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Introduction

Wireless channels vary randomly across space and time

• Channel conditions vary widely across spatially diverse

users due to distance-related attenuation

• Channel quality for given user drastically fluctuates over

time because of fading effects
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Introduction (cont’d)

Wireless voice systems rely on power control for adjusting

transmit power to combat fading, and maintain constant

transmission rate

Wireless data networks typically operate at fixed transmit

power, and employ rate control for dynamically adapting

transmission rate over time in response to fading

Consequently, fluctuations in channel conditions translate

into variations in (feasible) transmission rates
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Introduction (cont’d)

Relative delay tolerance of data applications opens up pos-

sibility to exploit rate variations, and schedule transmissions

when channel conditions of users are relatively favorable

Performance of channel-aware scheduling policies has most-

ly been analyzed at packet level for static user population

Static population is reasonable modeling convention in view

of separation of time scales

It is not satisfactory however to assume that user popula-

tion is independent of properties of scheduling algorithm
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Introduction (cont’d)

Need to move away from static scenario in order to cap-

ture interdependence between scheduling algorithm and us-

er population, and to evaluate performance at flow level

Consider dynamic setting where elastic flows come and go

over time as governed by arrival and completion of random

service demands
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Model description

For now, consider static scenario with M data users served

by single base station (BS)

BS transmits in time slots of some fixed duration τ

(typical value is τ = 1.67 ms, or 600 slots per second)

In each time slot, BS transmits to exactly one of the users

Feasible rates for various users vary over time according

to stationary ergodic process (R1(t), . . . , RM(t)), with Ri(t)

representing feasible rate for user i in time slot t
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Homogeneous rate characteristics

First suppose that R1(t), . . . , RM(t) are stationary i.i.d. (in-

dependence across users, not time) with mean C

Consider scheduling strategy S∗ which in each time slot

selects user with largest instantaneous rate

Thus, in time slot t strategy S∗ selects user i∗ identified as

i∗ = arg max
j=1,...,M

Rj(t)
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Homogeneous rate characteristics (cont’d)

By symmetry, each user receives fraction 1/M of time slots

When selected, expected rate of user is

E{Ri|Ri = max
j=1,...,M

Rj} = E{ max
j=1,...,M

Rj}

Thus, each user receives average service rate CG(M)/M,

with G(M) := E{ max
j=1,...,M

Rj}/C

G(M) may be interpreted as gain factor

(over channel-oblivious round-robin discipline)

For example, if R1, . . . , RM are independent and exponen-

tially distributed (“Rayleigh fading”), then

G(M) = 1 + 1/2 + . . .+ 1/M ≈ log(M)
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Heterogeneous rate characteristics

Now suppose that Ri(t)
d
= CiYi(t), where Ci = E{Ri} is time-

average rate of user i, and Y1(t), . . . , YM(t) are stationary

i.i.d. (independence across users, not time) with unit mean

Consider scheduling strategy S∗ which in each time slot

selects user with largest instantaneous rate relative to its

time-average rate

Thus, in time slot t strategy S∗ selects user i∗ identified as

i∗ = arg max
j=1,...,M

Rj(t)

Cj
= arg max

j=1,...,M
Yj(t)
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Heterogeneous rate characteristics (cont’d)

By symmetry, each user receives fraction 1/M of time slots

When selected, expected rate of user i is

E{Ri|
Ri
Ci

= max
j=1,...,M

Rj

Cj
} =

E{CiYi|Yi = max
j=1,...,M

Yj} = CiE{ max
j=1,...,M

Yj} = CiG(M),

with G(M) gain factor introduced before

Thus, user i receives average service rate CiG(M)/M

As before, each user is served at fraction G(M)/M of its

time-average rate
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Weight-based scheduling

In time slot t, ‘weight-based’ strategy selects user i∗ iden-

tified as

i∗ = arg max
j=1,...,M

wjRj(t)

for given weights w1, . . . , wM

Strategy S∗ is special case with weights wi = 1/Ci

By construction, weight-based strategies maximize weight-

ed throughput combinations and thus produce Pareto-optimal

throughput vectors (in fact, sample-path wise)
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Proportional Fair scheduling (Qualcomm/Tse)

Proportional Fair (PF) strategy assigns adaptive weights

wi(t) = 1
Si(t)

