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Main points of the talk:

• Importance sampling in large deviation context needs stronger
theoretical foundation

• Stochastic networks provide compelling evidence—no general re-
sults for even simplest models

• Performance of optimal importance sampling is characterized in
terms of value function of a differential game

• Key tool for the construction and analysis of schemes is related
Isaacs equation, and especially subsolutions

• Ideas applicable in much broader setting than stochastic networks
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8. A comment on the proof and concluding remarks
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Problem formulation

Markov tandem queue, 2 station for illustration.

µ2λ µ1

A tandem queue

Work with discrete time problem, normalization λ + µ1 + µ2 = 1.

A benchmark problem for IS: Let Y (j) = (Y1(j), Y2(j)) be the state.

Estimate

P {Y1(j) + Y2(j) exceeds n before returning to 0 | Y (0) = nx} ,

when n is large. Can assume µ1 ≥ µ2 without loss of generality,
and λ < µ2 for stability.

Let

V n(x)
.
= −1

n
logP {Y1(j) + Y2(j) ≥ n before hitting 0 | Y (0) = nx} .
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Large deviation and PDE background

Jump directions and probabilities for the network:

p3 = µ2

v1

v3

v2
p1 = λ

p2 = µ1
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Relevant domain and constraint directions (Skorohod problem) for

the scaled process:

G

1

2

∂e

d2 ∂2

d1

∂1

Large deviation properties. We have

V n(x)→ V (x),

where V (x) is the solution to the following variational inequality:

V (x) = inf

+] τ

0

3[
i=1

log

�
p̄i(t)

pi

�
p̄i(t)dt

: φ̇(t) = π

#
φ(t),

3[
i=1

p̄i(t)vi

$
,φ(0) = x,φ hits ∂e before 0

,
and π is the projected velocity for the given Skorohod problem.
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Hamilton-Jacobi equation. V can be characterized as a vis-

cosity solution to the following PDE:

H(DV (x)) = 0, x ∈ G,
kDV (x), d1l = 0, x ∈ ∂1,

kDV (x), d2l = 0, x ∈ ∂2,

V (x) = 0, x ∈ ∂e,

V (0) =∞
where

H(q) = inf
p̄

%-
q,

3[
i=1

p̄ivi

.
+

3[
i=1

log

�
p̄i
pi

�
p̄i

&
.

Roots of the Hamiltonian:

H(q) < 0

1

2
d1

r1

r2

d2

S
pjvj

H(q) > 0

with r1 = −2 log
�
µ2
λ

�
(1, 1).
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V can be characterized as the “fastest growing” viscosity solution

(cf. McEneaney), and thus

V (x) = 2 log
�µ2
λ

�
(1− x1 − x2).

The minimizing p̄ in the H-J equation is

(p̄1, p̄2, p̄3) = (p3, p2, p1) = (µ2, µ1,λ).

The minimizing trajectories:

d1

1

2

d2
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(3)

Some importance sampling generalities

Basic setup. Given a real-valued random variable of the form Z =

1A(Y ), where Y has distribution θ, compute

EZ = P {Y ∈ A} = θ(A).

Consider alternative sampling distribution ν, with θ � ν. Let

f(x)
.
= (dθ/dν)(x). Let Ỹi be iid ν, and form estimator

Q̃K
.
=
1

K

�
1A(Ỹ0)f(Ỹ0) + · · · + 1A(ỸK−1)f(ỸK−1)

�
.

Since

E1A(Ỹ0)f(Ỹ0) =

]
A

f(y)ν(dy) =

]
A

θ(dy) = EZ,

this is unbiased, with variance

var
�
1A(Ỹ0)f(Ỹ0)

�
=

]
A

f(y)2ν(dy)− θ(A)2.

Goal is to minimize variance, so minimize 2nd moment]
A

f(y)2ν(dy) =

]
A

f(y)θ(dy)

Unconstrained minimization not well defined. We focus on 2nd mo-

ment.
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Issues related to rare events—guaranteed bounds:

Introduce a large deviation parameter n, and assume

lim
n→∞−

1

n
logP {Y n ∈ A} = γ ∈ (0,∞),

which we informally write as

P {Y n ∈ A} ≈ e−nγ.

