Certificate of infeasibility and cutting planes from lattice-point-free polyhedra

Quentin Louveaux
Université catholique de Louvain - CORE - Belgium

August, 12007

Joint work with K. Andersen (Copenhagen), R. Weismantel (Magdeburg)

Outline

- Split Cuts
- Lattice-Point-Free Polyhedra
- Integral Farkas Lemma for Systems with Inequalities
- Cutting Planes from Lattice-Point-Free Polyhedra
- Conclusion

Outline

- Split Cuts
- Lattice-Point-Free Polyhedra
- Integral Farkas Lemma for Systems with Inequalities
- Cutting Planes from Lattice-Point-Free Polyhedra
- Conclusion

Outline

- Split Cuts
- Lattice-Point-Free Polyhedra
- Integral Farkas Lemma for Systems with Inequalities
- Cutting Planes from Lattice-Point-Free Polyhedra
- Conclusion

Outline

- Split Cuts
- Lattice-Point-Free Polyhedra
- Integral Farkas Lemma for Systems with Inequalities
- Cutting Planes from Lattice-Point-Free Polyhedra
- Conclusion

Outline

- Split Cuts
- Lattice-Point-Free Polyhedra
- Integral Farkas Lemma for Systems with Inequalities
- Cutting Planes from Lattice-Point-Free Polyhedra
- Conclusion

Split cuts

The algebra

Based on a disjunction

$$
\pi^{T} x \leq \pi_{0} \quad \text { or } \quad \pi^{T} x \geq \pi_{0}+1
$$

is valid for $x \in \mathbb{Z}^{n}$ when π, π_{0} are integer.

The geometry

Split cuts

The algebra

Based on a disjunction

$$
\pi^{\top} x \leq \pi_{0} \quad \text { or } \quad \pi^{\top} x \geq \pi_{0}+1
$$

is valid for $x \in \mathbb{Z}^{n}$ when π, π_{0} are integer.

The geometry

Split cuts

The algebra

Based on a disjunction

$$
\pi^{T} x \leq \pi_{0} \quad \text { or } \quad \pi^{T} x \geq \pi_{0}+1
$$

is valid for $x \in \mathbb{Z}^{n}$ when π, π_{0} are integer.

The geometry

Split cuts

The algebra

Based on a disjunction

$$
\pi^{\top} x \leq \pi_{0} \quad \text { or } \quad \pi^{\top} x \geq \pi_{0}+1
$$

is valid for $x \in \mathbb{Z}^{n}$ when π, π_{0} are integer.

The geometry

Split cuts

The algebra

Based on a disjunction

$$
\pi^{T} x \leq \pi_{0} \quad \text { or } \quad \pi^{T} x \geq \pi_{0}+1
$$

is valid for $x \in \mathbb{Z}^{n}$ when π, π_{0} are integer.

The geometry

Split cuts

The algebra

Based on a disjunction

$$
\pi^{\top} x \leq \pi_{0} \quad \text { or } \quad \pi^{\top} x \geq \pi_{0}+1
$$

is valid for $x \in \mathbb{Z}^{n}$ when π, π_{0} are integer.

The geometry

More about split cuts

The split closure

Consider a polyhedron $P \subseteq \mathbb{R}^{n}$, the intersection of all split cuts of P is called the (first) split closure of P, denoted by $\mathrm{SC}(P)$.

Some previous results

More about split cuts

The split closure

Consider a polyhedron $P \subseteq \mathbb{R}^{n}$, the intersection of all split cuts of P is called the (first) split closure of P, denoted by $\operatorname{SC}(P)$.

Some previous results

- Cook, Kannan, Schrijver [1990] The split closure is a polyhedron
- Lift-and-project, Chvátal-Gomory cuts are split cuts
- Nemhauser, Wolsey [1988] MIR inequalities are split cuts and MIR closure and split closure are equivalent
- Cook, Kannan, Schrijver [1990] The number of rounds of split cuts to apply to obtain the integer hull of a polyhedron might be infinite
- Balas, Saxena [2006] Optimizing over the split closure
- Dash, Günlük, Lodi [2007] On the MIR closure
- Vielma [2006] New constructive proof that the MIR closure is a polyhedron
- Andersen, Cornuéjols, Li [2005] Every split cut of P is also a split cut of a basis of P (maybe infeasible).
Split cuts are intersection cuts [Balas 1971]

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

A basic split set in \mathbb{R}^{2} is a lattice-point-free polyhedron

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

$\operatorname{conv}\{v, w\}+\operatorname{span}\{r\}$

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

A basic split set in \mathbb{R}^{3} is a lattice-point-free polyhedron

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

$$
\operatorname{conv}\{v, w\}+\operatorname{span}\{r, s\}
$$

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

A triangle in \mathbb{R}^{2} can be lattice-point-free

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

A triangle in \mathbb{R}^{2} can be lattice-point-free
It can be lifted to a lattice-point-free polyhedron in \mathbb{R}^{3}

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

$\operatorname{conv}\{v, w, x\}+\operatorname{span}\{r\}$

Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

$$
\operatorname{conv}\{v, w, x\}+\operatorname{span}\{r\}
$$

Definition of the split dimension

A lattice-point-free polyhedron $P \subseteq \mathbb{R}^{n}$ can be written as

$$
P=\operatorname{conv}\left\{v^{1}, \ldots, v^{p}\right\}+\operatorname{cone}\left\{w^{1}, \ldots, w^{q}\right\}+\operatorname{span}\left\{r^{1}, \ldots, r^{n-d}\right\}
$$

The split-dimension of P is d.