, i.e., in time slot t it selects user i∗ identified

as

i∗ = arg max
j=1,...,M

Rj(t)

Sj(t)

Si(t) is geometrically smoothed throughput of user i at

time t, updated in each time slot according to

Si(t+ 1) = (1− δ)Si(t) + δXi(t)Ri(t),

with δ smoothing parameter and Xi(t) 0–1 variable indicat-

ing whether user is selected in time slot t or not

T = 1/δ is time constant (typical value is T = 1000)

Thus, PF strategy selects user with largest instantaneous

rate relative to its long-term average throughput
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Proportional fair scheduling (cont’d)

Now observe that both instantaneous rates Ri and geomet-

rically smoothed throughputs Si scale linearly with time-

average rates Ci

Consequently, allocation of time slots does not depend on

time-average rates C1, . . . , CM, but only on relative rate fluc-

tuations Y1, . . . , YM

Because of symmetry, we thus have Si
d
= CiUi, where U1, . . . , UM

are identically distributed (but not independent)

In particular, each user receives fraction 1/M of time slots
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Proportional Fair scheduling (cont’d)

When selected, expected rate of user i is

E{Ri|
Ri
Si

= max
j=1,...,M

Rj

Sj
}

When time constant T = 1/δ is ‘large’, geometrically s-

moothed throughputs S1, . . . , SM will be ‘nearly constant’

and not show ‘any significant variation’

Informally, (S1, . . . , SM) → U0(C1, . . . , CM) for some constan-

t U0 as δ ↓ 0
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Proportional Fair scheduling (cont’d)

Thus, when δ is small, expected rate of user i when select-

ed, approximately equals

E{Ri|
Ri
CiU0

= max
j=1,...,M

Rj

CjU0
} =

E{CiYi|Yi = max
j=1,...,M

Yj} = CiE{ max
j=1,...,M

Yj} = CiG(M),

with G(M) gain factor introduced before

PF strategy roughly behaves like strategy S∗ as δ ↓ 0
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Utility-based scheduling

Utility-based strategy assigns adaptive weights wi = U ′i(Si(t)),

i.e., in time slot t it selects user i∗ identified as

i∗ = arg max
j=1,...,M

U ′j(Sj(t))Rj(t),

with Ui(·) strictly concave utility function of user i

Si(t) is geometrically smoothed throughput of user i at

time t, updated in each time slot according to

Si(t+ 1) = (1− δ)Si(t) + δXi(t)Ri(t)

PF strategy is special case with utility function Ui(·) = log(·)
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Utility-based scheduling (cont’d)

‘Theorem’

(Agrawal & Subramanian, Kushner & Whiting, Stolyar)

Under ‘mild’ assumptions, (S1, . . . , SM)→ (s∗1, . . . , s
∗
M) as δ ↓ 0,

where (s∗1, . . . , s
∗
M)

• maximizes aggregate utility, i.e.,

M∑
i=1

Ui(s
∗
i ) ≥

M∑
i=1

Ui(si)

for every achievable throughput vector (s1, . . . , sM)

• satisfies fixed-point equations

s∗i = E{RiI{U ′i(s∗i )Ri= max
j=1,...,M

U ′j(s
∗
j)Rj}

}

for all i = 1, . . . ,M
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Utility-based scheduling (cont’d)

In case of PF strategy, fixed-point equations reduce to

s∗i = E{RiI{Ri
s∗
i

= max
j=1,...,M

Rj
s∗
j
}
}

In case Ri(t)
d
= CiYi(t), above equations further simplify to

s∗i = E{CiYiI{CiYi
s∗
i

= max
j=1,...,M

CjYj
s∗
j
}
},

or equivalently,

1

σi
= E{YiI{σiYi= max

j=1,...,M
σjYj}},

with σi := Ci/s
∗
i

By symmetry, σi ≡ σ for all i = 1, . . . ,M, and thus σ =

M/G(M), yielding s∗i = CiG(M)/M as before
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Dynamic user configuration

User dynamics governed by finite-size service demands that

arrive randomly over time

Assume that duration of time slots is relatively short com-

pared to size and arrival frequency of service demands

Scheduling strategy operates on extremely fast time scale

compared to user dynamics

Natural to analyze flow-level performance in continuous

time rather than discrete time, and assume that users are

served simultaneously rather than in time-slotted fashion
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Dynamic user configuration (cont’d)

