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Outline/Summary

® Radiation Therapy is a common treatment
procedure for many types of cancer.

® Stages of Radiation Therapy Planning include:
Selection of beam angles.

Determination of beam/beamlet intensities through Fluence
Map Optimization (FMO).
Segmentation.

® Dose-Volume Restrictions specify a tissue volume
percentage and a dose limit to be applied to that
percentage of the tissue volume.

Introduce a difficult combinatorial structure to FMO
problems.

FMO problems under dose-volume restriction are NP-Hard.



Outline/Summary

® Mixed Integer Programming (MIP) Formulations of
Fluence Map Optimization,
Allow precise modeling of dose-volume restrictions.
Are difficult to solve — partially due to weak linear
programming relaxation (LPR).
® \We show

How valid inequalities based on disjunctive programming
can be derived to strengthen LPR.

How certain enumeration schemes can be utilized to
effectively reduce optimality gaps.

® Computational Results



Radiation Therapy Planning

® External-Beam Radiation Therapy
® Commonly used procedure in treating many types of cancer

® Radiation is delivered by a linear accelerator, which can rotate around the
patient to deliver radiation from different angles

® Main Goal of Radiation Therapy Planning
® To make optimal delivery decisions such as,
which angles to deliver the radiation from
what intensity to assign to each beam angle
how to modulate the radiation intensity
through out the beam surface (in Intensity
Modulated Radiation Therapy)
® So that infected tissues are sufficiently
irradiated, while healthy organs at risk
are protected from excess radiation.




Fluence Map Optimization

® Prior to Fluence Map Optimization:
CT/MRI/PET Scans
|dentifying tissue boundaries on images.
Discretizing tissues into volume elements (voxels)
Discretizing beam surface into beam elements (beamlets) (IMRT only)
Construction of dose matrix A=[a,], where a; is the dose delivered to voxel i from
beam/beamlet j per unit intensity.
Determination of Beam Angles

® Fluence Map Optimization:

Determines optimal intensity assignment to each beam/beamlet of each selected angle in
order to meet prescribed dose restrictions on different types of tissues.
Linear Dose Accumulation Assumption
d=Ax
where A is the dose matrix, x is the vector of intensity variables for different beam angles
and components, and d is the vector of dose amounts delivered to each voxel.



Dose-Volume Restrictions

A dose volume restriction on a particular tissue

specifies a tissue volume percentage and a dose limit

to be applied to that percentage of the tissue volume:
Ex: “At least 66% of the left lung volume should receive dose
amounts no more than 20Gy”.

Prescriptions and protocols are typically specified in
terms of dose-volume restrictions.



FMO Models & Methods

® Unconstrained Nonlinear Models
Gradient Based Methods
Meta-heuristics

® Convex Approximation Models
Linear Programs
Quadratic Programs

® Goal Programming Models

®* MIP Models

Allow precise modeling of dose-volume
restrictions




A Mixed-Integer-Programming

(MIP) Model for FMO

Tissue Indices

t: Index of the primary target tissue

S: Secondary target index set

H: Regular healthy tissue index set

D: Dose-volume healthy tissue index set

Problem Parameters

a;j : Dose delivered to voxel ¢ from
beam/beamlet j per unit intensity

a: Homogeneity parameter

[r.: Min dose limit on secondary target k

bi: Max dose limit on healthy tissue &k

br: Absolute max dose limit on
dose-volume healthy tissue &

b;.: Dose-volume limit on
dose-volume healthy tissue &

fr: Ratio of voxels subject to dose-volume
limit in dose-volume healthy tissue k

Decision Variables

z;: Intensity of beam/beamlet j
y;: State of dose-volume voxel ¢
f: Min. primary target dose
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A Simplified Special Case - P

® Maximizes average primary target dose while considering dose restrictions of a
single dose-volume tissue:
Absolute Dose Restriction: All m voxels should receive dose amounts no more than b
Dose-Volume Restriction:
Cold Voxels: At least L of the m voxels should receive dose amounts no more than b
Hot Voxels: At most K = m - L of the m voxels can receive dose amounts more than b

(P—MIP) ZpM TP = mMmax Zijj (1)
jedJ

s.t. Zaijazj SQ—{—(E—Q)yZ 1€ {1,,m}(2)
JjeJ

Z"Jz‘ <K (3)
iel

Yi € {07 1} el (5)

® Some Disadvantages of P:
NP-Hard: We can reduce partition (subset sum) problem to P.

