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Motivation - Ad hoc and Sensor Nets
 Distributed peer-to-peer networking and/or

sensing applications enabled by local wireless
communication links

 Energy burdens
 Computation
 Communication

 Typically limited
 Battery reserves
 Replenishing capability Hop-by-hop

relaying of data
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 Balancing energy burdens
by spreading traffic loads
versus increased energy
costs to realize spreading

This Talk:  Optimal  `shapes’  for energy
sensitive routing & hierarchies

 Decrease energy  burdens
via data/header compression
versus energy cost to reach
compression nodes.

Two tradeoffs to be explored



Talk Outline

 Some background on stochastic geometry
 See e.g., Moeller, Kendall, Stoyan & Mecke
 Telecom Models: Baccelli, Zuyev, and

collaborators

 Part 1: Routing for energy balancing in ad hoc
wireless networks

 Part 2: Routing hierarchies for wireless sensor
networks using compression and sink nodes



Poisson Point Process with intensity λ

 Modeling spatial traffic loads and/or locations of
network/sensor nodes

A : region with area |A|

Point Process



Voronoi Tesselation induced by Π=π
 Modeling spatial network/routing hierarchies



Boolean Model
 Modeling random sets: e.g., coverage of

wireless service/sensors
i.i.d random sets/shapes 

Boolean model: random set

Shifts set to Xi



Shot-Noise Process
 Modeling spatial fields: e.g., traffic overlaps

spatial energy burdens induced by routing
`Random’ functions :    

Shot-Noise process: 

support set 

shifts h( , ) to XiExample:



Part 1: Routing for energy balancing in
ad hoc wireless networks

 Simple routing/energy model
 Hop-by-hop routing along

`neighboring’ nodes
 Same transmit/receive energy

expenditure per hop/unit data
 Energy expenditure

proportional to data flow rate
and # of hops.
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Energy Balancing - Multipath Routing

 Poor `balancing’ of energy burdens results in
 Energy hotspots with eventual total depletion of

node’s energy reserves.
 Possibly use of inefficient longer routes to circumvent

depleted areas (future work)

Shortest Path Routing Multipath Routing

Unbalanced energy burdens `Balanced’ energy burdens
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Related work
 Dynamic shortest path routing based on depletion levels

 Overheads (updating state) and robustness
 `Optimal’ dynamic multipath routing to extend network

liftetime  [Chang and Tassiulas]
 Overheads and scalability

 Randomized packet routing to spread loads across fixed
region in a grid [Servetto and Barrenechea]
 Randomization energy efficient ?
 How much should one spread?

 This talk: attempt to systematically evaluate spatial
energy burdens under proactive multipath routing



Modeling Ad hoc Network
 Realization for node’s locations:

 Voronoi tesselation:
 Each cell Vxi(π) is set of

points which are closest
to that node

 Delaunay graph: G(π, E)
 E : edges placed

between nodes whose
cells share a face

 Shortest Delaunay route:
 Shortest Eulclidean norm

route on G(π, E)



Multipath routing: geometric construction

w=1 w=2 

w=3 

Multipath
routing with 
increasing 
spreading w 

Spatial
`footprints’

Flow/Energy
balancing



Energy Balancing- Lattice Model
 Rectangular spatial footprint. Good flow balancing ?



Continuum Model
 Ad hoc nodes:  infinitesimal units of space
 Traffic loads: random process of energy footprints

 Session locations (offered load) prior to time t
 

 Footprints- reflecting degree of spreading

 Balancing of energy- reflecting flow across
footprint



Continuum Model

Theorem: (asymptotic normality) Evaluate
impact of
spreading
mechanism
on spatial

energy
burdens

 Cumulative energy burden - shot noise process

[Heinrich & Schmidt]



Lattice model: A parametrized
energy balancing strategy

Lemma: min variance energy balancing strategy subject to
flow conservation and equal flow on mid-section  nodes
of rectangular footprint gives:

Spreading Cost
Increasing w ->

increasing mean &
decreasing
variance



Optimizing Energy Balancing:
 Non replenishing case

 b = battery capacity   t= desired network lifetime
 Prob. of depletion by t for typical location/node

 Prob. of depletion by t of any location within A

: depend on spatial correlations of energy
burden field

[Adler,Aldous]



Optimizing non replenishing scenario:
Example

 Larger battery capacity should increase spreading
spreading factor w
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Optimizing Energy Balancing:
 Nodes with replenishing capability
 Simple discrete-time model with batch arrivals (of

energy burdens) :

 How does energy balancing strategy impact tail
asymptotics of stationary distribution ?

Energy burden
on node at the
beginning of
slot (n,n+1]

New energy burdens
on node for slot

(n,n+1]

Energy replenshing
rate per slot



Optimizing Energy Balancing:
 Nodes with replenishing capability
 Theorem:  Under our modelling assumptions if

`energy queue’ is stable, i.e.,

then the asymptotic tail exponent satisfies

where

[Kelly, Whitt & Glynn, De Veciana & Walrand]



Optimizing network with replenishing
Example
 Using grid model, l=8, λ=1 and c* is critical rate for w=7

 Optimal tradeoff between maintaining stability and
reducing energy burden variability.

