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Multiscale approximations for stochastic reaction
networks

• Reaction networks

• Markov chain models for homogeneous systems

• Stochastic equations

• Classical law of mass action
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• “Slow” time scale: Branching approximation

• “Fast” time scale: Law of large numbers and averaging
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Reaction networks

Standard notation for chemical reactions

A + B
k
⇀ C

is interpreted as “a molecule of A combines with a molecule of B to
give a molecule of C.

A + B 
 C

means that the reaction can go in either direction, that is, a molecule
of C can dissociate into a molecule of A and a molecule of B

We consider a network of reactions involving m chemical species, A1, . . . , Am.

m∑
i=1

νikAi ⇀

m∑
i=1

ν ′ikAi

where the νik and ν ′ik are nonnegative integers
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Markov chain models

X(t) number of molecules of each species in the system at time t.

νk number of molecules of each chemical species consumed in the kth
reaction.

ν ′k number of molecules of each species created by the kth reaction.

λk(x) rate at which the kth reaction occurs.

If the kth reaction occurs at time t, the new state becomes

X(t) = X(t−) + ν ′k − νk.

The number of times that the kth reaction occurs by time t is given by
the counting process satisfying

Rk(t) = Yk(

∫ t

0
λk(X(s))ds),

where the Yk are independent unit Poisson processes.
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Equations for the system state

The state of the system satisfies

X(t) = X(0) +
∑

k

Rk(t)(ν
′
k − νk)

= X(0) +
∑

k

Yk(

∫ t

0
λk(X(s))ds)(ν ′k − νk) = (ν ′ − ν)R(t)

ν ′ is the matrix with columns given by the ν ′k.

ν is the matrix with columns given by the νk.

R(t) is the vector with components Rk(t).
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Rates for the law of mass action

λN
k (x) = κk

∏
i νik!

N |νk|−1

∏
i

(
xi

νik

)
= Nκk

∏
i νik!

N |νk|

∏(
xi

νik

)
,

where |νk| =
∑

i νik and N is a scaling parameter usually taken to be
the volume of the system times Avogadro’s number.

Basic assumption: The system is uniformly mixed.
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First scaling limit

If x gives the number of molecules of each species present, then c =
N−1x gives the concentrations in moles per unit volume.

Then
λN

k (x) ≈ Nκk

∏
i

cνik

i ≡ Nλ̃k(c).

The law of large numbers for the Poisson process implies N−1Y (Nu) ≈
u,

C(t) = N−1X(t) ≈ C(0) +
∑

k

∫ t

0
κk

∏
i

Ci(s)
νik(ν ′k − νk)ds,

which in the large volume limit gives the classical deterministic law of
mass action

Ċ(t) =
∑

k

κk

∏
i

Ci(t)
νik(ν ′k − νk).
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Diffusion approximation

An appropriately renormalized Poisson process can be approximated
by a standard Brownian motion

Y (Nu)−Nu√
N

≈ W (u),

replacing Yk(Nu) by
√

NWk(u) + Nu

CN(t) = CN(0) +
∑

k

N−1Yk(

∫ t

0
λk(X

N(s))ds)(ν ′k − νk)

≈ CN(0) +
∑

k

N−1/2Wk(

∫ t

0
λ̃k(C

N(s))ds)(ν ′k − νk)

+

∫ t

0
F (CN(s))ds,

where F (c) =
∑

k λ̃k(c)(ν
′
k − νk).
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Equivalent form

The diffusion approximation is given by the equation

C̃N(t) = C̃N(0)+
∑

k

N−1/2Wk(

∫ t

0
λ̃k(C̃

N(s))ds)(ν ′k−νk)+

∫ t

0
F (C̃N(s))ds,

which is distributionally equivalent to the Itô equation

C̃N(t) = C̃N(0) +
∑

k

N−1/2
∫ t

0

√
λ̃k(C̃N(s))dW̃k(s)(ν

′
k − νk)

+

∫ t

0
F (C̃N(s))ds

= C̃N(0) +
∑

k

N−1/2
∫ t

0
σ(C̃N(s))dW̃ +

∫ t

0
F (C̃N(s))ds,

where σ(c) is the matrix with columns
√

λ̃k(c)(ν
′
k − νk).
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Chemical reactions in cells

• For reactions in cells, the number of molecules involved, at least for
some of the species, may be sufficiently small that the deterministic
model does not provide a good representation of the behavior of the
system.

• Some species may be present in much greater abundance than oth-
ers.

• The rate constants κk may vary over several orders of magnitude.
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A multiscale model

Take N to be of the order of magnitude of the abundance of the most
abundant species in the system.

For each species i, 0 ≤ αi ≤ 1 and

Zi(t) = N−αiXi(t).

αi should be selected so that Zi = O(1).

