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Outline/Summary

� Radiation Therapy is a common treatment 
procedure for many types of cancer.

� Stages of Radiation Therapy Planning include:
� Selection of beam angles.
� Determination of beam/beamlet intensities through Fluence 

Map Optimization (FMO).
� Segmentation.

� Dose-Volume Restrictions specify a tissue volume 
percentage and a dose limit to be applied to that 
percentage of the tissue volume.
� Introduce a difficult combinatorial structure to FMO 

problems.
� FMO problems under dose-volume restriction are NP-Hard.



  

Outline/Summary

� Mixed Integer Programming (MIP) Formulations of 
Fluence Map Optimization,
� Allow precise modeling of dose-volume restrictions.
� Are difficult to solve � partially due to weak linear 

programming relaxation (LPR).

� We show
� How valid inequalities based on disjunctive programming 

can be derived to strengthen LPR.
� How certain enumeration schemes can be utilized to 

effectively reduce optimality gaps.

� Computational Results



  

Radiation Therapy Planning

� External-Beam Radiation Therapy
� Commonly used procedure in treating many types of cancer
� Radiation is delivered by a linear accelerator, which can rotate around the 

patient to deliver radiation from different angles 

� Main Goal of Radiation Therapy Planning
� To make optimal delivery decisions such as,

� which angles to deliver the radiation from
� what intensity to assign to each beam angle
� how to modulate the radiation intensity 

through out the beam surface (in Intensity 

Modulated Radiation Therapy)
� So that infected tissues are sufficiently 

irradiated, while healthy organs at risk 

are protected from excess radiation.



  

Fluence Map Optimization

� Prior to Fluence Map Optimization:
� CT/MRI/PET Scans
� Identifying tissue boundaries on images. 
� Discretizing tissues into volume elements (voxels) 
� Discretizing beam surface into beam elements (beamlets) (IMRT only)
� Construction of dose matrix A=[aij], where aij is the dose delivered to voxel i from 

beam/beamlet j per unit intensity.
� Determination of Beam Angles

� Fluence Map Optimization:
� Determines optimal intensity assignment to each beam/beamlet of each selected angle in 

order to meet prescribed dose restrictions on different types of tissues.
� Linear Dose Accumulation Assumption

� d=Ax 

where A is the dose matrix, x is the vector of intensity variables for different beam angles 
and components, and d is the vector of dose amounts delivered to each voxel.



  

Dose-Volume Restrictions

� A dose volume restriction on a particular tissue 

specifies a tissue volume percentage and a dose limit 

to be applied to that percentage of the tissue volume:
� Ex: �At least 66% of the left lung volume should receive dose 

amounts no more than 20Gy�.

� Prescriptions and protocols are typically specified in 

terms of dose-volume restrictions.



  

FMO Models & Methods

�Unconstrained Nonlinear Models
� Gradient Based Methods 
� Meta-heuristics

�Convex Approximation Models
� Linear Programs
� Quadratic Programs

�Goal Programming Models
�MIP Models

� Allow precise modeling of dose-volume 
restrictions



  

A Mixed-Integer-Programming 

(MIP) Model for FMO



  

A Simplified Special Case - P

� Maximizes average primary target dose while considering dose restrictions of a 
single dose-volume tissue:
� Absolute Dose Restriction: All m voxels should receive dose amounts no more thanb
� Dose-Volume Restriction:

� Cold Voxels: At least L of the m voxels should receive dose amounts no more than b
� Hot Voxels: At most K = m - L of the m voxels can receive dose amounts more than b

� Some Disadvantages of P:
� NP-Hard: We can reduce partition (subset sum) problem to P.

� Weak Linear Programming Relaxation (LPR): LPR of P-MIP tends to get weaker 

as the difference between  b and b increase.



  

OPCS: A Relaxation of P

� Optimization Problem with Constraint Selection (OPCS) is a 
relaxation of P where absolute dose restrictions are dropped.

� OPCS is also NP-Hard.



  

Feasible Set of OPCS
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Valid Inequalities for OPCS � 

Disjunctive Programming
� Computationally effective valid inequalities for OPCS can be 

derived based on Disjunctive Programming principles.
� Disjunctive Programming: 

� Studies optimization problems whose feasible sets can be 
expressed as disjunction (union) of polyhedra

� Provides a general principle to generate valid inequalities for 
disjunctive sets based on the following theorem:



  

� Feasible set of OPCS can be expressed as union of 
polyhedra as follows:

Expressing OPCS as Union of 

Polyhedra



  

Valid Inequalities for OPCS � Main 

Disjunctive Inequality
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Valid Inequalities for OPCS � A 

Family of Disjunctive Inequalities

� Each inequality of the family is the main disjunctive inequality of a 
relaxation OPCS(A(S,.),b,K), where only the rows of A with indices 
in S are considered.