Classical Farkas Lemma

The continuous Farkas Lemma [Farkas, 1902]

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$,

$$
\begin{array}{ll}
A x \leq b & \\
x \geq 0 & y^{\top} A \geq 0 \\
x \in \mathbb{R}^{n} & \text { is empty if and only if } \\
& y^{\top} b<0 \\
\text { for some } y \in \mathbb{R}^{m} .
\end{array}
$$

Example

(1) $10 x_{1}+14 x_{2} \leq 35$
(2) $-x_{1}+x_{2} \leq 0$
(3) $\quad-x_{2} \leq-2$

A certificate of infeasibility

Classical Farkas Lemma

The continuous Farkas Lemma [Farkas, 1902]

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$,

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

$$
y^{\top} A \geq 0
$$

$$
x \geq 0 \quad \text { is empty if and only if }
$$

$$
y^{\top} b<0
$$

$$
\text { for some } y \in \mathbb{R}^{m} \text {. }
$$

Example

(1) $10 x_{1}+14 x_{2} \leq 35$
(2) $-x_{1}+x_{2} \leq 0$
(3) $\quad-x_{2} \leq-2$

A certificate of infeasibility

Classical Farkas Lemma

The continuous Farkas Lemma [Farkas, 1902]

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$,

$$
\begin{array}{lll}
A x \leq b & & y^{T} A \geq 0 \\
x \geq 0 & \text { is empty if and only if } & y^{T} b<0 \\
x \in \mathbb{R}^{n} & & \text { for some } y \in \mathbb{R}^{m} .
\end{array}
$$

Example

(1) $10 x_{1}+14 x_{2} \leq 35$
(2) $-x_{1}+x_{2} \leq 0$
(3) $\quad-x_{2} \leq-2$

A certificate of infeasibility

$$
\begin{aligned}
& y=\left(\begin{array}{lll}
1 & 8 & 21
\end{array}\right)^{T} \\
& \text { (1) } 10 x_{1}+14 x_{2} \leq 35 \\
& \text { 8(2) }-8 x_{1}+8 x_{2} \leq 0 \\
& \text { 21(3) }-21 x_{2} \leq-42
\end{aligned}
$$

$$
2 x_{1}+\quad x_{2} \leq-7
$$

Classical Integral Farkas Lemma

The Integral Farkas Lemma [Kronecker 1884]

Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$,

$$
x \in \mathbb{Z}^{n} \quad \text { is empty it and only if } \exists y \in \mathbb{Q} \text { with } y^{\top} b \notin \mathbb{Z}
$$

Classical Integral Farkas Lemma

The Integral Farkas Lemma [Kronecker 1884]

Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$,

$$
\begin{aligned}
& A x=b \\
& x \in \mathbb{Z}^{n}
\end{aligned} \quad \text { is empty if and only if } \exists y \in \mathbb{Q}^{m} \text { with } \begin{aligned}
& y^{\top} A \in \mathbb{Z}^{n} \\
& y^{\top} b \notin \mathbb{Z}
\end{aligned}
$$

Example

(1) $3 x_{1}+x_{2}-5 x_{3}+x_{4}-7 x_{5}=1$
(2) $7 x_{1}-3 x_{2}-3 x_{3}-2 x_{4}+5 x_{5}=5$
(3) $2 x_{1}+x_{2}+x_{3}+6 x_{4}=1$

Classical Integral Farkas Lemma

The Integral Farkas Lemma [Kronecker 1884]

Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$,

$$
\begin{aligned}
& A x=b \\
& x \in \mathbb{Z}^{n}
\end{aligned} \text { is empty if and only if } \exists y \in \mathbb{Q}^{m} \text { with } \begin{aligned}
& y^{\top} A \in \mathbb{Z}^{n} \\
& y^{\top} b \notin \mathbb{Z}
\end{aligned}
$$

Example

(1) $3 x_{1}+x_{2}-5 x_{3}+x_{4}-7 x_{5}=1$
(2) $7 x_{1}-3 x_{2}-3 x_{3}-2 x_{4}+5 x_{5}=5$
(3) $2 x_{1}+x_{2}+x_{3}+6 x_{4}=1$

The certificate

$$
\begin{gathered}
y=\left(\begin{array}{lll}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right) \\
\frac{1}{3}(1) \\
\frac{1}{3}(2)
\end{gathered} x_{1}+\frac{1}{3} x_{2}-\frac{5}{3} x_{3}+\frac{1}{3} x_{4}-\frac{7}{3} x_{5}=\frac{1}{3} x_{1}-2 x_{2}-2 x_{3}-\frac{4}{3} x_{4}+\frac{10}{3} x_{5}=\frac{10}{3} .
$$

Classical Integral Farkas Lemma

The Integral Farkas Lemma [Kronecker 1884]

Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$,

$$
\begin{aligned}
& A x=b \\
& x \in \mathbb{Z}^{n}
\end{aligned} \quad \text { is empty if and only if } \exists y \in \mathbb{Q}^{m} \text { with } \begin{aligned}
& y^{\top} A \in \mathbb{Z}^{n} \\
& y^{\top} b \notin \mathbb{Z}
\end{aligned}
$$

