Pricing residential broadband access for the emerging Internet

George Kesidis

Department of Electrical Engineering The Pennsylvania State University 227B Electrical Engineering W. University Park, PA 16802, USA

Abstract

Residential penetration of broadband Internet access, both DSL and cable, is growing very rapidly. Furthermore, technology may soon expand available access bandwidth from about a maximum of 10Mbps today to 100Mpbs in the near future. Demand for broadband access is fueled by the desire for "value-added" services (such as interactive gaming, emerging peer-to-peer applications, IP telephony, etc.) and by the affordable additional cost of subscription over dial-up access. We will discuss the commercial and cyber security concerns of such a dramatic increase in residential broadband access (RBA). A "first hop diffserv" architecture is proposed so that the infrastructure providers of RBA can recover costs from the value-added services they enable, and also address security concerns, by offering a premium service that is more reliable. Specifically, we focus on the packet memories feeding the links connecting the first-PoP layer-3 routers of the RBA provider to the Internet. A differential enqueue policy is devised and the dynamics of user access are studied when there is congestion (excess demand) in the memory.

Joint work in collaboration with C. Kirjner, McKinsey & Co., New York.