#### Spatial Models for Ad Hoc Wireless and Sensor Networks Optimizing for Energy Efficiency

**Stochastic Networks Conference 2004** 

**Gustavo de Veciana (with Seung Jun Baek)** Wireless Networks and Communications Group Department of Electrical and Computer Engineering University of Texas at Austin



Wireless Networking & Communications Group

# Motivation - Ad hoc and Sensor Nets

- Distributed peer-to-peer networking and/or sensing applications enabled by local wireless communication links
- Energy burdens
  - Computation
  - Communication
- Typically limited
  - Battery reserves
  - Replenishing capability



# This Talk: Optimal `shapes' for energy sensitive routing & hierarchies





- Balancing energy burdens by spreading traffic loads versus increased energy costs to realize spreading
- Decrease energy burdens via data/header compression versus energy cost to reach compression nodes.

Two tradeoffs to be explored

# **Talk Outline**

- Some background on stochastic geometry
  See e.g., Moeller, Kendall, Stoyan & Mecke
  Telecom Models: Baccelli, Zuyev, and collaborators
- Part 1: Routing for energy balancing in ad hoc wireless networks
- Part 2: Routing hierarchies for wireless sensor networks using compression and sink nodes

#### Poisson Point Process with intensity $\lambda$

 Modeling spatial traffic loads and/or locations of network/sensor nodes



#### Voronoi Tesselation induced by $\Pi = \pi$

Modeling spatial network/routing hierarchies



## **Boolean Model**

 Modeling random sets: e.g., coverage of wireless service/sensors



## **Shot-Noise Process**

Modeling spatial fields: e.g., traffic <u>overlaps</u> spatial energy burdens induced by routing



# Part 1: Routing for energy balancing in ad hoc wireless networks

- Simple routing/energy model
  - Hop-by-hop routing along `neighboring' nodes
  - Same transmit/receive energy expenditure per hop/unit data
  - Energy expenditure proportional to data flow rate and # of hops.



# **Energy Balancing - Multipath Routing**

Shortest Path Routing



Multipath Routing



Unbalanced energy burdens `Balanced' energy burdens

- Poor `balancing' of energy burdens results in
  - Energy hotspots with eventual total depletion of node's energy reserves.
  - Possibly use of inefficient longer routes to circumvent depleted areas (future work)

## **Related work**

- Dynamic shortest path routing based on depletion levels
  - Overheads (updating state) and robustness
- `Optimal' dynamic multipath routing to extend network liftetime [Chang and Tassiulas]
  - Overheads and scalability
- Randomized packet routing to spread loads across fixed region in a grid [Servetto and Barrenechea]
  - Randomization energy efficient ?
  - How much should one spread?



This talk: attempt to systematically evaluate spatial energy burdens under <u>proactive multipath routing</u>

# Modeling Ad hoc Network

Realization for node's locations:

$$\pi = \{x_i | i = 1, 2, \ldots\}$$

#### Voronoi tesselation:

- Each cell V<sub>xi</sub>(π) is set of points which are closest to that node
- **Delaunay graph:**  $G(\pi, E)$ 
  - E : edges placed between nodes whose cells share a face

#### Shortest Delaunay route:

 Shortest Eulclidean norm route on G(π, E)



#### Multipath routing: geometric construction



# **Energy Balancing- Lattice Model**



# **Continuum Model**

- Ad hoc nodes: infinitesimal units of space
- <u>Traffic loads</u>: random process of energy footprints
  Session locations (offered load) prior to time t