The certificate

$$
y=\left(\begin{array}{lll}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right)
$$

$$
\begin{array}{lrl}
\frac{1}{3}(1) & x_{1}+\frac{1}{3} x_{2}-\frac{5}{3} x_{3}+\frac{1}{3} x_{4}-\frac{7}{3} x_{5} & =\frac{1}{3} \\
\frac{2}{3}(2) & \frac{14}{3} x_{1}-2 x_{2}-2 x_{3}-\frac{4}{3} x_{4}+\frac{10}{3} x_{5} & =\frac{10}{3} \\
\frac{2}{3}(3) & \frac{4}{3} x_{1}+\frac{2}{3} x_{2}+\frac{2}{3} x_{3}+4 x_{4} & =\frac{2}{3}
\end{array}
$$

$$
\sum 7 x_{1}-x_{2}-3 x_{3}+x_{4}+x_{5}=\frac{13}{3}
$$

Geometric interpretation of the Integral Farkas Lemma

$$
\begin{array}{ll}
A x=b & \left\{v^{*}\right\}+\operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\} \\
y^{\top} A & \text { subset of } \operatorname{span}\left\{w^{1} \ldots \ldots w^{d}\right\}+ \\
y^{\top} b \notin \mathbb{Z} & \text { there exists } \pi \in \operatorname{span}\left\{w^{1} \ldots w^{d}\right\}+\cap \mathbb{Z}^{n} \\
& \text { with } \pi^{\top} v^{*} \notin \mathbb{Z} .
\end{array}
$$

Equivalent to say that $L=\left\{\left\lfloor\pi^{T} v^{*}\right\rfloor \leq \pi^{T} x \leq\left\lceil\pi^{T} v^{*}\right\rceil\right\}$ contains $A x=b$ in its interior. Existence of a split proving that $\Delta x=b \cap \mathbb{\pi}^{n}=\emptyset$

Geometric interpretation of the Integral Farkas Lemma

$$
\begin{array}{ll}
A x=b & \left\{v^{*}\right\}+\operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\} \\
y^{\top} A & \text { subset of } \operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}^{\perp} \\
y^{\top} b \notin \mathbb{Z} & \text { there exists } \pi \in \operatorname{span}\left\{w^{1} \ldots w^{d}\right\} \perp \cap \mathbb{Z}^{n} \\
& \text { with } \pi^{\top} v^{*} \notin \mathbb{Z} .
\end{array}
$$

Equivalent to say that $L=\left\{\left\lfloor\pi^{\top} v^{*}\right\rfloor \leq \pi^{\top} x \leq\left\lceil\pi^{\top} v^{*}\right\rceil\right\}$ contains $A x=b$ in its interior. Existence of a split proving that $\Lambda_{x}=b \cap \mathbb{Z}^{n}=\emptyset$

Geometric interpretation of the Integral Farkas Lemma

$$
\begin{array}{ll}
A x=b & \left\{v^{*}\right\}+\operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\} \\
y^{T} A & \text { subset of } \operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}^{\perp} \\
y^{T} b \notin \mathbb{Z} & \begin{array}{l}
\text { there exists } \pi \in \operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}^{\perp} \cap \mathbb{Z}^{n} \\
\\
\text { with } \pi^{T} v^{*} \notin \mathbb{Z} .
\end{array}
\end{array}
$$

Geometric interpretation of the Integral Farkas Lemma

$$
\begin{array}{ll}
A x=b & \left\{v^{*}\right\}+\operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\} \\
y^{T} A & \text { subset of } \operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}^{\perp} \\
y^{T} b \notin \mathbb{Z} & \begin{array}{l}
\text { there exists } \pi \in \operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}^{\perp} \cap \mathbb{Z}^{n} \\
\\
\text { with } \pi^{T} v^{*} \notin \mathbb{Z} .
\end{array}
\end{array}
$$

Equivalent to say that $L=\left\{\left\lfloor\pi^{T} v^{*}\right\rfloor \leq \pi^{T} x \leq\left\lceil\pi^{T} v^{*}\right\rceil\right\}$ contains $A x=b$ in its interior.
Existence of a split proving that $A x=b \cap \mathbb{Z}^{n}=\emptyset$

Geometric interpretation of the Integral Farkas Lemma

$$
\begin{array}{ll}
A x=b & \left\{v^{*}\right\}+\operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\} \\
y^{T} A & \text { subset of } \operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}^{\perp} \\
y^{T} b \notin \mathbb{Z} & \begin{array}{l}
\text { there exists } \pi \in \operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}^{\perp} \cap \mathbb{Z}^{n} \\
\\
\text { with } \pi^{T} v^{*} \notin \mathbb{Z} .
\end{array}
\end{array}
$$

Equivalent to say that $L=\left\{\left\lfloor\pi^{T} v^{*}\right\rfloor \leq \pi^{T} x \leq\left\lceil\pi^{T} v^{*}\right\rceil\right\}$ contains $A x=b$ in its interior.
Existence of a split proving that $A x=b \cap \mathbb{Z}^{n}=\emptyset$

Natural extension for one range inequality

Integral Farkas Lemma with one range inequality [Andersen, L. , Weismantel 2007]

$$
\begin{array}{ll}
A x=b \\
I \leq c x \leq u \quad=\emptyset \quad \text { iff } \quad \exists y \in \mathbb{Q}^{m}, z \in \mathbb{Q}_{+} \text {with } & \left(y^{\top} z\right)\binom{A}{c} \in \mathbb{Z}^{n} \\
x \in \mathbb{Z}^{n} & {\left[y^{\top} b+z I, y^{\top} b+z u\right] \cap \mathbb{Z}=\emptyset}
\end{array}
$$

Natural extension for one range inequality

Integral Farkas Lemma with one range inequality [Andersen, L. , Weismantel 2007]

$$
\begin{array}{ll}
A x=b \\
I \leq c x \leq u \quad=\emptyset \quad \text { iff } \quad \exists y \in \mathbb{Q}^{m}, z \in \mathbb{Q}+\text { with } & \left(y^{\top} z\right)\binom{A}{c} \in \mathbb{Z}^{n} \\
x \in \mathbb{Z}^{n} & {\left[y^{\top} b+z l, y^{\top} b+z u\right] \cap \mathbb{Z}=\emptyset}
\end{array}
$$