Particular difficulties here due to relative sizes. With standard Monte

Carlo (f = 1)

Stand. dev. of estimator

Quantity to estimate
=

t
1
Kvar

�
1A(Ỹ n0 )f (Ỹ

n
0 )
�

P {Y n ∈ A} ≈ 1√
K

e−
n
2γ

e−nγ
.

A benchmark. By Jensen’s ≤, for any change of measure
lim sup
n→∞

−1
n
logE[(1A(Ỹ

n
0 )f(Ỹ

n
0 ))

2] ≤ lim
n→∞−

1

n
log
�
E1A(Ỹ

n
0 )f(Ỹ

n
0 )
�2

= lim
n→∞−

1

n
log (P {Y n ∈ A})2

= 2γ.

Definition. Estimator Q̃nK is asymptotically optimal if

lim
n→∞−

1

n
logE[(1A(Ỹ

n
0 )f(Ỹ

n
0 ))

2] = 2γ.

We are also interested in schemes that at nearly optimal. Drop

K, focus on 2nd moment of single sample 1A(Ỹ
n
0 )f(Ỹ

n
0 ).
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The differential game and optimal performance

With regard to network problem, optimal change of measure shown

to correspond to jump probabilities

(p̃n1(y), p̃
n
2(y), p̃

n
3(y)) .

Radon-Nikodym derivative (essentially) can be written%
Tn−1\
i=0

pzn(i)
p̃nzn(i)(Y

n(i))

&
1Sn(Y

n),

where zn(i) is the type of jump that occurred at time i, Tn is the

first time Y n(i)1 + Y
n(i)2 ≥ n, and Sn are the trajectories where

escape occurs before hitting zero. Let

Wn(x) = −1
n
log min

p̃n
Ex

%
Tn−1\
i=0

pzn(i)
p̃nzn(i)(Y

n(i))

&
1Sn(Y

n).

Owing to the log (large deviations) transform, Wn(x) is the value

for a stochastic game, with Isaacs equation

Wn(x) = sup
p̃
inf
p̄

 3[
j=1

Wn

�
x +

1

n
vj

�

+
1

n

3[
j=1

�
log

�
p̄j
pj

�
+ log

�
p̃j
pj

��
p̄j

 ,
plus boundary constraining behavior plus boundary conditions.
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Theorem.

Wn(x)→W (x),

where W is the value of the dynamic game with dynamics

φ̇(t) = π

#
φ(t),

3[
i=1

p̄i(t)vi

$
,φ(0) = x,

cost ] τ

0

3[
j=1

�
log

�
p̄j(t)

pj

�
+ log

�
p̃j(t)

pj

��
p̄j(t)dt,

and where the tilde player maximizes while the bar player minimizes

over all controls that force escape prior to hitting zero. This value

function is a viscosity solution to

H̄(DW (x)) = 0, x ∈ G,
kDW (x), d1l = 0, x ∈ ∂1,

kDW (x), d2l = 0, x ∈ ∂2,

W (x) = 0, x ∈ ∂e,

W (0) =∞
where

H̄(q) = sup
p̃
inf
p̄

-q, 3[
i=1

p̄ivi

.
+

3[
j=1

�
log

�
p̄j
pj

�
+ log

�
p̃j
pj

��
p̄j


Moreover,

W (x) = 2V (x).
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Thus asymptotic optimality can be achieved. The result is natural,

since interchanging the max/min shows

H̄(q) = inf
p̄

%-
q,

3[
i=1

p̄ivi

.
+ 2

3[
i=1

log

�
p̄i
pi

�
p̄i

&
= 2H(q/2).