$$\Pi_t = \{X_i | i = 1, 2, \ldots\} \sim \text{Poisson PP}(\lambda t)$$

Footprints- reflecting degree of spreading

 $\{\Phi_i | i = 1, 2, \ldots\}$  i.i.d. translation invariant

 Balancing of energy- reflecting flow across footprint

 $h(x, \Phi_i)$  energy burden density

#### **Continuum Model**

Cumulative energy burden - shot noise process

$$E(x,t) = \sum_{X_i \in \Pi_t} h(x - X_i, \Phi_i)$$

 $\begin{array}{ll} \hline \textbf{Theorem:} (asymptotic normality) & \text{Evaluate} \\ \mu(t) = \textbf{E}[E(0,t)] = \lambda t \textbf{E}[\int_{\Phi_0} h(x,\Phi_0) dx] & \begin{array}{l} \text{impact of} \\ \text{spreading} \\ \sigma^2(t) = \textbf{Var}[E(0,t)] = \lambda t \textbf{E}[\int_{\Phi_0} h(x,\Phi_0)^2 dx] & \begin{array}{l} \text{mechanism} \\ \text{on spatial} \\ \hline \sigma(t) & \sigma(t) \end{array} & \rightarrow N(0,1) \text{ as } t \rightarrow \infty & \begin{array}{l} \text{energy} \\ \text{burdens} \end{array} \end{array}$ 

[Heinrich & Schmidt]

# Lattice model: A parametrized energy balancing strategy



# Optimizing Energy Balancing: Non replenishing case

b = battery capacity t= desired network lifetime
 Prob. of depletion by t for typical location/node
 P(E(x,t) > b) ≈ φ(\frac{b - \mu(t)}{\sigma(t)}) = φ(r(t))

Prob. of depletion by t of any location within A

$$P(\sup_{x \in A} E(x,t) > b) \approx H_{\alpha} a^{2/\alpha} r(t)^{4/\alpha} \phi(r(t))$$

lpha, a: depend on spatial correlations of energy burden field

[Adler,Aldous]

# Optimizing non replenishing scenario: Example



# Optimizing Energy Balancing: Nodes with replenishing capability

Simple discrete-time model with batch arrivals (of energy burdens) :



How does energy balancing strategy impact tail asymptotics of stationary distribution ?

$$\lim_{b \to \infty} \frac{1}{b} \log P(W > b) = -\theta^*$$

Optimizing Energy Balancing: Nodes with replenishing capability

 <u>Theorem</u>: Under our modelling assumptions if `energy queue' is stable, i.e.,

$$\lambda E[\int_{\Phi_0} h(x, \Phi_0) dx] < c$$

then the asymptotic tail exponent satisfies

$$\theta^* : \Lambda(\theta^*) = 0, \Lambda'(\theta^*) > 0$$

where

$$\Lambda(\theta) = \lambda E[\int_{\Phi_0} (e^{\theta h(x,\Phi_0)} - 1)dx] - c\theta$$

[Kelly, Whitt & Glynn, De Veciana & Walrand]

# Optimizing network with replenishing Example

• Using grid model, I=8,  $\lambda$ =1 and c\* is critical rate for w=7

| Asympt. Decay rate $	heta^*$ |                    |          |
|------------------------------|--------------------|----------|
| Spreading                    | Replenishing rates |          |
| factor w                     | c= 1.2 c*          | c=2.0 c* |
| 1                            | 0.8673             | 1.7125   |
| 3                            | 1.2506             | 2.7080   |
| 5                            | 1.0965             | 2.7593   |
| 7                            | 0.7965             | 2.6831   |

 Optimal tradeoff between maintaining stability and reducing energy burden variability.

# Simulations: proactive multipath routing Setup

- 400 nodes locations on 20\*20 square Poisson PP with unit rate
- Source-destination selected at random
- Multipath routing based on geometric construction for different spreading factors w



- Flow balancing mimics our optimal assignment
- Find probability that a randomly selected node is depleted of its energy reserve b

# Simulations: Proactive multipath routing Nonreplenishing case





# Summary and ongoing work - Part 1

Investigate `optimal' energy balancing strategy

- Tradeoff: spreading to decrease variability versus energy cost of achieving spreading
- Stochastic geometric framework and simple queuing models enable study
- Ongoing
  - Continuum optimization `optimal' routing shape
  - Dynamic spreading based on stream characteristics
  - Knock on' effects in space when to routing around depleted regions ?