Example

(1) $2 x_{1}+x_{2}+3 x_{3}-x_{4}=3$
(2) $6 x_{1}-x_{2}-2 x_{3}+x_{4}=5$
(3) $5 \leq 4 x_{2}+x_{3}-4 x_{4} \leq 8$

Natural extension for one range inequality

Integral Farkas Lemma with one range inequality [Andersen, L. , Weismantel 2007]

$$
\begin{array}{ll}
\begin{array}{l}
A x=b \\
I \leq c x \leq u \quad=\emptyset \quad \text { iff } \quad \exists y \in \mathbb{Q}^{m}, z \in \mathbb{Q}_{+} \text {with } \\
x \in \mathbb{Z}^{n}
\end{array} & \left(y^{\top} z\right)\binom{A}{c} \in \mathbb{Z}^{n} \\
& {\left[y^{\top} b+z I, y^{\top} b+z u\right] \cap \mathbb{Z}=\emptyset}
\end{array}
$$

Example

(1) $2 x_{1}+x_{2}+3 x_{3}-x_{4}=3$
(2) $6 x_{1}-x_{2}-2 x_{3}+x_{4}=5$
(3) $5 \leq 4 x_{2}+x_{3}-4 x_{4} \leq 8$

The certificate

$$
\begin{aligned}
& y=\left(\begin{array}{ll}
\frac{2}{5} & \frac{1}{5}
\end{array}\right), z=\frac{1}{5} \\
& \frac{2}{5}(1) \frac{6}{5} \\
& \frac{1}{5}(2)=\frac{4}{5} x_{1}+\frac{2}{5} x_{2}+\frac{6}{5} x_{3}-\frac{2}{5} x_{4}=\frac{6}{5} \\
& \frac{1}{5}(3) \\
& \frac{1}{5} x_{1}-\frac{1}{5} x_{2}-\frac{2}{5} x_{3}+\frac{1}{5} x_{4}=1 \\
& \frac{4}{5} x_{2}+\frac{1}{5} x_{3}-\frac{4}{5} x_{4} \leq \frac{8}{5}
\end{aligned}
$$

Natural extension for one range inequality

Integral Farkas Lemma with one range inequality [Andersen, L. , Weismantel 2007]

$$
\begin{array}{ll}
A x=b \\
I \leq c x \leq u \quad=\emptyset \quad \text { iff } \quad \exists y \in \mathbb{Q}^{m}, z \in \mathbb{Q}_{+} \text {with } & \left(y^{\top} z\right)\binom{A}{c} \in \mathbb{Z}^{n} \\
x \in \mathbb{Z}^{n} & {\left[y^{\top} b+z l, y^{\top} b+z u\right] \cap \mathbb{Z}=\emptyset}
\end{array}
$$

The certificate

$$
y=\left(\begin{array}{ll}
\frac{2}{5} & \frac{1}{5}
\end{array}\right), z=\frac{1}{5}
$$

$$
\begin{array}{ll}
\frac{2}{5}(1) & \frac{6}{5}=\frac{4}{5} x_{1}+\frac{2}{5} x_{2}+\frac{6}{5} x_{3}-\frac{2}{5} x_{4}=\frac{6}{5} \\
\frac{1}{5}(2) & 1=\frac{6}{5} x_{1}-\frac{1}{5} x_{2}-\frac{2}{5} x_{3}+\frac{1}{5} x_{4}=1 \\
\frac{1}{5}(3) & 1 \leq \quad \frac{4}{5} x_{2}+\frac{1}{5} x_{3}-\frac{4}{5} x_{4} \leq \frac{8}{5}
\end{array}
$$

$$
\sum \quad \frac{16}{5} \leq 2 x_{1}+x_{2}+x_{3}-x_{4} \leq \frac{19}{5}
$$

Geometry of the Farkas Lemma with one range inequality

$$
\begin{aligned}
& A x=b \\
& I \leq c x \leq u
\end{aligned}
$$

Geometry of the Farkas Lemma with one range inequality

$$
\begin{aligned}
& A x=b \\
& I \leq c x \leq u
\end{aligned}
$$

$$
\begin{aligned}
& E^{*}+\operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}, \\
& \text { with edge } E^{*}=\operatorname{conv}\left\{v_{1}^{*}, v_{2}^{*}\right\} .
\end{aligned}
$$

Existence of a split that contains

$$
\begin{aligned}
& A x=b \quad \text { in its interior } \\
& I \leq c x \leq u
\end{aligned}
$$

Geometry of the Farkas Lemma with one range inequality

$A x=b$
$1 \leq c x \leq u$

$$
\begin{aligned}
& E^{*}+\operatorname{span}\left\{w^{1}, \ldots, w^{d}\right\}, \\
& \text { with edge } E^{*}=\operatorname{conv}\left\{v_{1}^{*}, v_{2}^{*}\right\} .
\end{aligned}
$$

Existence of a split that contains $\begin{aligned} & A x=b \\ & I \leq c x \leq u\end{aligned}$ in its interior

Extension of an Integral Farkas Lemma to Systems with Inequalities

Idea

$$
\begin{align*}
& A x=b \\
& C x \leq d \tag{1}\\
& x \in \mathbb{Z}^{n}
\end{align*}
$$

The bigger $\operatorname{rank}(C)$, the more complicate the certificate of infeasibility. (1) is infeasible if and only if $\{A x=b, C x \leq d\}$ is contained in the interior of a lattice-point-free polyhedron of split-dimension equal to $\operatorname{rank}(C)$.

Integral Farkas Lemma for Systems with Equalities and Inequalities

A certificate of infeasibility of (1) is an integral infeasible linear system (derived from the rows of (1)) with as many variables as rank(C).