Express the reaction rates in terms of Z rather than X and also take
into account large variation in the reaction rates.

Select βk so that the reaction rates can be written as Nβkλk(z), where
λk(z) = O(1) for all relevant values of z. The model becomes

Zi(t) = Zi(0) +
∑

k

N−αiYk(

∫ t

0
Nβkλk(Z(s))ds)(ν ′ik − νik).
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A model of intracellular viral infection

Srivastava, You, Summers, and Yin 2002

Three time-varying species, the viral template, the viral genome, and
the viral structural protein (indexed, 1, 2, 3 respectively).

The model involves six reactions,

X1(t) = X1(0) + Yb(

∫ t

0
k2X2(s)ds)− Yd(

∫ t

0
k4X1(s)ds)

X2(t) = X2(0) + Ya(

∫ t

0
k1X1(s)ds)− Yb(

∫ t

0
k2X2(s)ds)

−Yf(

∫ t

0
k6X2(s)X3(s)ds)

X3(t) = X3(0) + Yc(

∫ t

0
k3X1(s)ds)− Ye(

∫ t

0
k5X3(s)ds)

−Yf(

∫ t

0
k6X2(s)X3(s)ds)
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Scaling parameters

N measures the size of the system and each Xi is scaled according to
its abundance in the system.

For N = 1000, X1 = O(N 0), X2 = O(N 2/3), and X3 = O(N) and we
take Z1 = X1, Z2 = X2N

−2/3, and Z3 = X3N
−1.

Expressing the rate constants in terms of N = 1000

k1 1 1

k2 0.025 2.5N−2/3

k3 1000 N

k4 0.25 .25
k5 2 2

k6 7.5× 10−6 .75N−5/3
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The normalized system

Z1(t) = Z1(0) + Yb(

∫ t

0
k2N

2/3Z2(s)ds)− Yd(

∫ t

0
k4Z1(s)ds)

Z2(t) = Z2(0) + N−2/3Ya(

∫ t

0
k1Z1(s)ds)−N−2/3Yb(

∫ t

0
k2N

2/3Z2(s)ds)

−N−2/3Yf(

∫ t

0
k6N

5/3Z2(s)Z3(s)ds)

Z3(t) = Z3(0) + N−1Yc(

∫ t

0
k3Z1(s)ds)−N−1Ye(

∫ t

0
k5NZ3(s)ds)

−N−1Yf(

∫ t

0
k6N

5/3Z2(s)Z3(s)ds),
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Normalized system

With the scaled rate constants, we have

ZN
1 (t) = ZN

1 (0) + Yb(

∫ t

0
2.5ZN

2 (s)ds)− Yd(

∫ t

0
.25ZN

1 (s)ds)

ZN
2 (t) = ZN

2 (0) + N−2/3Ya(

∫ t

0
ZN

1 (s)ds)−N−2/3Yb(

∫ t

0
2.5ZN

2 (s)ds)

−N−2/3Yf(

∫ t

0
.75ZN

2 (s)ZN
3 (s)ds)

ZN
3 (t) = ZN

3 (0) + N−1Yc(

∫ t

0
NZN

1 (s)ds)−N−1Ye(

∫ t

0
2NZN

3 (s)ds)

−N−1Yf(

∫ t

0
.75ZN

2 (s)ZN
3 (s)ds),
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Probability of a successful infection

We assume that XN
1 (0) = 1 and XN

2 (0) = XN
3 (0) = 0.

XN
1 (t) = 1 + Yb(

∫ t

0
2.5N−2/3XN

2 (s)ds)− Yd(

∫ t

0
.25XN

1 (s)ds)

XN
2 (t) = Ya(

∫ t

0
XN

1 (s)ds)− Yb(

∫ t

0
N−2/32.5XN

2 (s)ds)

−Yf(

∫ t

0
.75N−2/3XN

2 (s)ZN
3 (s)ds)

ZN
3 (t) = N−1Yc(

∫ t

0
NXN

1 (s)ds)−N−1Ye(

∫ t

0
2NZN

3 (s)ds)

−N−1Yf(

∫ t

0
.75N−2/3XN

2 (s)ZN
3 (s)ds),

P{successful infection} ≈ .75.
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Law of large numbers

Let 0 < ε < 2 and define τN
ε = inf{t : ZN

2 (t) ≥ ε} = inf{t : XN
2 (t) ≥

N 2/3ε}. When τN
ε < ∞, define V N

i (t) = Zi(τ
N
ε + N 2/3t).