# Part 2: Routing hierarchies in wireless sensor networks using compression and sink nodes

#### Traffic and Network model

- Sensors generate stream of data packets which are routed via ad hoc network to set of sink nodes
- Possibility of data/header compression of correlated/redundant data along intermediate nodes
- Problem: What is the best way to organize compression & aggregation along with routing so as to minimize network's overall energy burden.

# Hierarchical Network Organization Model

 Locations of sensors, compressors, and sinks follow homogenous Poisson PPs



# Hierarchical Network Organization Model

- Sensors generate packet rate at unit rate
- Energy cost between two locations is proportional to distance d(x,y) (I.e., ~ #of hops) and packet rate
- Compression ratio is roughly  $\alpha$

Energy cost 
$$e(x)$$
 for  
sensor at location  $x$   
 $e(x) = d(x, c) + \alpha \cdot d(c, s)$   
Distance to Distance from  
compressor c compressor  
to sink s

# **Hierarchical Network Organization**

- Problem: What is routing/compression hierarchy which minimizes overall energy burden?
- Possible solution: route to closest compressor (or sink) and then from there to the sink
  - Voronoi tesselations
  - But is this optimal?
- <u>Theorem</u>: The minimum avg. energy cost hierarchy is associated with a *Johnson-Mehl tessellation*



\*[Baccelli et al.: Average cost analysis for Voronoi hierarchies]



JM: compressor `seeds' start growing at times prop. to distance from closest sink - hyperbolic faces.

# Analysis of energy cost

• Avg. cost for a typical sink:

![](_page_31_Figure_2.jpeg)

# Analysis of Energy Cost

• <u>Theorem</u> a tight upper bound on energy cost is given by  $\frac{\lambda_0}{\lambda_2} \left\{ \frac{\alpha}{2\sqrt{\lambda_2}} + \frac{1-\alpha}{2\sqrt{\lambda_2 + \frac{\lambda_1 f(\alpha)}{\pi}}} \right\}$ 

 $f(\alpha) =$  area of  $\alpha$  skewed Cartesian oval

![](_page_33_Figure_0.jpeg)

For moderate compression optimal gives 8-28% savings over Voronoi

#### **Results and extensions**

- Analytical results for mean energy costs for optimal hierarchy associated with Johnson-Mehl tesselation
  - Permit optimization of densities of compressors/ sinks etc. based an compression ratio and system capacity
- Extensions: optimal hierarchy associated with non-linear energy costs
  - One/two hop model, i.e., direct transmission to sink or relaying via compressor to sink.
  - Capture wireless channel's signal decay (path loss)

# Energy and `Congestion' Fields

■ compressor ● sink

![](_page_35_Figure_2.jpeg)

Energy field associated with carrying traffic from given location e(x)

![](_page_35_Figure_4.jpeg)

Cummulative energy field associated with ALL traffic traversing\* given location with straight line routing

# Summary - Part 2

- JM tessellation outperforms Voronoi scheme significantly when the density of compressors is fairly high, otherwise, *Voronoi scheme is as good as optimal* scheme.
- In one/two-hop cases, the gain from the optimal tessellation is much larger, however, as path-loss exponent increases, the role of compression becomes negligible
- Congestion is a severe impairment for the system design – detecting or switching compressors/sinks is unavoidable, but what is the best strategy? Further study

## Outgoing comments.

- Stochastic geometry & queueing provides an concrete way to study spatial processes and interactions in ad hoc wireless and sensor networks.
- Energy balancing-> optimal tradeoffs
  Dynamic vs static settings, e.g., traffic/nodes
- We are looking to further refine these ideas and provide a more comprehensive view including some dynamic aspects of spatial interactions among user's traffic.

# Spatial Dimension in Wireless and Sensor Networks

- Plays critical role in determining
  - Connectivity, capacity/interference patterns, energy expenditures, sensing coverage, protocol performance
  - Difficulties: complexity of environment, number of users/sensors, and mobility
- Challenges
  - Devise tools enabling modeling, analysis, and design of incorporating space/location
    - Macroscopic modeling via stochastic geometry
  - Develop more efficient system designs and optimized protocols

#### **Performance Comparisons**

![](_page_39_Figure_1.jpeg)