Extension of an Integral Farkas Lemma to Systems with Inequalities

Idea

$$
\begin{align*}
& A x=b \\
& C x \leq d \tag{1}\\
& x \in \mathbb{Z}^{n}
\end{align*}
$$

The bigger $\operatorname{rank}(C)$, the more complicate the certificate of infeasibility. (1) is infeasible if and only if $\{A x=b, C x \leq d\}$ is contained in the interior of a lattice-point-free polyhedron of split-dimension equal to $\operatorname{rank}(C)$.

Integral Farkas Lemma for Systems with Equalities and Inequalities

[Andersen, L. , Weismantel 2007]
A certificate of infeasibility of (1) is an integral infeasible linear system (derived from the rows of (1)) with as many variables as rank(C).

Example with $\operatorname{rank}(C)=2$

$$
\begin{aligned}
& \text { (1) } x_{1}+2 x_{2}+3 x_{3}=0 \\
& \text { (2) }-3 x_{1}+4 x_{2} \quad \leq 0 \\
& \text { (3) }-x_{1}-2 x_{2} \leq-3 \\
& \text { (4) } 2 x_{1}-x_{2} \leq 5
\end{aligned}
$$

It is a system with 2 variables and 3 inequalities

Example with $\operatorname{rank}(C)=2$

$$
\begin{aligned}
& \text { (1) } x_{1}+2 x_{2}+3 x_{3}=0 \\
& \text { (2) }-3 x_{1}+4 x_{2} \quad \leq 0 \\
& \text { (3) }-x_{1}-2 x_{2} \leq-3 \\
& \text { (4) } 2 x_{1}-x_{2} \leq 5
\end{aligned}
$$

A certificate

It is a system with 2 variables and 3 inequalities

Example with $\operatorname{rank}(C)=2$

(1)	$x_{1}+2 x_{2}+3 x_{3}$		$=0$
(2)	$-3 x_{1}+4 x_{2}$	≤ 0	
(3)	$-x_{1}-2 x_{2}$	≤-3	
(4)	$2 x_{1}-x_{2}$	≤ 5	

A certificate

$$
\begin{array}{ll}
\frac{1}{3}(1)+\frac{1}{12}(2): & x_{2}+x_{3} \leq-\frac{1}{12} x_{1} \\
\frac{1}{3}(1)-\frac{1}{6}(3): & x_{2}+x_{3} \geq-\frac{1}{2} x_{1}+\frac{1}{2} \\
\frac{1}{3}(1)-\frac{1}{3}(4): & x_{2}+x_{3} \geq \frac{1}{3} x_{1}-\frac{5}{3} .
\end{array}
$$

It is a system with 2 variables and 3 inequalities

Example with $\operatorname{rank}(C)=2$

(1) $x_{1}+2 x_{2}+3 x_{3}=0$
(2) $-3 x_{1}+4 x_{2} \leq 0$
(3) $-x_{1}-2 x_{2} \leq-3$
(4) $2 x_{1}-x_{2} \leq 5$

A certificate

$$
\begin{array}{ll}
\frac{1}{3}(1)+\frac{1}{12}(2): & x_{2}+x_{3} \leq-\frac{1}{12} x_{1} \\
\frac{1}{3}(1)-\frac{1}{6}(3): & x_{2}+x_{3} \geq-\frac{1}{2} x_{1}+\frac{1}{2} \\
\frac{1}{3}(1)-\frac{1}{3}(4): & x_{2}+x_{3} \geq \frac{1}{3} x_{1}-\frac{5}{3} .
\end{array}
$$

It is a system with 2 variables and 3 inequalities

$$
y \leq-\frac{1}{12} x_{1} \quad y \geq-\frac{1}{2} x_{1}+\frac{1}{2} \quad y \geq \frac{1}{3} x_{1}-\frac{5}{3}
$$

Example with $\operatorname{rank}(C)=2$

A certificate

$$
\begin{array}{ll}
\frac{1}{3}(1)+\frac{1}{12}(2): & x_{2}+x_{3} \leq-\frac{1}{12} x_{1} \\
\frac{1}{3}(1)-\frac{1}{6}(3): & x_{2}+x_{3} \geq-\frac{1}{2} x_{1}+\frac{1}{2} \\
\frac{1}{3}(1)-\frac{1}{3}(4): & x_{2}+x_{3} \geq \frac{1}{3} x_{1}-\frac{5}{3} .
\end{array}
$$

It is a system with 2 variables and 3 inequalities

$$
y \leq-\frac{1}{12} x_{1} \quad y \geq-\frac{1}{2} x_{1}+\frac{1}{2} \quad y \geq \frac{1}{3} x_{1}-\frac{5}{3}
$$

Sketch of the proof on the

$X=\left\{x \in \mathbb{R}^{n} \mid A x=b, C x \leq d\right\}$ with $\operatorname{rank}(C)=2$.
$X \cap \mathbb{Z}^{n}=\emptyset$ iff there exists a lattice-point-free polyhedron L of split-dimension 2 that contains X in its interior.

Sketch of the proof on the

$X=\left\{x \in \mathbb{R}^{n} \mid A x=b, C x \leq d\right\}$ with $\operatorname{rank}(C)=2$.
$X \cap \mathbb{Z}^{n}=\emptyset$ iff there exists a lattice-point-free polyhedron L of split-dimension 2 that contains X in its interior.
$X \subseteq L:=L^{*}+\operatorname{span}\left\{w^{1}, \ldots, w^{n-2}\right\}, \quad L=\operatorname{conv}\left\{p^{1}, p^{2}, p^{3}\right\}+\operatorname{span}\left\{\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\}$.
with L^{*} polytope of dimension 2.