Weak Linear Programming Relaxation (LPR): LPR of P-MIP tends to get weaker
as the difference between b and b increase.




OPCS: A Relaxation of P

® Optimization Problem with Constraint Selection (OPCS) is a
relaxation of P where absolute dose restrictions are dropped.

(OPCS(A, b, K)) max cx

s.t. At least L of the inequalities in the following
system need to be satisfied (up to K can be
violated): Az < b

x; >0 17=1,...,n

where A € R™*", T e R", and b :=[b,...,bT € R™.

® OPCS is also NP-Hard.



Feasible Set of OPCS
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Valid Inequalities for OPCS -
Disjunctive Programming

* Computationally effective valid inequalities for OPCS can be

derived based on Disjunctive Programming principles.
Disjunctive Programming:

Studies optimization problems whose feasible sets can be
expressed as disjunction (union) of polyhedra

Provides a general principle to generate valid inequalities for
disjunctive sets based on the following theorem:

Theorem. (Balas) Let P? = {z € R" : A%z < b%,x > 0} be some polyhedron
in the nonnegative quadrant of R™ and W = quQ P? be the union of such
polyhedra. Then for any row vector of nonnegative multipliers A\, q € @, of
appropriate dimension, the following inequality is valid for W :

Z(min AN AT)x; < max \1b1
Py q€eqQ) q€qd)

where Aq denotes the jth column of A9.



Expressing OPCS as Union of
Polyhedra

® Feasible set of OPCS can be expressed as union of
polyhedra as follows:

where

e C¥? = {8 C I:|S| = p} denotes the collection of all subsets of I with
cardinality p.

e A(S,.) denotes a |S| x n matrix composed of rows of A whose indices are
in S C I.

=L
e b =1b,...,b] € RE denotes a L-vector where all components equal b.



Valid Inequalities for OPCS - Main
Disjunctive Inequality

Proposition. (Main Disjunctive Inequality - Sherali and Sen, Preciado-Walters)
The inequality

> Az < b

jeJ

is valid for OPCS(A,b, K, where A; is the jth column vector of A and 7 (v) is
the average of the L lowest component values tn vector v.
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Valid Inequalities for OPCS - A
Family of Disjunctive Inequalities

Proposition. For any S C I with |S| > K, OPCS(A(S,.),b, K) is a relazation
of OPCS(A,b, K ).

Theorem. (Family of Valid Disjunctive Inequalities) For any given S C I with
S| > K, the inequality

S SR (4,(8, )y < b (1)

jed

is valid for OPCS(A,b, K ).

® Each inequality of the family is the main disjunctive inequality of a
relaxation OPCS(A(S,.),b,K), where only the rows of A with indices
In S are considered.

® The family has exponentially many inequalities (there is an
inequality for each S c I with |S| > K).



Valid Inequalities for OPCS -
Disjunctive Support Inequalities

Definition (Support Index Sets) For each j € J, we define the support index
set as S7 := {i € I : a;; is one of the largest K + 1 values in A;}

Theorem. Valid inequalities

Jjed

support the feasible set of OPCS(A,b, K).
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Computational Results:
Test Cases

Case Target | # of DV | DV Voxel | Total Voxel | Beam | Beamlet
Name Site Tissues Count Count Count | Count
Lungl Lung 2 1000 4797 9 529
Lung3 Lung 2 1600 4251 9 1253
Xp Prostate 2 1738 4138 9 607
Overview of Test Cases
: : . Prescription S. Point
Site Site Description Volume ‘ Dose Objective Count
100% Maximize
Tumor GTV 100% | 85% homogeneity 683
Secondary Target CTV 100% > 54 749
Spinal Cord Healthy Tissue 100% < 45 369
Skin Healthy Tissue 100% < 100 1501
Esophagus Healthy Tissue 100% < 96 95
Heart Healthy Tissue 100% <85 400
) DV Healthy 33% /<20
Right Lung Tissue 100% /<110 200
DV Healthy 66% L <20
Left Lung Tissue 100% < 11()/ o0

‘ Beam Angles: 40 50 60 70 140 150 170 320 340 (529 total beamlets)