� The family has exponentially many inequalities (there is an 
inequality for each S ⊆ I with |S| > K).



  

Valid Inequalities for OPCS � 

Disjunctive Support Inequalities
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Computational Results: 

Test Cases



  

Computational Results: 

Test Cases

The difference 

between b and

 b values 

influences the  

initial optimality 

gap.



  

Computational Results:

Baseline Results

* All built-in CPLEX cuts are turned off due to extreme inefficiency of these cuts. All other 

CPLEX parameters are set to their default values. 



  

Computational Results: Disjunctive 

Inequalities



  

Single Cold Point Enumeration 

(SCPE) Procedure

� Initialization: Obtain a feasible solution for FMOP-MIP using a 
heuristic and set lb to the best feasible solution value found. Relax 
integrality constraints to obtain the LPR of FMOP-MIP.

� Single Cold Point Iterations: For each voxel i in the dose-volume 
tissue,
� Force voxel i to be cold, i.e. to receive a dose amount no more than b.
� Solve new problem and store its optimal solution in      and its optimal 

solution value in   .
� If    is feasible for FMOP-MIP and    > lb, then set              and lb =    .
� Remove the restriction on voxel i.

� Sorting: Sort    values in ascending order to obtain               .

� Finalization: Return        as a valid upper bound. If lb >  return     ��

                   as the best feasible solution found. Declare voxels 
where     < lb as hot voxels.
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The following steps are applied for each dose-volume 

tissue separately,



  

SCPE Procedure



  

� Reduces upper bounds significantly (usually more 
than disjunctive cuts).

� Fixes the state of some dose-volume voxels.
� Computationally intensive.

SCPE Procedure � Computational 

Results



  

Implementing SCPE Procedure 

Within Branch & Bound

� Built-in branching schemes of 
CPLEX are not effective in 
reducing the upper bounds in 
lung cases.

� Many commercial MIP 
solvers, including CPLEX, 
allow implementation of user-
specified branching schemes.

� Considering the computational 
benefits of SCPE procedure, 
using this type of a branching 
scheme within a MIP branch-
and-cut framework could be 
useful.

.
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Combined Algorithm

� Integrates disjunctive cuts and SCPE procedure within the 
framework of rounding heuristic.

� Algorithm Outline
� Initialization: Set up LPR model.
� Strengthen LP Relaxation: Add main disjunctive cut and 

disjunctive support cuts for all dose-volume tissues.
� Rounding Heuristic: Apply the rounding heuristic to obtain an 

upper bound and a feasible solution.
� SCPE: Apply SCPE procedure to all dose-volume tissues. 

Update upper bound, lower bound values. Obtain the set of 
fixed dose-volume voxels.

� Update Cuts: Adjust disjunctive cuts to take the fixed dose-
volume voxels into account.

� Rounding Heuristic: Apply the rounding heuristic again.



  

Combined Algorithm � 

Computational Results

� Reduced upper bounds and optimality gaps.
� Better feasible solutions.
� Less computation time on average compared to applying SCPE 

procedure alone.



  

Conclusions

� Linear Programming Relaxations of MIP 
formulations of FMO problems can be arbitrarily 
weak.

� Commercial MIP solver (CPLEX 10.1)  is not 
effective in closing the initial large optimality gaps.

� Efficient valid inequalities based on disjunctive 
programming theory can be generated to:
� Strengthen LPR and significantly reduce initial optimality 

gaps.
� Help find better feasible solutions within the rounding 

heuristic framework.
� Improve run times.



  

Conclusions

� SCPE procedure can be implemented as a stand-
alone enumeration procedure or as a problem-
specific branching scheme. The procedure,
� Significantly reduces upper bound values.
� Determines the optimal value of some of the binary 

variables.
� In many cases, finds better feasible solutions.

� The combined algorithm utilizes disjunctive 
inequalities and SCPE procedure within the 
rounding heuristic framework. The algorithm 
produces lower optimality gaps and better feasible 
solution values than methods utilizing only 
disjunctive inequalities or only the SCPE procedure.