Sketch of the proof on the

$X=\left\{x \in \mathbb{R}^{n} \mid A x=b, C x \leq d\right\}$ with $\operatorname{rank}(C)=2$.
$X \cap \mathbb{Z}^{n}=\emptyset$ iff there exists a lattice-point-free polyhedron L of split-dimension 2 that contains X in its interior.
$X \subseteq L:=L^{*}+\operatorname{span}\left\{w^{1}, \ldots, w^{n-2}\right\}$, with L^{*} polytope of dimension 2 .
$L=\operatorname{conv}\left\{p^{1}, p^{2}, p^{3}\right\}+\operatorname{span}\left\{\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\}$.
We can find 2 new vectors v^{1}, v^{2} orthogonal to $w^{1}, w^{2}, \ldots, w^{n-2}$.

$$
v^{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { and } v^{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Sketch of the proof on the

$X=\left\{x \in \mathbb{R}^{n} \mid A x=b, C x \leq d\right\}$ with $\operatorname{rank}(C)=2$.
$X \cap \mathbb{Z}^{n}=\emptyset$ iff there exists a lattice-point-free polyhedron L of split-dimension 2 that contains X in its interior.
$X \subseteq L:=L^{*}+\operatorname{span}\left\{w^{1}, \ldots, w^{n-2}\right\}, \quad L=\operatorname{conv}\left\{p^{1}, p^{2}, p^{3}\right\}+\operatorname{span}\left\{\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\}$.
with L^{*} polytope of dimension 2 .
We can find 2 new vectors v^{1}, v^{2} orthogonal to $w^{1}, w^{2}, \ldots, w^{n-2}$.

$$
v^{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { and } v^{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

An inequality description of L is $\pi^{k} x \leq \pi_{0}^{k}$. π^{k} are linear combinations of v^{1}, v^{2}

Sketch of the proof on the

$X=\left\{x \in \mathbb{R}^{n} \mid A x=b, C x \leq d\right\}$ with $\operatorname{rank}(C)=2$.
$X \cap \mathbb{Z}^{n}=\emptyset$ iff there exists a lattice-point-free polyhedron L of split-dimension 2 that contains X in its interior.
$X \subseteq L:=L^{*}+\operatorname{span}\left\{w^{1}, \ldots, w^{n-2}\right\}, \quad L=\operatorname{conv}\left\{p^{1}, p^{2}, p^{3}\right\}+\operatorname{span}\left\{\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\}$.
with L^{*} polytope of dimension 2 .
We can find 2 new vectors v^{1}, v^{2} orthogonal to $w^{1}, w^{2}, \ldots, w^{n-2}$.

$$
v^{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { and } v^{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

An inequality description of L is $\pi^{k} x \leq \pi_{0}^{k}$.
π^{k} are linear combinations of v^{1}, v^{2}
We can rewrite the system using 2 variables corresponding to v^{1} and v^{2} respectively.

Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let $A \in \mathbb{Z}^{m \times n}, C \in \mathbb{Z}^{p \times n}$ with $\operatorname{rank}(C)=L$.

$$
\begin{aligned}
& A x=b \\
& C x \leq d \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

is empty if and only if

- $\exists L$ linearly independent $v^{i} \in \mathbb{Z}^{n}$ such that

- the system in variables z (representing $\left.\left(v^{i}\right)^{\top} x\right)$

[^0]
Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let $A \in \mathbb{Z}^{m \times n}, C \in \mathbb{Z}^{p \times n}$ with $\operatorname{rank}(C)=L$.

$$
\begin{aligned}
& A x=b \\
& C x \leq d \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

is empty if and only if

- $\exists y^{1}, \ldots, y^{t} \in \mathbb{Q}^{m} \times \mathbb{Q}_{+}^{p}$
- $\exists L$ linearly independent $v^{i} \in \mathbb{Z}^{n}$ such that

- the system in variables z (representing $\left.\left(v^{i}\right)^{\top} x\right)$

[^1]
Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let $A \in \mathbb{Z}^{m \times n}, C \in \mathbb{Z}^{p \times n}$ with $\operatorname{rank}(C)=L$.

$$
\begin{aligned}
& A x=b \\
& C x \leq d \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

is empty if and only if

- $\exists y^{1}, \ldots, y^{t} \in \mathbb{Q}^{m} \times \mathbb{Q}_{+}^{p}$
- $\exists L$ linearly independent $v^{i} \in \mathbb{Z}^{n}$ such that

$$
\left(y^{k}\right)^{T}\left[\begin{array}{l}
A \\
C
\end{array}\right]=\sum_{i=1}^{1} \lambda_{i}^{k} v^{i} \in \mathbb{Z}^{n} \text { with } \lambda_{i}^{k} \in \mathbb{Z}
$$

- the system in variables z (representing $\left(v^{i}\right)^{T} x$)

Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let $A \in \mathbb{Z}^{m \times n}, C \in \mathbb{Z}^{p \times n}$ with $\operatorname{rank}(C)=L$.

$$
\begin{aligned}
& A x=b \\
& C x \leq d \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

is empty if and only if

- $\exists y^{1}, \ldots, y^{t} \in \mathbb{Q}^{m} \times \mathbb{Q}_{+}^{p}$
- $\exists L$ linearly independent $v^{i} \in \mathbb{Z}^{n}$ such that

$$
\left(y^{k}\right)^{T}\left[\begin{array}{l}
A \\
C
\end{array}\right]=\sum_{i=1}^{1} \lambda_{i}^{k} v^{i} \in \mathbb{Z}^{n} \text { with } \lambda_{i}^{k} \in \mathbb{Z}
$$

- the system in variables z (representing $\left(v^{i}\right)^{T} x$)

$$
\sum_{j=1}^{L} \lambda_{j}^{k} z_{j} \leq y_{k}^{T}\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

has no integral solution.