Theorem 1 a) For 0 < ε < 2, limN→∞ P{τN
ε < ∞} = .75.

b)

lim
N→∞

τN
ε

N 2/3 log N
= constant.

c) Conditioning on τN
ε < ∞, for each δ > 0 and t > 0,

lim
N→∞

P{ sup
0≤s≤t

|V N
2 (s)− V2(s)| ≥ δ} = 0,

where V2 is the solution of

V2(t) = ε +

∫ t

0
7.5V2(s)ds)−

∫ t

0
3.75V2(s)

2ds. (1)
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Fast time scale

On the event τN
ε < ∞,

V N
1 (t) = Z1(τ

N
ε ) + Y ∗

b (

∫ t

0
2.5N 2/3V N

2 (s)ds)− Y ∗
d (

∫ t

0
.25N 2/3V N

1 (s)ds)

V N
2 (t) =

dεN 2/3e
N 2/3 + N−2/3Y ∗

a (

∫ t

0
N 2/3V N

1 (s)ds)

−N−2/3Y ∗
b (

∫ t

0
2.5N 2/3V N

2 (s)ds)

−N−2/3Y ∗
f (

∫ t

0
.75N 2/3V N

2 (s)V N
3 (s)ds)

V N
3 (t) = Z3(τ

N
ε ) + N−1Y ∗

c (

∫ t

0
N 5/3V N

1 (s)ds)−N−1Y ∗
e (

∫ t

0
2N 5/3V N

3 (s)ds)

−N−1Y ∗
f (

∫ t

0
.75N 2/3V N

2 (s)V N
3 (s)ds),
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Averaging

As N →∞, dividing the equations for V N
1 and V N

3 by N 2/3 shows that∫ t

0
V N

1 (s)ds− 10

∫ t

0
V N

2 (s)ds → 0∫ t

0
V N

3 (s)ds− 5

∫ t

0
V N

2 (s)ds → 0.

The assertion for V N
3 and the fact that V N

2 is asymptotically regular
imply ∫ t

0
V N

2 (s)V N
3 (s)ds− 5

∫ t

0
V N

2 (s)2ds → 0.

It follows that V N
2 converges to the solution of (1).
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Behavior of V N
1 and V N

3

V N
1 and V N

3 fluctuate rapidly and locally in time. V N
1 behaves like a

simple birth and death process with V N
2 entering as a parameter, and

V N
3 tries to follow V N

1 via an ordinary differential equation, on the
intervals of constancy of V N

1 (t), that is,

V N
3 (a+N−2/3r) ≈ V N

3 (a)+

∫ r

0
(V N

1 (a+N−2/3s)−2V N
3 (a+N−2/3s))ds,

and except for a short interval of time after each jump of V N
1 , V N

3 (t) ≈
1
2V

N
1 (t).
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Computation of generator

g(V N
1 (t), V N

3 (t))

= g(Z1(τ
N
ε ), Z3(τ

N
ε )) + martingale

+N 2/3
∫ t

0
2.5V N

2 (s)[g(V N
1 (s) + 1, V N

3 (s))− g(V N
1 (s), V N

3 (s))]ds

+N 2/3
∫ t

0
V N

1 (s)N [g(V N
1 (s), V N

3 (s) + 1/N)− g(V N
1 (s), V N

3 (s))]ds

+N 2/3
∫ t

0
.25V N

1 (s)[g(V N
1 (s)− 1, V N

3 (s))− g(V N
1 (s), V N

3 (s))]ds

+N 2/3
∫ t

0
2V N

3 (s)N [g(V N
1 (s), V N

3 (s)− 1/N)− g(V N
1 (s), V N

3 (s))]ds
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Identification of quasistationary distribution

Define ΓN(C ×D × [0, t]) =
∫ t

0 1C(V N
1 (s))1D(V N

3 (s))ds and note that

g(V N
1 (t), V N

3 (t)

= g(Z1(τ
N
ε ), Z3(τ

N
ε ))

+MN(t) + N 2/3
∫

Z+×R+×[0,t]
BN

s g(z, y)ΓN(dz × dy × ds),

where MN is a martingale and

lim
N→∞

BN
s g(z, y)− [2.5V N

2 (s)(g(z + 1, y)− g(z, y))

+.25z(g(z − 1, y)− g(z, y)) + (z − 2y)
∂g

∂y
(z, y)] = 0.

Relative compactness, in an appropriate sense, is easy to verify for
(V N

2 , ΓN) and any limit point (V2, Γ) will satisfy

Γ([0, t]× C ×D) =

∫ t

0
µ13

s (C ×D)ds.
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Dividing by N 2/3 and letting N →∞, we have∫
Z+×R+×[0,t]

BV2(s)g(z, y)Γ(dz × dy × ds) = 0,

where

Bvg(z, y) = [2.5v(g(z + 1, y)− g(z, y)) + .25z(g(z − 1, y)

−g(z, y)) + (z − 2y)
∂g

∂y
(z, y)].

(2) determines all the moments

Let (Zs, Ys) be a random vector with the law µ13
s .

