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Split cuts

The algebra

Based on a disjunction
πT x ≤ π0 or πT x ≥ π0 + 1

is valid for x ∈ Zn when π, π0 are integer.

The geometry
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More about split cuts

The split closure

Consider a polyhedron P ⊆ Rn, the intersection of all split cuts of P is called the (first)
split closure of P, denoted by SC(P).

Some previous results

Cook, Kannan, Schrijver [1990] The split closure is a polyhedron

Lift-and-project, Chvátal-Gomory cuts are split cuts

Nemhauser, Wolsey [1988] MIR inequalities are split cuts and MIR closure and split
closure are equivalent

Cook, Kannan, Schrijver [1990] The number of rounds of split cuts to apply to
obtain the integer hull of a polyhedron might be infinite

Balas, Saxena [2006] Optimizing over the split closure

Dash, Günlük, Lodi [2007] On the MIR closure

Vielma [2006] New constructive proof that the MIR closure is a polyhedron

Andersen, Cornuéjols, Li [2005] Every split cut of P is also a split cut of a basis of P
(maybe infeasible).
Split cuts are intersection cuts [Balas 1971]
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Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.
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A triangle in R2 can be lattice-point-free
It can be lifted to a lattice-point-free polyhedron in R3
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Definition of the split dimension

A lattice-point-free polyhedron P ⊆ Rn can be written as

P = conv{v 1, . . . , vp}+ cone{w 1, . . . , wq}+ span{r 1, . . . , rn−d}.

The split-dimension of P is d .
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Classical Farkas Lemma

The continuous Farkas Lemma [Farkas, 1902]

Let A ∈ Rm×n, b ∈ Rm,

Ax ≤ b
x ≥ 0
x ∈ Rn

is empty if and only if
yTA ≥ 0
yTb < 0
for some y ∈ Rm.

Example

(1) 10x1+14x2 ≤ 35

(2) −x1+ x2 ≤ 0

(3) − x2 ≤−2

A certificate of infeasibility
y = (1 8 21)T

(1) 10x1+14x2 ≤ 35

8(2) −8x1+ 8x2 ≤ 0

21(3) −21x2 ≤−42

2x1+ x2 ≤ −7
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Classical Integral Farkas Lemma

The Integral Farkas Lemma [Kronecker 1884]

Let A ∈ Zm×n, b ∈ Zm,

Ax = b
x ∈ Zn is empty if and only if ∃y ∈ Qm with

yTA ∈ Zn

yTb 6∈ Z
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Let A ∈ Zm×n, b ∈ Zm,

Ax = b
x ∈ Zn is empty if and only if ∃y ∈ Qm with

yTA ∈ Zn

yTb 6∈ Z

Example (1) 3x1+ x2−5x3+ x4−7x5 = 1

(2) 7x1−3x2−3x3−2x4+5x5 = 5

(3) 2x1+ x2+ x3+6x4 = 1 Example
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The certificate y =
`

1
3

2
3

2
3

´
The certificate

1

3
(1) x1+

1

3
x2−

5

3
x3+

1

3
x4−

7

3
x5 =

1

3
2

3
(2)

14

3
x1− 2x2− 2x3−

4

3
x4+

10

3
x5 =

10

3
2

3
(3)

4

3
x1+

2

3
x2+

2

3
x3+ 4x4 =

2

3

X
7x1− x2− 3x3+ x4+ x5 =
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3
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Geometric interpretation of the Integral Farkas Lemma

Ax = b

yTA

yTb 6∈ Z

{v∗}+ span{w 1, . . . , wd}

subset of span{w 1, . . . , wd}⊥

there exists π ∈ span{w 1, . . . , wd}⊥ ∩ Zn

with πT v∗ 6∈ Z.

Equivalent to say that L = {bπT v∗c ≤ πT x ≤ dπT v∗e} contains Ax = b in its interior.

Existence of a split proving that Ax = b ∩ Zn = ∅
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Natural extension for one range inequality

Integral Farkas Lemma with one range inequality [Andersen, L. , Weismantel 2007]

Ax = b
l ≤ cx ≤ u
x ∈ Zn

= ∅ iff ∃y ∈ Qm, z ∈ Q+ with
(yT z)

„
A
c

«
∈ Zn

[yTb + zl , yTb + zu] ∩ Z = ∅
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Example (1) 2x1+ x2+3x3− x4 = 3 Example

(2) 6x1− x2−2x3+ x4 = 5

(3) 5 ≤ 4x2+ x3−4x4 ≤ 8
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= ∅ iff ∃y ∈ Qm, z ∈ Q+ with
(yT z)

„
A
c

«
∈ Zn

[yTb + zl , yTb + zu] ∩ Z = ∅

The certificate y =
`

2
5

1
5

´
, z =

1

5
The certificate
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5
(1)
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5
=
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5
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2

5
x2+

6

5
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2

5
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6

5
1

5
(2) 1 =
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5
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1

5
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5
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5
x4 = 1

1

5
(3) 1 ≤ 4

5
x2+
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5
x3−

4

5
x4 ≤

8

5

X 16

5
≤ 2x1+ x2+ x3− x4 ≤

19

5
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Geometry of the Farkas Lemma with one range inequality

Ax = b
l ≤ cx ≤ u

E∗ + span{w 1, . . . , wd},
with edge E∗ = conv{v∗1 , v∗2 }.