Some remarks about the lemma

- Consistent for $\operatorname{rank}(C)=0$ or 1 .
$\operatorname{rank}(C)=0$: system with 0 variables $y^{\top} b \notin \mathbb{Z}$
$\operatorname{rank}(C)=1:$ system with 1 variable $I \leq z \leq u$
- For $\operatorname{rank}(C)=2$, the certificate is made of 3 or 4 inequalities Follows from [Andersen, L., Weismantel, Wolsey, IPCO2007]
- For $\operatorname{rank}(C) \geq 3$, the number of inequalities in the certificate can be arbitrarily large
- Proposition

The feasibility problem $\{A x=b, C x \leq d\}$ where $\operatorname{rank}(C)$ is fixed is in co-NP.

The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983]) and that any infeasible IP in n variables is also infeasible on 2^{n} constraints ([Doignon 1973])

- What about my favourite problem $\left\{A x=b, C x \leq d, x \in \mathbb{Z}_{+}^{n}\right\}$?

Some remarks about the lemma

- Consistent for $\operatorname{rank}(C)=0$ or 1 .
$\operatorname{rank}(C)=0$: system with 0 variables $y^{\top} b \notin \mathbb{Z}$
$\operatorname{rank}(C)=1:$ system with 1 variable $I \leq z \leq u$
- For $\operatorname{rank}(C)=2$, the certificate is made of 3 or 4 inequalities Follows from [Andersen, L., Weismantel, Wolsey, IPCO2007]
- For $\operatorname{rank}(C) \geq 3$, the number of inequalities in the certificate can be arbitrarily large
- Proposition

The feasibility problem $\{A x=b, C x \leq d\}$ where $\operatorname{rank}(C)$ is fixed is in co-NP.
The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983]) and that any infeasible IP in n variables is also infeasible on 2^{n} constraints ([Doignon 19731)

- What about my favourite problem $\left\{A x=b, C x \leq d, x \in \mathbb{Z}_{+}^{n}\right\}$?

Some remarks about the lemma

- Consistent for $\operatorname{rank}(C)=0$ or 1 .
$\operatorname{rank}(C)=0$: system with 0 variables $y^{\top} b \notin \mathbb{Z}$
$\operatorname{rank}(C)=1:$ system with 1 variable $I \leq z \leq u$
- For $\operatorname{rank}(C)=2$, the certificate is made of 3 or 4 inequalities Follows from [Andersen, L., Weismantel, Wolsey, IPCO2007]
- For $\operatorname{rank}(C) \geq 3$, the number of inequalities in the certificate can be arbitrarily large
- Proposition

The feasibility problem $\{A x=b, C x \leq d\}$ where $\operatorname{rank}(C)$ is fixed is in co-NP.
The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983]) and that any infeasible IP in n variables is also infeasible on 2^{n} constraints ([Doignon 1973]).

- What about my favourite problem $\left\{A x=b, C x \leq d, x \in \mathbb{Z}_{+}^{n}\right\}$?

Some remarks about the lemma

- Consistent for $\operatorname{rank}(C)=0$ or 1 .
$\operatorname{rank}(C)=0$: system with 0 variables $y^{\top} b \notin \mathbb{Z}$
$\operatorname{rank}(C)=1:$ system with 1 variable $I \leq z \leq u$
- For $\operatorname{rank}(C)=2$, the certificate is made of 3 or 4 inequalities Follows from [Andersen, L., Weismantel, Wolsey, IPCO2007]
- For $\operatorname{rank}(C) \geq 3$, the number of inequalities in the certificate can be arbitrarily large
- Proposition

The feasibility problem $\{A x=b, C x \leq d\}$ where $\operatorname{rank}(C)$ is fixed is in co-NP.
The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983]) and that any infeasible IP in n variables is also infeasible on 2^{n} constraints ([Doignon 1973]).

- What about my favourite problem $\left\{A x=b, C x \leq d, x \in \mathbb{Z}_{+}^{n}\right\}$?

Some remarks about the lemma

- Consistent for $\operatorname{rank}(C)=0$ or 1 .
$\operatorname{rank}(C)=0$: system with 0 variables $y^{\top} b \notin \mathbb{Z}$
$\operatorname{rank}(C)=1:$ system with 1 variable $I \leq z \leq u$
- For $\operatorname{rank}(C)=2$, the certificate is made of 3 or 4 inequalities Follows from [Andersen, L., Weismantel, Wolsey, IPCO2007]
- For $\operatorname{rank}(C) \geq 3$, the number of inequalities in the certificate can be arbitrarily large
- Proposition

The feasibility problem $\{A x=b, C x \leq d\}$ where $\operatorname{rank}(C)$ is fixed is in co-NP.
The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983]) and that any infeasible IP in n variables is also infeasible on 2^{n} constraints ([Doignon 1973]).

- What about my favourite problem $\left\{A x=b, C x \leq d, x \in \mathbb{Z}_{+}^{n}\right\}$?
... Unfortunately, nothing new!