Continuous-time model naturally inherits service character-

istics from discrete-time model

Specifically, instantaneous service rate vector in continuous-

time context coincides with long-term throughput vector in

discrete-time setting for corresponding user population

In particular, under strategy S∗, when there are n active

users, each of them is served at fraction G(n)/n of its time-

average rate

Gives rise to Processor-Sharing model with state-dependent

service rate function G(n) when there are n active users
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Traffic model

Class-k users submit file transfer requests as Poisson pro-

cess of rate λk

At most M users are admitted into system simultaneously

(possibly M =∞)

Let (Ck, Fk) be pair of random variables with as distribution

joint distribution of time-average transmission rate and file

size of arbitrary class-k user

Let Bk := Fk/Ck be normalized service requirement of class-

k user, with mean βk := E{Fk/Ck}
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Traffic model (cont’d)

Offered traffic associated with class-k users is ρk := λkβk

Total amount of offered traffic is ρ :=
K∑
k=1

ρk

Define G∗ := lim
M→∞

G(M) = sup
M=1,2,...

G(M), with

G(M) = E{ max
j=1,...,M

Yj}

gain factor introduced before
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Let (N1, . . . , NK) be random vector representing number of

users of various classes in system under strategy S∗ at ar-

bitrary epoch in statistical equilibrium

Proposition 1

Strategy S∗ achieves stability for ρ < G∗ or M <∞,

in which case (Cohen, Kelly)

P{(N1, . . . , NK) = (n1, . . . nK)} = H−1n!ρn

φ(n)

K∏
k=1

1

nk!

(
ρk
ρ

)nk
,

with n = n1 + . . .+ nK ≤M, φ(n) :=
n∏
i=1

G(i),

and normalization constant

H :=
M∑
n=0

ρn

φ(n)
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In particular,

P{N = n} = H−1 ρn

φ(n)
,

E{N} = H−1
M∑
n=1

nρn

φ(n)
,

and

E{Nk} =
ρk
ρ
E{N}

Blocking probability is given by

L = P{N = M}
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Mean transfer delay experienced by class-k user is

E{Sk} =
βk

ρ(1− L)
E{N}

Reflects insensitivity of Processor-Sharing discipline:

mean delay of class-k user only depends on service require-

ment distribution of class k through its mean βk

In fact, it may be shown that conditional expected delay

of any user with actual service requirement b is

E{S|B = b} =
b

ρ(1− L)
E{N}

Thus, expected transfer delay incurred by user is propor-

tional to its normalized service requirement, with factor of

proportionality E{N}/(ρ(1− L))

Latter property embodies certain fairness principle:

users with larger service requests experience longer delays
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Proposition 2

No strategy achieves stability for ρ > G∗

Proof arguments

Strategy S∗ reduces (normalized) amount of work at max-

imum possible rate G(M) when there are M users

Amount of work cannot be reduced at higher rate than G∗

Above two propositions combined imply that strategy S∗

achieves stability whenever feasible

Rate at which amount of work is reduced, approaches max-

imum value as number of users tends to infinity

Unless weights are set inversely proportional to time-average

rates, relative variations are not maximally exploited
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Example

Consider two K = 2 classes

Assume that rate variations have bounded support, and

consider weight-based strategy such that

P{w1C1Y1 > w2C2Y2} = 1

Thus service of class 1 takes precedence over that of class 2

There are scheduling gains within both classes, but not

between classes
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Example (cont’d)

According to Proposition 1, class 1 is stable as long as

ρ1 < G∗, in which case

π0 = P{N1 = 0} =

 ∞∑
n=0

ρn

φ(n)

−1

,

with φ(n) =
n∏
i=1

G(i)

Class 2 is stable if in addition ρ2 < π0G
∗

Now observe that π0 < 1− ρ1/G
∗ − ε for some ε > 0

Hence class 2 is stable only if ρ2 < (1 − ε)G∗ − ρ1, i.e., ρ <

(1− ε)G∗, which is strictly stronger than ρ < G∗
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Extensions

In general, weight-based scheduling strategies give rise to

Discriminatory Processor Sharing like models

Minimization of mean transfer delays

Mixtures of elastic users and streaming users

Asymmetric rate variations

Impact of slow fading
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Further stability results (work in progress)

Now suppose that Rki(t)
d
= CkiYki(t), where Cki = E{Rki} is

time-average rate of i-th class-k user, and Yk1(t), . . . , YkMk
(t)

are stationary i.i.d. for given k with unit mean

Gain factor associated with class k is

Gk(M) := E{ max
j=1,...,M

Ykj}

Define G∗k := lim
M→∞

Gk(M) = sup
M=1,2,...