Existence of a split that contains
Ax = b
l ≤ cx ≤ u

in its interior
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Extension of an Integral Farkas Lemma to Systems with Inequalities

Idea

Ax = b
Cx ≤ d
x ∈ Zn

(1)

The bigger rank(C), the more complicate the certificate of infeasibility.
(1) is infeasible if and only if {Ax = b, Cx ≤ d} is contained in the interior of a
lattice-point-free polyhedron of split-dimension equal to rank(C).

Integral Farkas Lemma for Systems with Equalities and Inequalities

[Andersen, L. , Weismantel 2007]
A certificate of infeasibility of (1) is an integral infeasible linear system (derived from the
rows of (1)) with as many variables as rank(C).
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Example with rank(C ) = 2

(1) x1+2x2+3x3 = 0

(2) −3x1+4x2 ≤ 0

(3) −x1−2x2 ≤ −3

(4) 2x1− x2 ≤ 5

A certificate

1

3
(1) +

1

12
(2) : x2 + x3 ≤ − 1

12
x1

1

3
(1)− 1

6
(3) : x2 + x3 ≥ −1

2
x1 +

1

2
1

3
(1)− 1

3
(4) : x2 + x3 ≥

1

3
x1 −

5

3
.

It is a system with 2 variables and 3 inequalities

y ≤ − 1

12
x1 y ≥ −1

2
x1 +

1

2
y ≥ 1

3
x1 −

5

3
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Sketch of the proof on the rank 2 example

X = {x ∈ Rn|Ax = b, Cx ≤ d} with rank(C) = 2.
X ∩ Zn = ∅ iff there exists a lattice-point-free polyhedron L of split-dimension 2 that
contains X in its interior.
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X ∩ Zn = ∅ iff there exists a lattice-point-free polyhedron L of split-dimension 2 that
contains X in its interior.

X ⊆ L := L∗ + span{w 1, . . . , wn−2},
with L∗ polytope of dimension 2.
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X = {x ∈ Rn|Ax = b, Cx ≤ d} with rank(C) = 2.
X ∩ Zn = ∅ iff there exists a lattice-point-free polyhedron L of split-dimension 2 that
contains X in its interior.

X ⊆ L := L∗ + span{w 1, . . . , wn−2},
with L∗ polytope of dimension 2.

We can find 2 new vectors v 1, v 2 ortho-
gonal to w 1, w 2, . . . , wn−2.

L = conv{p1, p2, p3}+span{

0@ 0
−1
1

1A}.

v 1 =

0@ 1
0
0

1A and v 2 =

0@ 0
1
1

1A
An inequality description of L is πkx ≤ πk

0 .
πk are linear combinations of v 1, v 2

We can rewrite the system using 2 variables corresponding to v 1 and v 2 respectively.
Final System
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Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let A ∈ Zm×n, C ∈ Zp×n with rank(C) = L.

Ax = b

Cx ≤ d

x ∈ Zn

is empty if and only if

∃y 1, . . . , y t ∈ Qm × Qp
+

∃L linearly independent v i ∈ Zn such that

(y k)T

»
A
C

–
=

lX
i=1

λk
i v

i ∈ Zn with λk
i ∈ Z

the system in variables z (representing (v i )T x)

PL
j=1 λk

j zj ≤ yT
k

»
b
d

–
has no integral solution.
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Some remarks about the lemma

Consistent for rank(C) = 0 or 1.
rank(C) = 0 : system with 0 variables yTb 6∈ Z
rank(C) = 1 : system with 1 variable l ≤ z ≤ u

For rank(C) = 2, the certificate is made of 3 or 4 inequalities
Follows from [Andersen, L., Weismantel, Wolsey, IPCO2007]

For rank(C) ≥ 3, the number of inequalities in the certificate can be arbitrarily large

Proposition
The feasibility problem {Ax = b, Cx ≤ d} where rank(C) is fixed is in co-NP.

The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983])
and that any infeasible IP in n variables is also infeasible on 2n constraints ([Doignon
1973]).

What about my favourite problem {Ax = b, Cx ≤ d , x ∈ Zn
+}?

. . . Unfortunately, nothing new !
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Using the lattice-point-free polyhedra to generate cuts

The algebra

Let P ⊆ Rn+m be a polyhedron and L ⊆ Rn be a lattice-point-free polyhedron. We define
a set of cuts, valid for {(x , y) ∈ Rn+m|x ∈ P ∩ Zn} as

cutsP(L) = conv{(x , y) ∈ Rn+m|(x , y) ∈ P and x 6∈ int(L)}.

The geometry
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The high-dimensional split closure

Definition

The d-dimensional split closure of P is the set of points in the intersection of all
high-dimensional split cuts obtained from P with a split-dimension less or equal to d .

Open question

Is the d-dimensional split closure of a polyhedron a new polyhedron ?

Cook, Kannan, Schrijver example [1990]

Can be solved in one iteration by a 2-dimensional split cut
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Family of polyhedra of dimension n + 1 with an infinite n-dimensional split
rank

Constructed in the same way :
- a n-dimensional lattice-point-free polyhedron with integer points on the interior of each
facet
- lifted by an ε in a (n + 1)th variable

P = conv{(ne1, 0), (ne2, 0), . . . , (nen, 0), (
1

2
1, ε)}
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Level 0(3,0,0)(0,0,0)

(0,3,0)

(0,0,3)

Level 3

Level 2

Level 1
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Conclusions

Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes

How to use them in practice ? Closed form formulae ?

What is the split rank of the cuts generated (sometimes infinite but not always) ?

Allows us to obtain a cutting plane algorithm that runs in finite time ?

What about the fact that the high-dimensional split closure is a polyhedron ?
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