Using the lattice-point-free polyhedra to generate cuts

The algebra

Let $P \subseteq \mathbb{R}^{n+m}$ be a polyhedron and $L \subseteq \mathbb{R}^{n}$ be a lattice-point-free polyhedron. We define a set of cuts, valid for $\left\{(x, y) \in \mathbb{R}^{n+m} \mid x \in P \cap \mathbb{Z}^{n}\right\}$ as

$$
\operatorname{cuts}_{P}(L)=\operatorname{conv}\left\{(x, y) \in \mathbb{R}^{n+m} \mid(x, y) \in P \text { and } x \notin \operatorname{int}(L)\right\} .
$$

Using the lattice-point-free polyhedra to generate cuts

The algebra

$$
\operatorname{cuts}_{P}(L)=\operatorname{conv}\left\{(x, y) \in \mathbb{R}^{n+m} \mid(x, y) \in P \text { and } x \notin \operatorname{int}(L)\right\} .
$$

The geometry

Using the lattice-point-free polyhedra to generate cuts

The algebra

$$
\operatorname{cuts}_{P}(L)=\operatorname{conv}\left\{(x, y) \in \mathbb{R}^{n+m} \mid(x, y) \in P \text { and } x \notin \operatorname{int}(L)\right\} .
$$

The geometry

Using the lattice-point-free polyhedra to generate cuts

The algebra

$$
\operatorname{cuts}_{P}(L)=\operatorname{conv}\left\{(x, y) \in \mathbb{R}^{n+m} \mid(x, y) \in P \text { and } x \notin \operatorname{int}(L)\right\} .
$$

The geometry

The high-dimensional split closure

Definition

The d-dimensional split closure of P is the set of points in the intersection of all high-dimensional split cuts obtained from P with a split-dimension less or equal to d.

Open question

Is the d-dimensional split closure of a polyhedron a new polyhedron?

Cook, Kannan, Schrijver example

Can be solved in one iteration by a 2-cimensional split cut

The high-dimensional split closure

Definition

The d-dimensional split closure of P is the set of points in the intersection of all high-dimensional split cuts obtained from P with a split-dimension less or equal to d.

Open question

Is the d-dimensional split closure of a polyhedron a new polyhedron?
\square
Can be solved in one iteration by a 2-dimensional split cut

The high-dimensional split closure

Definition

The d-dimensional split closure of P is the set of points in the intersection of all high-dimensional split cuts obtained from P with a split-dimension less or equal to d.

Open question

Is the d-dimensional split closure of a polyhedron a new polyhedron?
Cook, Kannan, Schrijver example [1990]
Can be solved in one iteration by a 2-dimensional split cut

The high-dimensional split closure

Definition

The d-dimensional split closure of P is the set of points in the intersection of all high-dimensional split cuts obtained from P with a split-dimension less or equal to d.

Open question

Is the d-dimensional split closure of a polyhedron a new polyhedron?

Cook, Kannan, Schrijver example [1990]

Can be solved in one iteration by a 2-dimensional split cut

The high-dimensional split closure

Definition

The d-dimensional split closure of P is the set of points in the intersection of all high-dimensional split cuts obtained from P with a split-dimension less or equal to d.

Open question

Is the d-dimensional split closure of a polyhedron a new polyhedron?

Cook, Kannan, Schrijver example [1990]

Can be solved in one iteration by a 2-dimensional split cut

Family of polyhedra of dimension $n+1$ with an infinite n-dimensional split rank

Constructed in the same way :
a n-dimensional lattice-point-free polyhedron with integer points on the interior of each facet
lifted by an ϵ in a $(n+1)$ th variable
$P=\operatorname{conv}\left\{\left(n e_{1}, 0\right),\left(n e_{2}, 0\right), \ldots,\left(n e_{n}, 0\right),\left(\frac{1}{2} \underline{1}, \epsilon\right)\right\}$

Family of polyhedra of dimension $n+1$ with an infinite n-dimensional split rank

Constructed in the same way :

- a n-dimensional lattice-point-free polyhedron with integer points on the interior of each facet
lifted by an ϵ in a $(n+1)$ th variable
$P=\operatorname{conv}\left\{\left(n e_{1}, 0\right),\left(n e_{2}, 0\right), \ldots,\left(n e_{n}, 0\right),\left(\frac{1}{2} \frac{1}{2}, \epsilon\right)\right\}$

Family of polyhedra of dimension $n+1$ with an infinite n-dimensional split rank

Constructed in the same way :

- a n-dimensional lattice-point-free polyhedron with integer points on the interior of each facet
- lifted by an ϵ in a $(n+1)$ th variable

Family of polyhedra of dimension $n+1$ with an infinite n-dimensional split

 rankConstructed in the same way:

- a n-dimensional lattice-point-free polyhedron with integer points on the interior of each facet
- lifted by an ϵ in a $(n+1)$ th variable

$$
P=\operatorname{conv}\left\{\left(n e_{1}, 0\right),\left(n e_{2}, 0\right), \ldots,\left(n e_{n}, 0\right),\left(\frac{1}{2} \underline{1}, \epsilon\right)\right\}
$$

Conclusions

- Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes
- How to use them in practice? Closed form formulae?
- What is the split rank of the cuts generated (sometimes infinite but not always)?
- Allows us to obtain a cutting plane algorithm that runs in finite time?
- What about the fact that the high-dimensional split closure is a polyhedron?

Conclusions

- Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes
- How to use them in practice? Closed form formulae?
- What is the split rank of the cuts generated (sometimes infinite but not always)?
- Allows us to obtain a cutting plane algorithm that runs in finite time?
- What about the fact that the high-dimensional split closure is a polyhedron?

Conclusions

- Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes
- How to use them in practice? Closed form formulae?
- What is the split rank of the cuts generated (sometimes infinite but not always)?
- Allows us to obtain a cutting plane algorithm that runs in finite time ?
- What about the fact that the high-dimensional split closure is a polyhedron?

Conclusions

- Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes
- How to use them in practice? Closed form formulae?
- What is the split rank of the cuts generated (sometimes infinite but not always) ?
- Allows us to obtain a cutting plane algorithm that runs in finite time?
- What about the fact that the high-dimensional split closure is a polyhedron?

Conclusions

- Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes
- How to use them in practice? Closed form formulae?
- What is the split rank of the cuts generated (sometimes infinite but not always) ?
- Allows us to obtain a cutting plane algorithm that runs in finite time?
- What about the fact that the high-dimensional split closure is a polyhedron?

[^0]: has no integral solution.

[^1]: has no integral solution.

