.

• In Example 1 with PORTA, the CGLP without redundant constraints has only 9 extreme rays

and 9 vertices. Only 1 corresponds to a violated constraint: (c2) : −x1 + 4x2 ≤ 1.

• In the third set of experiments we eliminated redundant constraints in a trivial way (i.e., by

solving LPs) before solving the CGLP. To get a full picture, we did not project the separation

problem on the support of x∗ (to be discussed later).
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Instance p0201: lower bound
Bound for instance p0201
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Instance p0201: average cuts’ density
avg. cut's density for instance p0201
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Instance p0201: cuts’ rank
Rank of cuts for instance p0201
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Instance p0201: average cardinality of (u, v)
avg. cardinality of (u,v) for instance p0201
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In Summary

Table 3: 10 iterations of cuts. At each iteration one cut is generated from any fractional variable.

No strengthening in the cut computation.

“Classical” BCC approach vs. “No redundancy” BCC approach with no projection

“Classical” BCC “No redundancy” BCC
Instance n.cuts gap% #(u, v) n.cuts gap% #(u, v)

bell3a 71 70.74 64.65 54 70.74 66.19
bell5 188 94.12 16.83 189 93.54 15.80

blend2 197 30.49 71.42 212 30.63 119.90
flugpl 93 18.34 6.45 90 18.83 6.48

gt2 218 94.13 58.11 167 93.68 63.16
lseu 171 42.46 23.86 184 45.10 30.96

∗m.share1 77 0.00 55.99 77 0.00 56.00
mod008 107 15.46 304.18 107 15.48 304.19

p0033 116 57.25 8.75 126 70.32 10.99
p0201 692 92.53 23.40 757 98.31 37.44

rout 349 29.46 189.07 384 31.93 202.18
∗stein27 251 0.00 7.29 249 0.00 6.46

vpm1 267 50.62 11.13 282 54.55 11.10
vpm2 390 74.73 24.23 376 76.47 22.82
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In Summary

Table 3: 10 iterations of cuts. At each iteration one cut is generated from any fractional variable.

No strengthening in the cut computation.

“Classical” BCC approach vs. “No redundancy” BCC approach with no projection

“Classical” BCC “No redundancy” BCC
Instance n.cuts gap% #(u, v) n.cuts gap% #(u, v)

bell3a 71 70.74 64.65 54 70.74 66.19
bell5 188 94.12 16.83 189 93.54 15.80

blend2 197 30.49 71.42 212 30.63 119.90
flugpl 93 18.34 6.45 90 18.83 6.48

gt2 218 94.13 58.11 167 93.68 63.16
lseu 171 42.46 23.86 184 45.10 30.96

∗m.share1 77 0.00 55.99 77 0.00 56.00
mod008 107 15.46 304.18 107 15.48 304.19

p0033 116 57.25 8.75 126 70.32 10.99
p0201 692 92.53 23.40 757 98.31 37.44

rout 349 29.46 189.07 384 31.93 202.18
∗stein27 251 0.00 7.29 249 0.00 6.46

vpm1 267 50.62 11.13 282 54.55 11.10
vpm2 390 74.73 24.23 376 76.47 22.82

avg. 238.250 55.861 66.840 244.000 58.298 74.267
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Working on the support

• Projecting the separation problem into the support of x∗ has of course the advantage of dealing

with a problem of smaller size. However, the effect of the elimination of the redundant

constraints can get lost.
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• Projecting the separation problem into the support of x∗ has of course the advantage of dealing

with a problem of smaller size. However, the effect of the elimination of the redundant

constraints can get lost.

• Consider a variable xk such that x∗k = 0. Then, one can project it out, not considering

explicitly the constraints:

γk = u
T
Ak = v

T
Ak (4)

and derive the coefficient γj afterwards by lifting it.
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above so as to be able to impose um+k = 0 and/or vm+k = 0 (the multipliers associated with

xk ≥ 0).
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above so as to be able to impose um+k = 0 and/or vm+k = 0 (the multipliers associated with

xk ≥ 0).

• In other words, not stating explicitly (4), i.e., projecting, implies allowing the use of the

constraint xk ≥ 0 in the separation of the cut which can be a very bad idea.
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• Projecting the separation problem into the support of x∗ has of course the advantage of dealing

with a problem of smaller size. However, the effect of the elimination of the redundant

constraints can get lost.

• Consider a variable xk such that x∗k = 0. Then, one can project it out, not considering

explicitly the constraints:

γk = u
T
Ak = v

T
Ak (4)

and derive the coefficient γj afterwards by lifting it.

• However, if the constraint xk ≥ 0 is redundant, it can be very useful to explicitly write (4)

above so as to be able to impose um+k = 0 and/or vm+k = 0 (the multipliers associated with

xk ≥ 0).

• In other words, not stating explicitly (4), i.e., projecting, implies allowing the use of the

constraint xk ≥ 0 in the separation of the cut which can be a very bad idea.

• This seems to be particularly crucial for the variable bounds and we defined an extended

support of x∗ by avoiding projecting out variables at the bound whose bound constraints are in

turn redundant.
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Working on the support: computation

Table 4: 10 iterations of cuts. At each iteration one cut is generated from any fractional variable.