Prescription, Sample Point Counts, and Beam Locations for Lungl Case



Computational Results:
Test Cases

. . e Prescription S. Point
Site Site Description Volume | Dose Objective Count
100% Maximize
154
Tumor GTV 100% | 85% homogeneity 049
Secondary Target CTV 100% > 20 402
Spinal Cord Healthy Tissue 100% < 45 150
Esophagus Healthy Tissue 100% < &4 150
Heart Healthy Tissue 100% <34 400
. DV Healthy 33% /<20 0N
Right Lung Tissue 100% <110 atl
DV Healthy 66% V<20 !
Left Lung Tissue 100% \< 110 [/ 500

‘ Beam Angles: 20 60 100 140 180 220 260 300 340 (1253 total beamlets) ‘

Prescription, Sample Point Counts, and Beam Locations for Lung3 Case

Site Site Description Volnme }‘)resl():?sztiOoijective Scfl(l)rililt
| o | e | of
External | Healthy Tissue 100% <120 /1200
Bladder | Y 0T 18000?% SS 120 i
Rectum | 21 00 17000@ 5 17200/,/" 859

‘ Beam Angles: 20 60 100 140 180 220 260 300 340 (607 total beamlets) |

Prescription, Sample Point Counts, and Beam Locations for xp Case

| The difference
| between b and

b values
influences the
initial optimality
gap.
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Computational Results: -
Baseline Results
Case Information Computational Results
Beamlet | DV / Total || Upper | Feas. CPU
Case Count | Voxel Count || Bound | S.V. Gap Secs.
Lungl 529 1000/4797 102.60 | 75.23 | 36.4% 58
Lung3 1253 1600/4251 115.83 | 48.52 | 138.8% | 299
Xp 607 1738/4138 118.97 | 117.73 | 1.1% 340
Baseline Computational Results: Rounding Heuristic
Case Information Computational Results
Beamlet | DV / Total || Upper | Feas. CPU | B& B
Case Count | Voxel Count || Bound | S.V. Gap Secs. | Nodes
Lungl 529 1000/4797 100.43 | 76.56 | 31.2% | 60000 | 129181
Lung3 1253 1600/4251 112.03 | 46.12 | 142.9% | 60000 788
Xp 607 1738/4138 118.95 | 11880 | 0.1% | 60000 | 50390

Baseline Computational Results: MIP Solver - CPLEX 10.1 *

* All built-in CPLEX cuts are turned off due to extreme inefficiency of these cuts. All other
CPLEX parameters are set to their default values.
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Computational Results: Disjunctive| $
No Cuts Main Disjunctive Cut
Upper | Feas. CPU Upper | Feas. CPU | # of
Case Bound S.V. Gap Secs. Case Bound S.V. Gap | Secs. | Cuts
Lungl || 102.60 | 75.23 | 36.4% | 58 Lungl | 89.53 | 76.85 | 16.5% | 60 2
Lung3 || 115.83 | 48.52 | 138.8% | 299 Lung3 | 62.83 | 50.59 | 24.2% | 163 2
xp || 118.97 | 117.73 | 1.1% | 340 xp || 11897 | 117.73 | 1.1% | 345 | 2
Computational Results for Rounding Heuristic Computational Results for
Main Disjunctive Inequality
Disjunctive Support Cuts Disjunctive Cuts
Upper | Feas. CPU | # of Upper | Feas. CPU | # of
Case Bound | S.V. Gap | Secs. | Cuts Case Bound | S.V. Gap | Secs. | Cuts
Lungl 92.48 76.62 | 20.7% 21 1058 Lungl 89.18 77.18 | 15.5% 24 1060
Lung3 68.94 49.40 | 39.6% | 249 | 2506 Lung3 62.83 50.59 | 24.2% 98 2508
Xp 118.97 | 117.73 | 1.1% 359 | 1214 Xp 118.97 | 117.73 | 1.1% 362 | 1216

Computational Results for
Disjunctive Support Inequalities

Computational Results for
Main Disjunctive 4+ Disjunctive Support Inequalities



Single Cold Point Enumeration
(SCPE) Procedure

The following steps are applied for each dose-volume
tissue separately,

Initialization: Obtain a feasible solution for FMOP-MIP using a
heuristic and set /b to the best feasible solution value found. Relax
Integrality constraints to obtain the LPR of FMOP-MIP.

Single Cold Point Iterations: For each voxel i in the dose-volume
tissue,
Force voxel I to be cold, i.e. to receive a dose amount no more than b.
Solve new problem and store its optimal solution in X' and its optimal
solution value in z,
IfX'is feasible for FMOP-MIP and Z;> Ib, then set X=X' and Ib = Z,.
Remove the restriction on voxel .
Sorting: Sort Z values in ascending order to obtain z,,K ,Zz,, . A
Finalization: Return zy, as a valid upper bound. If /b > —oo returnX
as the best feasible solution found. Declare voxels
where < /b as hot voxels.