Gk(M)
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Proposition 3

No strategy achieves stability for
K∑
k=1

ρk
G∗k

> 1

Proof arguments

Normalized amount of class-k work cannot be reduced at

higher rate than G∗k

Minimum fraction of time spent serving class k is ρk
G∗k
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Proposition 4

PF strategy achieves stability for
K∑
k=1

ρk
G∗k

< 1

Proof arguments (sketch)

Consider Lyapunov function (Bonald & Massoulié, De Ve-
ciana et al., Ye et al.)

H(n1, . . . , nK) =
K∑
k=1

n2
k

2λk

Denote by sPFk aggregate normalized class-k throughput
under PF strategy

Need to show that for some ε > 0

K∑
k=1

nk(1−
sPFk
ρk

) ≤ −ε
K∑
k=1

nk

for
K∑
k=1

nk sufficiently large
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Further stability results (cont’d)

By assumption,
K∑
k=1

ρk
G∗k
≤ 1

1+ε for ε > 0 sufficiently small

Since sPFk maximize
K∑
k=1

nk log(sk/nk), it may then be shown

from strict concavity that

K∑
k=1

nk
ρk

(ρk(1 + ε)− sPFk ) < 0

for
K∑
k=1

nk sufficiently large

Thus,

K∑
k=1

nk(1−
sPFk
ρk

) ≤ −ε
K∑
k=1

nk

for
K∑
k=1

nk sufficiently large
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Numerical experiments

Users initiate file transfer requests as Poisson process

Mean file size is assumed to be 60 Kbytes (480 Kbits)

At most M = 20 users are admitted into system simultane-

ously

Users which generate transfer requests when there are al-

ready M flows in progress, are blocked

System operates in time-slotted fashion, with slot duration

of τ = 1.67 ms (600 slots per second)

Users have independent “Rayleigh” fading channels
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SNR distribution

Three different scenarios for distribution of mean SNR:

(I) identical to 0 dB for all users;

(II) bi-modal distribution, either -2.0 dB or 4.0 dB with

equal probability;

(III) linearized version of typical SNR distribution in CDMA

system plotted on next slide

34



−10 0 10
SNR (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Typical SNR distribution in CDMA system

35



Rate-SNR relationship

Three different scenarios for how instantaneous rate of user

varies with instantaneous SNR value:

(A) instantaneous rate is linear in instantaneous SNR:

R = C1 × SNR, with C1 = 400 Kbs;

(B) instantaneous rate is logarithmic in instantaneous SNR:

R = C2 × log(1 + SNR), with C2 = 800 Kbs;

(C) instantaneous rate is determined from instantaneous

SNR value (in dB) according to table on next slide
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SNR (dB) ≥ Rate (Kbs)

- 12.5 38.4
- 9.5 76.8
- 8.5 102.6
- 6.5 153.6
- 5.7 204.8
- 4.0 307.2
- 1.0 614.4

1.3 921.6
3.0 1228.8
7.2 1843.2
9.5 2457.6

Rate (Kbs) as function of SNR (dB) in 1xEV-DO system
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First set of experiments determine various performance

metrics under strategy S∗ for varying arrival rates

Consider total of nine cases obtained via pairwise combi-

nation of above scenarios for mean SNR distribution and

rate variations

Relative rate fluctuations are only statistically identical in

cases IA, IB, IC, IIA, IIIA

In remaining four cases, notion of gain factor G(n) does

not strictly apply

Used approximate gain factor by considering average SNR
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Second set of experiments evaluate similar performance

metrics for varying weights used in allocation of time slots

Consider total of six cases obtained via pairwise combina-

tion of channel scenarios as before

Focus on system with two user classes in order to investi-

gate impact of weight factors
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