Zs is just a Poisson variable with expectation 10V2(s).

With g(z, y) = y in (2), we get∑
z

∫
y

[z − 2y]µ13
s (dz, dy) = 0 ⇒ EYs =

1

2
EZs = 5V2(s).
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With g(z, y) = zy, we get∑
z

∫
y

[z(z−2y)+
5

2
yV2(s)−

1

4
yz]µ13

s (dz, dy) = 0 ⇒ EZsYs =
4

9
EZ2

s+
10

9
V2(s)EYs

and

E[ZsYs] =
40

9
V2(s) + 50V2(s)

2.

With g(z, y) = y2, ∑
z

∫
y

[2y(z − 2y)]µ13
s (dz, dy) = 0

implies

EY 2
s =

1

2
EZsYs, etc.
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Quasistationarity of fast components

Theorem 2 Conditioning on τN
ε < ∞, for each t ≥ 0, (V N

1 (t), V N
3 (t))

converges in distribution to a pair (V1(t), V3(t)) with joint distribution
µ13

t satisfying∫
[2.5V2(t)(g(z + 1, y)− g(z, y)) + .25z(g(z − 1, y)− g(z, y)) (2)

+(z − 2y)
∂g

∂y
(z, y)]µ13

t (dz, dy) = 0.

In particular, V1(t) has a Poisson distribution with parameter 10V2(t),
so

E[V1(t)] = V ar(V1(t)) = 10V2(t);

E[V3(t)] = 5V2(t), V ar(V3(t)) =
20

9
V2(t);

and

Cov(V1(t), V3(t)) =
40

9
V2(t).
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Branching approximation

Change time variable:
∫ γN (t)

0 (1{XN
1 (s)≥1} + N−2/31{XN

1 (s)=0})ds = t

Define X̂N
i (t) = XN

i ◦ γN(t) and ẐN
3 (t) = ZN

3 ◦ γN(t).

X̂N
1 (t) = 1 + Yb(

∫ t

0
2.5(N−2/31{X̂N

1 (s)≥1} + 1{X̂N
1 (s)=0})X̂

N
2 (s)ds)

−Yd(

∫ t

0
.25X̂N

1 (s)ds)

X̂N
2 (t) = Ya(

∫ t

0
X̂N

1 (s)ds)

−Yb(

∫ t

0
2.5(N−2/31{X̂N

1 (s)≥1} + 1{X̂N
1 (s)=0})X̂

N
2 (s)ds)

−Yf(

∫ t

0
.75(N−2/31{X̂N

1 (s)≥1} + 1{X̂N
1 (s)=0})X̂

N
2 (s)ẐN

3 (s)ds)
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ẐN
3 (t) = N−1Yc(

∫ t

0
NX̂N

1 (s)ds)

−N−1Ye(

∫ t

0
2N(1{X̂N

1 (s)≥1} + N 2/31{X̂N
1 (s)=0})Ẑ

N
3 (s)ds)

−N−1Yf(

∫ t

0
.75(N−2/31{X̂N

1 (s)≥1} + 1{X̂N
1 (s)=0})X̂

N
2 (s)ẐN

3 (s)ds).

Since ẐN
3 decays at rate N 2/3 when X̂N

1 = 0, it follows that

1{X̂N
1 (s)=0})Ẑ

N
3 (s) → 0

as N →∞ for almost every s.
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Limiting branching process

Consequently, (X̂N
1 , X̂N

2 ) converges to the solution of

X̂1(t) = 1 + Yb(

∫ t

0
2.51{X̂1(s)=0}X̂2(s)ds)− Yd(

∫ t

0
.25X̂1(s)ds)

X̂2(t) = Ya(

∫ t

0
X̂1(s)ds)− Yb(

∫ t

0
2.51{X̂1(s)=0}X̂2(s)ds).

The solution of this system has the property that X̂1 only takes on
values 0 and 1. Note that the ith interval during which X̂1 = 1 is
exponentially distributed with parameter .25 and the number ξi of Type
2 molecules created during that interval has distribution

P{ξ = k} =

∫ ∞

0
.25e−.25te−t t

k

k!
dt =

1

5

(
4

5

)k

, k = 0, 1, . . . .
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Let

σn = inf{t : Yd(

∫ t

0
.25X̂1(s)ds) = n}.

If σn < ∞, then

X̂2(σn) =
n∑

i=1

ξi − (n− 1),

and for n > 1, σn < ∞ if and only if X̂2(σk) > 0, k = 1, . . . , n − 1. In
particular, σn < ∞ for all n if and only if the random walk

Sn =
n∑

i=1

ξi − (n− 1)

never hits 0 for n > 0, an event of probability .75. In particular, this
is essentially the probability that a single virus successfully infects the
cell.