SCPE Procedure

i’ | Subproblem S.V. | Best Feasible S.V. Remark
1 71.69 75.23 Fixed hot
2 72.25 75.23 Fixed hot
3 72.68 75.23 Fixed hot
62 75.11 75.23 Fixed hot
63 75.39 75.23

64 75.61 75.23

335 83.09 75.23

336 83.14 75.23 Valid bound value

337 83.20 75.23

499 97.47 75.23

500 97.47 75.23

SCPE Subproblem Details for Left Lung of Lungl Case
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SCPE Procedure — Computational | s
Results
# of DV | DV Voxel | Upper | Feas # of Voxels | CPU
Case Tissues Count Bound | S.V. Gap Fixed Secs.
Lungl 2 1000 83.14 | 75.23 | 10.5% 62 30417
Lung3 2 1600 66.14 | 47.49 | 39.2% 16 252548
Xp 2 1738 118.87 | 117.73 | 1.0% 188 71684

Computational Results for SCPE Algorithm

® Reduces upper bounds significantly (usually more
than disjunctive cuts).

® [ixes the state of some dose-volume voxels.
® Computationally intensive.



Implementing SCPE Procedure
Within Branch & Bound

Subproblems

solved in SCPE S

procedure

> Built-in branching schemes of

CPLEX are not effective In
reducing the upper bounds in
lung cases.

Many commercial MIP
solvers, including CPLEX,
allow implementation of user-
specified branching schemes.

Considering the computational
benefits of SCPE procedure,
using this type of a branching
scheme within a MIP branch-
and-cut framework could be
useful.



Combined Algorithm

® Integrates disjunctive cuts and SCPE procedure within the
framework of rounding heuristic.

®  Algorithm Outline
- Initialization: Set up LPR model.

Strengthen LP Relaxation: Add main disjunctive cut and
disjunctive support cuts for all dose-volume tissues.

Rounding Heuristic: Apply the rounding heuristic to obtain an
upper bound and a feasible solution.

SCPE: Apply SCPE procedure to all dose-volume tissues.
Update upper bound, lower bound values. Obtain the set of
fixed dose-volume voxels.

Update Cuts: Adjust disjunctive cuts to take the fixed dose-
volume voxels into account.

Rounding Heuristic: Apply the rounding heuristic again.
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Combined Algorithm - o2
o
# of DV | DV Voxel | Upper | Feas # of Voxels | CPU
Case Tissues Count Bound | S.V. Gap Fixed Secs.
Lungl 2 1000 83.14 | 75.23 | 10.5% 62 30417
Lung3 2 1600 66.14 | 47.49 | 39.2% 16 252548
Xp 2 1738 118.87 | 117.73 | 1.0% 188 71684
Computational Results for SCPE Algorithm
# of DV | DV Voxel | Upper | Feas # of Voxels | CPU
Case Tissues Count Bound | S.V. Gap Fixed Secs.
Lungl 2 1000 81.50 | 77.18 | 5.6% 76 12068
Lung3 2 1600 57.44 | 50.64 | 13.4% 23 75468
Xp 2 1738 118.87 | 118.17 | 0.6% 188 54653

Computational Results for Combined Algorithm

Reduced upper bounds and optimality gaps.

Better feasible solutions.

Less computation time on average compared to applying SCPE
procedure alone.



Conclusions

® Linear Programming Relaxations of MIP
formulations of FMO problems can be arbitrarily
weak.

® Commercial MIP solver (CPLEX 10.1) is not
effective in closing the initial large optimality gaps.

® Efficient valid inequalities based on disjunctive
programming theory can be generated to:
Strengthen LPR and significantly reduce initial optimality
gaps.
Help find better feasible solutions within the rounding
heuristic framework.

Improve run times.



Conclusions

SCPE procedure can be implemented as a stand-
alone enumeration procedure or as a problem-
specific branching scheme. The procedure,

Significantly reduces upper bound values.

Determines the optimal value of some of the binary
variables.

In many cases, finds better feasible solutions.

The combined algorithm utilizes disjunctive
Inequalities and SCPE procedure within the
rounding heuristic framework. The algorithm
produces lower optimality gaps and better feasible
solution values than methods utilizing only
disjunctive inequalities or only the SCPE procedure.