Asympt. Decay rate θ*

2.68310.79657
2.7593
2.7080
1.7125

c=2.0 c*

1.09655
1.25063
0.86731

c= 1.2 c*

Replenishing ratesSpreading
 factor w



Simulations: proactive multipath routing
Setup
 400 nodes locations on 20*20 square Poisson PP with

unit rate
 Source-destination selected at random
 Multipath routing based on geometric construction for

different spreading factors w

 Flow balancing mimics
our optimal assignment

 Find probability that a
randomly selected node
is depleted of its energy
reserve b



Simulations: Proactive multipath routing
Nonreplenishing case -SPR better for

Low b
-SPR worse than
SDR (w=1) for
large b

Increasing
spreading is
favorable for
large bPr
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Simulations: Proactive multipath routing
Replenishing case SPR better

For low b

Increasing
Spreading is
favorable for
large b

With replenishing
spread earlier !
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Summary and ongoing work - Part 1

 Investigate `optimal’ energy balancing strategy
 Tradeoff: spreading to decrease variability versus

energy cost of achieving spreading
 Stochastic geometric framework and simple queuing

models enable study

 Ongoing
 Continuum optimization - `optimal’ routing shape
 Dynamic spreading based on stream characteristics
 `Knock on’ effects in space - when to routing around

depleted regions ?



Part 2: Routing hierarchies in wireless
sensor networks using compression
and sink nodes 
 Traffic and Network model

 Sensors generate stream of data packets which are
routed via ad hoc network to set of sink nodes

 Possibility of data/header compression of
correlated/redundant data along intermediate nodes

 Problem: What is the best way to organize compression
& aggregation along with routing so as to minimize
network’s overall  energy burden.



Hierarchical Network Organization
Model
 Locations of sensors, compressors, and sinks follow

homogenous Poisson PPs

sinkcompressor

sensors



Hierarchical Network Organization
Model
 Sensors generate packet rate  at unit rate
 Energy cost between two locations is proportional to

distance d(x,y) (I.e., ~ #of hops) and packet rate
 Compression ratio is roughly α

Energy cost e(x) for
sensor at location x

Distance to
compressor c

Distance from
compressor

to sink s



Hierarchical Network Organization
 Problem: What is routing/compression hierarchy

which minimizes overall energy burden?

 Possible solution: route to closest compressor (or sink)
and then from there to the sink
 Voronoi tesselations *
 But is this optimal?

 Theorem: The minimum avg.  
energy cost hierarchy is 
associated with a     
Johnson-Mehl tessellation

*[Baccelli et al.: Average cost analysis for Voronoi hierarchies]



JM: compressor `seeds’ start growing at times prop. to
distance from closest sink - hyperbolic faces.

x

x



Analysis of energy cost
 Avg. cost for a typical sink:

sensors to
compressor

compressor to sink

sensors directly
to sink at origin

# sensors
associated with
compressor cj

Expectation wrt
Palm prob.

sink process
i.e. sink at origin



Analysis of Energy Cost
 Theorem a tight upper bound on energy cost is given

by

 α=0 -> avg. costs to closest sink/compressor

 α =1 -> avg. costs to reach closest sink



For high compression
Voronoi acceptable

Compression ratio
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Voronoi scheme

No compressors

Optimal scheme

Upper bound

 Performance Comparison For moderate
compression
optimal gives
8-28% savings
 over Voronoi



Results and extensions

 Analytical results for mean energy costs for optimal
hierarchy associated with Johnson-Mehl tesselation
 Permit optimization of densities of compressors/

sinks etc. based an compression ratio and system
capacity

 Extensions: optimal hierarchy associated with non-linear
energy costs
 One/two hop model, i.e., direct transmission to sink

or relaying via compressor  to sink.
 Capture wireless channel’s signal decay (path loss)



Energy and `Congestion’ Fields

Energy field associated with
carrying traffic from
given location e(x)

Cummulative energy field
associated with ALL traffic
traversing*  given location
with straight line routing



Summary - Part 2

 JM tessellation outperforms Voronoi scheme
significantly when the density of compressors is fairly
high, otherwise, Voronoi scheme is as good as optimal
scheme.

 In one/two-hop cases, the gain from the optimal
tessellation is much larger, however, as path-loss
exponent increases, the role of compression becomes
negligible

 Congestion is a severe impairment for the system
design – detecting or switching compressors/sinks is
unavoidable, but what is the best strategy?  Further
study



Outgoing comments.
 Stochastic geometry & queueing provides an

concrete way to study spatial processes and
interactions in ad hoc wireless and sensor networks.

 Energy balancing-> optimal tradeoffs
 Dynamic vs static settings, e.g., traffic/nodes

 We are looking to further refine these ideas and
provide a more comprehensive view including some
dynamic aspects of spatial interactions among user’s
traffic.



 Spatial Dimension in Wireless and
Sensor Networks
 Plays critical role in determining

 Connectivity, capacity/interference patterns,
energy expenditures, sensing coverage, protocol
performance

 Difficulties: complexity of environment, number of
users/sensors, and mobility

 Challenges
 Devise tools enabling modeling, analysis, and

design of incorporating space/location
• Macroscopic modeling via stochastic geometry

 Develop more efficient system designs and
optimized protocols



 Performance Comparisons
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 Energy savings of the optimal
scheme, relative to Voronoi
scheme, depends on the
compression ratio with
increasing sensitivity as density
of compressors decreases