(5)

A standard heuristic for importance sampling

and its breakdown

Based on a min/max calculation that is sometimes valid in the set-

ting of Cramér’s Theorem, it has been traditional to use the following

guess for a nearly optimal IS change of measure:

Let p̃nj (y) be the same as the asymptotic optimizer in the large

deviations analysis. Thus

(p̃n1(y), p̃
n
2(y), p̃

n
3(y)) = (µ2, µ1,λ) .

Unfortunately, this is often far from an optimal policy in the game.

E.g., when µ1 = µ2 = µ, it is always true that the large deviation

player can exploit an advantage.
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The minimizing trajectories:

Low cost paths

1

2

d2

d1

Example. Simulation results for (λ, µ1, µ2) = (0.1, 0.45, 0.45) and

buffer size n = 25. The theoretical value is pn = 4.04× 10−15. The
sample size is K = 20000.

No. 1 No. 2 No. 3 No. 4
Estimate p̂n (×10−15) 2.58 2.47 5.63 13.65
Standard Error (×10−15) 0.22 0.24 2.50 10.27
95% C.I. (×10−15) [2.14, 3.02] [1.99, 2.95] [0.63, 10.63] [-6.89, 34.19]

Table 1. IS based on standard heuristic for overflow probability of a tandem network
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Subsolutions for the Isaacs equation and IS schemes

Definition. W̄ a classical subsolution with fixed maximizing control

p̃(y) if W̄ is continuously differentiable on an open neighborhood of

G, and if 

Ĥ(x,DW̄ (x)) ≥ 0, x ∈ G,
kDW̄ (x), d1l ≥ 0, x ∈ ∂1,

kDW̄ (x), d2l ≥ 0, x ∈ ∂2,

W̄ (x) ≤ 0, x ∈ ∂e,

W̄ (0) ≤ ∞

where

Ĥ(x, q) = inf
p̄

-q, 3[
i=1

p̄ivi

.
+

3[
j=1

�
log

�
p̄j
pj

�
+ log

�
p̃j(x)

pj

��
p̄j



Elementary fact: If W̄ is a classical subsolution to the Isaacs

equation, and if p̃(y) is defined as a saddle point maximizer, then W̄

is also a classical subsolution with fixed maximizing control p̃(y).
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Theorem. Let W̄ be a classical subsolution corresponding to p̃(y).

Consider the importance sampling scheme defined by p̃n(x) = p̃(x).

Let

W̄ n(x) = −1
n
log[2nd moment under this IS scheme].

Then

lim inf
n→∞ W̄ n(x) ≥ W̄ (x).

Design problem: find a pair (W̄ , p̃) such that

• W̄ is a subsolution,

• W̄ (0) ≥ 2V (0) [or at least W̄ (0) ≥ 2V (0)− ε, given ε > 0].



16

(7)

Examples of subsolutions and

remarks on implementation

Problem with W̄ (x) = 2V (x)? It fails the boundary condition along

∂2.

r̄2
1

2
d1

r1

r2

d2

H(q) > 0

Can nearly optimal subsolutions be constructed in general? The

main steps:

• Construct a nonsmooth subsolution as the minimum of a finite

set of linear functions.

• Smooth to obtain a C1 function.
• Define p̃(y) as a saddle point maximizer.
• Alternatively, smooth (average) both the jump probabilities and
gradients of subsolution.

The Hamiltonian for the Isaacs equation, H̄(q) = 2H(q/2), is con-

cave. By Jensen’s ≤ both smoothings preserve subsolution property.
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DW̄ (x) = 0
1

2

∂e

d2 ∂2

d1

∂1

DW̄ (x) = 2r1

DW̄ (x) = 2r̄2

Construction quite feasible, owing to homogeneous Hamiltonian

and flat Neumann and Dirichlet boundaries.

r̄2
1

2
d1

r1

r2

d2

H(q) > 0
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Example. Simulation results for (λ, µ1, µ2) = (0.1, 0.45, 0.45) and

buffer size n = 25. The theoretical value is pn = 4.04× 10−15. The
sample size is K = 20000.

