
Distributed Algorithms for Wireless Networks

Peter W. Glynn

Stanford University

Joint work with Tim Holliday and Andrea Goldsmith



Stochastic Networks Conference 2004 1



Our Setting:

•m users

• each user wishes to efficiently (e.g. low power) transmit packets in a timely
way (e.g. possible deadlines)

• each user has a set of actions available to accomplish these objectives (e.g.
power control, coding schemes, etc.)

• a given user’s choice of action affects the other users (via interference)

• each user is statistically identical (and follows a common control law)
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State of the System:

Xj(n) = state of user j at time n

∈ S (finite)

Aj(n) = action chosen by user j at time n

∈ A (finite)

Possible state descriptors:

(X1(n), . . . , Xm(n)) ∈ Sm

µn(·) =
1

m

m∑

j=1

δXj(n)(·) ∈ P(S)

P(S) = {(p1, . . . , pd) :
d∑

j=1

pj = 1, pj ≥ 0, 1 ≤ j ≤ d}
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Reward Function

Reward earned at time n is

1

m

m∑

j=1

r (Xj(n), Aj(n))

Transition Dynamics

P(X1(n + 1) = y1, . . . , Xm(n + 1) = ym| Fn)

=
m∏

j=1

PAj(n) (µn ; Xj(n), yj)

= fn (µn, Ma,x(n) : x ∈ S, a ∈ A)
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We will focus here on the case where we have
a “scalar interaction” effect (e.g. interference)

i.e. there exists h : S −→ IR such that

Pa (µ ; x, y) = Pa (µh ; x, y)

where
Pa(·) = (Pa(· ; x, y) : x, y ∈ S)

is assumed continuous on [h , h ]

(h = min(h(x) : x ∈ S), h = max(h(x) : x ∈ S))

Some of what we have done generalizes to more general interaction effects.
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Centralized Controller

Aj(n) ∈ Fn = σ (Xj(i), µi, Uj(i) : 0 ≤ i ≤ n)

Decentralized Controller

Aj(n) ∈ Gn = σ (Xj(i), Uj(i) : 0 ≤ i ≤ n)
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Analysis of Distributed Controls

Conditional on µn,

mµn+1
D
=

∑

x∈S

multinomial (mµn(x) ; (P (µnh ; x, y) y ∈ S))

where

P(c ; x, y) =
∑

a∈A
π(a|x)Pa (c ; x, y)

i.e. each user in state x independently chooses action a with probability π(a|x)

One could also deterministically associate action a with a fraction π(a|x) of the
mµn(x) users in state x.

Laws of large numbers identical,
but deterministic assignment not easily distributed
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Fixed User population Analysis

• Assume P(c) À P for each c ∈ [h , h ], where P is irreducible and aperiodic

• Then (µn : n ≥ 0) is irreducible and aperiodic on

Pm(S) =





(
k1

m
, . . . ,

kd

m

)
:

d∑

j=1

kj = m, kj ≥ 0,1 ≤ j ≤ d





so
µn ⇒ µ∞

• Remark. If P(c) = P,

‖P(µn ∈ ·)− P(µ∞ ∈ ·)‖ → 1 as m →∞
so total variation convergence rate is not uniform in m (no uniform coupling)
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Analysis of Distributed Control: Finite time analysis

Recall multinomial representation . . .
Conditional on µn,

µm
n+1(y) ⇒

∑

x∈S

µn(x)P(µnh ; x, y)

so if

µm
0 ⇒ ν0

then

µm
n ⇒ νn

where (νn : n ≥ 0) is the deterministic mean-field limit satisfying the non-linear
iteration

νn+1 = νnP(νnh)
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Fixed Points for Mean-Field Limit

Brower Fixed Point Theorem establishes existence of at least one fixed point of

ν = νP(νh)

But mean-field generally has multiple fixed points
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Multiple Fixed Points for Mean-Field Limit

For c ∈ [h , h ], choose a smooth family of positive stochastic vectors ν(c) with
ν(c)h = c and set

P(c) =




ν(c)
- - - -

...

- - - -
ν(c)




Then, for each c,

νP(c) = ν(c)

for all ν(c) ∈ P(S), so ν(c) is a fixed point for each c!
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When is Fixed Point Unique?

ν is fixed point of
ν = νP(νh)

if and only if (ν(c), c) is a fixed point of

ν(c) = ν(c)P(c)
c = ν(c)h

Note that
ν ′(c) = ν ′(c)P(c) + ν(c)P′(c)

so
ν ′(c)(I − P(c)) = ν(c)P′(c)

ν ′(c) = ν(c)P′(c) (I − P(c) + Π(c))−1

If

sup
c∈[h ,h ]

‖P′(c)‖ ≤ (1− ε)


 sup

c∈[h ,h ]

∥∥∥(I − P(c) + Π(c))−1
∥∥∥


−1

then we have a strict contraction (uniqueness)
Note: counterexample has P′(c)h = e
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Convergence to Fixed Point

If
sup

c∈[h ,h ]

‖P′(c)‖

is small, then ν = νP(νh) has a unique fixed point ν∗ and

νn+1 = νnP(νnh) → ν∗

as n →∞.