No strengthening in the cut computation.

“Classical” BCC approach vs. “No redundancy” BCC approach with cuts separated projected on the support

“Classical” BCC “No redundancy” support “No redundancy” extended support
Instance n.cuts gap% supp% #(u, v) n.cuts gap% supp% #(u, v) n.cuts gap% supp% #(u, v)

bell3a 71 70.74 69.25 43.72 88 70.74 69.32 44.82 54 70.74 65.61 44.60
bell5 178 94.29 72.69 11.75 207 94.62 72.88 13.32 180 94.29 71.64 11.99

blend2 192 30.51 53.06 8.10 200 30.99 53.54 10.84 193 30.53 53.99 8.34
flugpl 92 18.36 86.11 5.85 93 18.94 86.11 5.89 93 18.86 86.29 5.95

gt2 196 93.46 18.30 10.28 191 94.13 18.14 10.58 187 93.88 20.00 13.10
lseu 196 41.33 29.44 9.17 191 40.16 27.08 12.28 178 43.45 29.41 9.08

∗m.share1 74 0.00 11.94 1.39 130 0.00 13.39 2.56 77 0.00 12.59 1.69
mod008 139 17.05 4.51 12.41 136 17.70 4.42 12.17 157 19.13 5.85 14.43

p0033 113 67.86 55.76 4.81 106 70.32 55.76 5.74 146 70.29 58.84 5.89
p0201 767 93.82 45.02 13.43 873 81.59 43.43 25.83 769 100.00 48.93 13.39

rout 434 24.26 42.19 68.07 355 6.56 38.11 58.23 353 30.88 69.46 140.29
∗stein27 252 0.00 93.70 6.53 252 0.00 93.70 6.68 251 0.00 93.61 7.13

vpm1 263 55.84 62.14 5.39 275 50.18 62.25 6.30 259 57.63 65.18 6.60
vpm2 403 74.96 64.74 17.27 377 75.30 65.08 18.10 373 75.84 67.15 17.71
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Table 4: 10 iterations of cuts. At each iteration one cut is generated from any fractional variable.

No strengthening in the cut computation.

“Classical” BCC approach vs. “No redundancy” BCC approach with cuts separated projected on the support

“Classical” BCC “No redundancy” support “No redundancy” extended support
Instance n.cuts gap% supp% #(u, v) n.cuts gap% supp% #(u, v) n.cuts gap% supp% #(u, v)

bell3a 71 70.74 69.25 43.72 88 70.74 69.32 44.82 54 70.74 65.61 44.60
bell5 178 94.29 72.69 11.75 207 94.62 72.88 13.32 180 94.29 71.64 11.99

blend2 192 30.51 53.06 8.10 200 30.99 53.54 10.84 193 30.53 53.99 8.34
flugpl 92 18.36 86.11 5.85 93 18.94 86.11 5.89 93 18.86 86.29 5.95

gt2 196 93.46 18.30 10.28 191 94.13 18.14 10.58 187 93.88 20.00 13.10
lseu 196 41.33 29.44 9.17 191 40.16 27.08 12.28 178 43.45 29.41 9.08

∗m.share1 74 0.00 11.94 1.39 130 0.00 13.39 2.56 77 0.00 12.59 1.69
mod008 139 17.05 4.51 12.41 136 17.70 4.42 12.17 157 19.13 5.85 14.43

p0033 113 67.86 55.76 4.81 106 70.32 55.76 5.74 146 70.29 58.84 5.89
p0201 767 93.82 45.02 13.43 873 81.59 43.43 25.83 769 100.00 48.93 13.39

rout 434 24.26 42.19 68.07 355 6.56 38.11 58.23 353 30.88 69.46 140.29
∗stein27 252 0.00 93.70 6.53 252 0.00 93.70 6.68 251 0.00 93.61 7.13

vpm1 263 55.84 62.14 5.39 275 50.18 62.25 6.30 259 57.63 65.18 6.60
vpm2 403 74.96 64.74 17.27 377 75.30 65.08 18.10 373 75.84 67.15 17.71

avg. 253.667 56.873 50.268 17.521 257.667 54.269 49.677 18.675 245.167 58.793 53.529 24.281
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Conclusions and Future Work

• We got some insights about the use of normalizations in the separation of disjunctive cuts.

• We have shown that such normalizations – even the good ones – are not fully safe.

• We have shown that redundant constraints hurt in the separation of disjunctive cuts.
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• We got some insights about the use of normalizations in the separation of disjunctive cuts.

• We have shown that such normalizations – even the good ones – are not fully safe.

• We have shown that redundant constraints hurt in the separation of disjunctive cuts.

• Even after the elimination of redundant constraints one might separate non supporting cuts.

Can we do better?

• Can we come up with a better normalization (equivalently, a different objective function) such

that the cheating effect of redundant constraints can be mitigated?

• Can we remove redundant constraints efficiently, e.g., in the framework of Balas & Perregaard?

• Can we separate directly on the (γ, γ0) space?
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