No. 1 No. 2 No. 3 No. 4
Estimate p̂n (×10−15) 2.58 2.47 5.63 13.65
Standard Error (×10−15) 0.22 0.24 2.50 10.27
95% C.I. (×10−15) [2.14, 3.02] [1.99, 2.95] [0.63, 10.63] [-6.89, 34.19]

Table 1. IS based on standard heuristic for overflow probability of a tandem network

No. 1 No. 2 No. 3 No. 4
Estimate p̂n (×10−15) 3.98 4.00 4.10 3.96
Standard Error (×10−15) 0.09 0.08 0.09 0.07
95% C.I. (×10−15) [3.80, 4.16] [3.84, 4.16] [3.92, 4.28] [3.82, 4.10]

Table 2. IS based on smooth subsolution, probabilities inferred

No. 1 No. 2 No. 3 No. 4
Estimate p̂n (×10−15) 4.02 4.10 4.07 4.03
Standard Error (×10−15) 0.07 0.09 0.08 0.07
95% C.I (×10−15) [3.88, 4.16] [3.92, 4.28] [3.91, 4.23] [3.89, 4.17]

Table 3. IS based on direct smoothing of probabilities
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An alternative construction based on a refined char-

acterization of boundary dynamics. One can also char-

acterize the boundary behavior via boundary Hamiltonians rather

than Neumann boundary condition, prove analogous result.

H(DV (x)) ≥ 0, x ∈ G,
H1(DV (x)) ≥ 0, x ∈ ∂1,

H2(DV (x)) ≥ 0, x ∈ ∂2,

V (x) ≤ 0, x ∈ ∂e,

V (0) ≤ ∞

H2(q) = 0

1

2
d1

d2

r̄2

r1

H1(q) = 0
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In this example, we take (λ, µ1, µ2) = (0.05, 0.5, 0.45) and buffer size

n = 20. The theoretical value is pn = 5.77× 10−18. The sample size
is K = 20000

No. 1 No. 2 No. 3 No. 4
Estimate p̂n (×10−18) 6.37 6.65 5.39 16.02
Standard Error (×10−18) 1.24 1.30 0.47 10.67
95 % C.I. (×10−18) [3.89, 8.85] [4.06, 9.25] [4.46, 6.33] [-5.31, 37.36]

Table 4. IS based on standard heuristic for overflow probability of a tandem network

No. 1 No. 2 No. 3 No. 4
Estimate p̂n (×10−18) 5.77 5.76 5.70 5.78
Standard Error (×10−18) 0.05 0.06 0.06 0.05
95% C.I. (×10−18) [5.67, 5.87] [5.64, 5.88] [5.58, 5.82] [5.68, 5.88]

Table 5. IS based on smoothing the probabilities, Neumann boundary condition

In the following table, we use the change of measure implied by

boundary Hamiltonian. Thus the subsolution we obtained is not in

classical sense for Neumann boundary data.

No. 1 No. 2 No. 3 No. 4
Estimate p̂n (×10−18) 5.76 5.78 5.76 5.75
Standard Error (×10−18) 0.02 0.02 0.02 0.02
95% C.I. (×10−18) [5.72, 5.80] [5.74, 5.82] [5.72, 5.80] [5.71, 5.79]

Table 6. IS based on smoothing the probability, boundary Hamiltonian
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A comment on the proof and concluding remarks

Idea of proofs. The proofs use a verification argument, with

difficulties due to unbounded time interval. A key (non-trivial) esti-

mate that is needed is the following. GivenM <∞, there is T <∞
such that

P {Y first hits 0 after time nT | Y (0) = nx} ≤ e−nM,

uniformly for x ∈ G. One expects this from the stability, but does
not follow directly from basic large deviation properties of process.

Further work.

• Better understanding of implementation issues
• Networks with feedback (must use boundary Hamiltonians), other
events, more general dynamics

References for other LD problems.

• P. Dupuis and H. Wang. Importance sampling, large deviations, and differential games.
To appear in Stoch. and Stoch. Reports.

• P. Dupuis and H. Wang. Dynamic importance sampling for uniformly recurrent Markov
chains. To appear in Ann. Appl. Probab.