Proof establishes contractivity of original mapping (and uses Birkhoff contraction
coefficient)
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Connection to Finite-User Systems

Note that µn depends on initial distribution µ,

i.e. µn = µn(µ)

E [‖µn+1(µ)− µn+1(ν)‖ | Fn]

≤ c‖µn(µ)− µn(ν)‖ (c < 1)

uniformly in m ≥ m0 and µ, ν

Proof couples the multinomials

So, c−n‖µn+1(µ)− µn+1(ν)‖ is a non-negative supermartingale
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Convergence to stationarity is uniform in m:

E‖µm
n − µm

∞‖ → 0 as n →∞

uniformly in m ≥ m0, and

sup
n≥1

E‖µm
n − νn‖ → 0 as m →∞
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Selecting the Optimal Distributed Control in the Mean-Field Limit

max
π

∑
x,a

ν(x)π(a|x)r(x, a)

s/t

ν(y) =
∑
x,a

ν(x)π(a|x)Pa(νh ; x, y)

ν(y) ≥ 0 ,
∑

y∈S

ν(y) = 1

non-linear program
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Solving via LP’s

max
c

γ(c)

where γ(c) is the maximum of the LP

max
∑
x,a

ν(x)π(a|x)r(x, a)

s/t

ν(y) =
∑
x,a

ν(x)π(a|x)Pa(c ; x, y)

ν(y) ≥ 0 ,
∑

y∈S

ν(y) = 1

νh = c

Remark: Incorporation of expectation side-constraints is easy.
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Back to the Finite User Population Setting

Apply the mean-field optimal control to the finite population models:

limm→∞ r∗m ≥ r∗∞

Apply π∗m(a|x) , the optimal distributed control for the m’th system. Choose
convergent subsequence:

(
µ∗ mk

n , π∗mk

)
⇒ (ν∗n, π∗)

r∗mk
→ r∞ ≤ r∗∞

Optimal control problems converge as m →∞.
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How much efficiency have we lost by
restricting ourselves to distributed controls?

Need to study “centralized control problem”

i.e. control problem for measure-valued
sequence (µn : n ≥ 0)
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Optimal Control for Mean-Field Limit

Discounted Control

Vα(ν) = sup−→π

∞∑

n=0

e−αn
∑
x,a

νn(x)πn(a|x)r(x, a)

where
νn+1(y) =

∑
x,a

νn(x)πn(a|x)Pa(νnh ; x, y)

Then

Vα(ν) = max
π


∑

x,a

ν(x)π(a|x)r(x, a)

+ e−αV (


∑

x,a

ν(x)π(a|x)Pa(νh ; x, y) : y ∈ S


)




numerically easier than centralized DP for finite population system
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If
max

x,a
sup

c∈[h ,h ]

‖(P′
a(c ; x, y) : y ∈ S

)
h‖

is sufficiently small, then

|Vα(ν)− Vα(ν̃)| ≤ β‖ν − ν̃‖
uniformly in α. (Use coupling based on:

starting at ν: use π∗α(ν0), π∗α(ν1), . . . , π∗α(νn) (ν0 = ν)

starting at ν̃: use π∗α(ν0), π∗α(ν1), . . . , π∗α(νn) (ν0 = ν)

then interchange).
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Time Average Control

Let α ↘ 0

Then, there exists a Lipschitz solution (V, g) such that

V (ν) + g = max
π


∑

x,a

ν(x)π(a|x)r(x, a)

+ V (


∑

x,a

ν(x)π(a|x)Pa(νh ; x, y) : y ∈ S


)




Let π∗(a|ν, x) be the maximizing π;
and set

P∗(ν ; x, y) =
∑
x,a

ν(x)π∗(a|ν, x)Pa(νh ; x, y)
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Time Average Optimal Trajectory

• Fix ν ∈ P(S). Put ν∗0 = ν and

ν∗n+1 = ν∗nP
∗(ν∗n).

• (ν∗n : n ≥ 0) need not converge

• In fact, no guarantee of fixed points

Stochastic Networks Conference 2004 23



Suppose there exists a fixed point ν̃.

Then,
g =

∑
x,a

ν̃(x)π∗(a| ν̃, x)r(x, a)

We get optimal reward of g on every transition.

Put
π(a|x) = π∗(a|ν̃, x)

This is a distributed control! Use it globally

νn(ν) → ν̃

(because distributed policies are contractive)

We get same average reward as in centralized case.
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When does there exist a fixed point ν̃?

Pε
a(µh ; x, y) = Pa(ε(µ− µ0)h ; x, y)

Then,
sup

c

∥∥∥P′ ε
a (c ; x, ·)

∥∥∥ = O(ε)

When ε = 0, there are no interference interactions (m non-interacting users)

maximizer in HJB equation unique
at ε = 0 (use standard DP ideas)

maximizer unique for small ε

continuity of maximizer in small neighborhood of zero
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Conclusion

In the setting of “low sensitivity” to interference

optimal distributed control is also optimal for centralized control
problem

optimal distributed control computable as solution to NLP
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Future Work

•What happens when system is highly sensitive to interference?

•What about more complex interaction effects?
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To see a set of worked out examples (with full numerics included)
please go to the website of Tim Holliday at:

http://systems.stanford.edu
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