Multiscale approximations for stochastic reaction networks

- Reaction networks
- Markov chain models for homogeneous systems
- Stochastic equations
- Classical law of mass action
- Multiscale models
- A model of viral infection
- "Slow" time scale: Branching approximation
- "Fast" time scale: Law of large numbers and averaging

with Karen Ball, Lea Popovic, and Greg Rempala

Reaction networks

Standard notation for chemical reactions

$$
A+B \stackrel{k}{\rightarrow} C
$$

is interpreted as "a molecule of A combines with a molecule of B to give a molecule of C.

$$
A+B \rightleftharpoons C
$$

means that the reaction can go in either direction, that is, a molecule of C can dissociate into a molecule of A and a molecule of B

We consider a network of reactions involving m chemical species, A_{1}, \ldots, A_{m}.

$$
\sum_{i=1}^{m} \nu_{i k} A_{i} \rightharpoonup \sum_{i=1}^{m} \nu_{i k}^{\prime} A_{i}
$$

where the $\nu_{i k}$ and $\nu_{i k}^{\prime}$ are nonnegative integers

Markov chain models

$X(t)$ number of molecules of each species in the system at time t.
ν_{k} number of molecules of each chemical species consumed in the k th reaction.
ν_{k}^{\prime} number of molecules of each species created by the k th reaction. $\lambda_{k}(x)$ rate at which the k th reaction occurs.

If the k th reaction occurs at time t, the new state becomes

$$
X(t)=X(t-)+\nu_{k}^{\prime}-\nu_{k} .
$$

The number of times that the k th reaction occurs by time t is given by the counting process satisfying

$$
R_{k}(t)=Y_{k}\left(\int_{0}^{t} \lambda_{k}(X(s)) d s\right)
$$

where the Y_{k} are independent unit Poisson processes.

Equations for the system state

The state of the system satisfies

$$
\begin{aligned}
X(t) & =X(0)+\sum_{k} R_{k}(t)\left(\nu_{k}^{\prime}-\nu_{k}\right) \\
& =X(0)+\sum_{k} Y_{k}\left(\int_{0}^{t} \lambda_{k}(X(s)) d s\right)\left(\nu_{k}^{\prime}-\nu_{k}\right)=\left(\nu^{\prime}-\nu\right) R(t)
\end{aligned}
$$

ν^{\prime} is the matrix with columns given by the ν_{k}^{\prime}.
ν is the matrix with columns given by the ν_{k}.
$R(t)$ is the vector with components $R_{k}(t)$.

Rates for the law of mass action

$$
\lambda_{k}^{N}(x)=\kappa_{k} \frac{\prod_{i} \nu_{i k}!}{N^{\left|\nu_{k}\right|-1}} \prod_{i}\binom{x_{i}}{\nu_{i k}}=N \kappa_{k} \frac{\prod_{i} \nu_{i k}!}{N^{\left|\nu_{k}\right|}} \prod\binom{x_{i}}{\nu_{i k}}
$$

where $\left|\nu_{k}\right|=\sum_{i} \nu_{i k}$ and N is a scaling parameter usually taken to be the volume of the system times Avogadro's number.

Basic assumption: The system is uniformly mixed.

First scaling limit

If x gives the number of molecules of each species present, then $c=$ $N^{-1} x$ gives the concentrations in moles per unit volume.

Then

$$
\lambda_{k}^{N}(x) \approx N \kappa_{k} \prod c_{i}^{\nu_{k k}} \equiv N \tilde{\lambda}_{k}(c)
$$

The law of large numbers for the Poisson process implies $N^{-1} Y(N u) \approx$ u,

$$
C(t)=N^{-1} X(t) \approx C(0)+\sum_{k} \int_{0}^{t} \kappa_{k} \prod_{i} C_{i}(s)^{\nu_{i k}}\left(\nu_{k}^{\prime}-\nu_{k}\right) d s
$$

which in the large volume limit gives the classical deterministic law of mass action

$$
\dot{C}(t)=\sum_{k} \kappa_{k} \prod_{i} C_{i}(t)^{\nu_{i k}}\left(\nu_{k}^{\prime}-\nu_{k}\right) .
$$

Diffusion approximation

An appropriately renormalized Poisson process can be approximated by a standard Brownian motion

$$
\frac{Y(N u)-N u}{\sqrt{N}} \approx W(u)
$$

replacing $Y_{k}(N u)$ by $\sqrt{N} W_{k}(u)+N u$

$$
\begin{aligned}
& C^{N}(t)= C^{N}(0)+\sum_{k} N^{-1} Y_{k}\left(\int_{0}^{t} \lambda_{k}\left(X^{N}(s)\right) d s\right)\left(\nu_{k}^{\prime}-\nu_{k}\right) \\
& \approx C^{N}(0)+\sum_{k} N^{-1 / 2} W_{k}\left(\int_{0}^{t} \tilde{\lambda}_{k}\left(C^{N}(s)\right) d s\right)\left(\nu_{k}^{\prime}-\nu_{k}\right) \\
&+\int_{0}^{t} F\left(C^{N}(s)\right) d s
\end{aligned}
$$

where $F(c)=\sum_{k} \tilde{\lambda}_{k}(c)\left(\nu_{k}^{\prime}-\nu_{k}\right)$.

Equivalent form

The diffusion approximation is given by the equation $\tilde{C}^{N}(t)=\tilde{C}^{N}(0)+\sum_{k} N^{-1 / 2} W_{k}\left(\int_{0}^{t} \tilde{\lambda}_{k}\left(\tilde{C}^{N}(s)\right) d s\right)\left(\nu_{k}^{\prime}-\nu_{k}\right)+\int_{0}^{t} F\left(\tilde{C}^{N}(s)\right) d s$,
which is distributionally equivalent to the Itô equation

$$
\begin{aligned}
\tilde{C}^{N}(t)= & \tilde{C}^{N}(0)+\sum_{k} N^{-1 / 2} \int_{0}^{t} \sqrt{\tilde{\lambda}_{k}\left(\tilde{C}^{N}(s)\right)} d \tilde{W}_{k}(s)\left(\nu_{k}^{\prime}-\nu_{k}\right) \\
& \quad+\int_{0}^{t} F\left(\tilde{C}^{N}(s)\right) d s \\
= & \tilde{C}^{N}(0)+\sum_{k} N^{-1 / 2} \int_{0}^{t} \sigma\left(\tilde{C}^{N}(s)\right) d \tilde{W}+\int_{0}^{t} F\left(\tilde{C}^{N}(s)\right) d s,
\end{aligned}
$$

where $\sigma(c)$ is the matrix with columns $\sqrt{\tilde{\lambda}_{k}(c)}\left(\nu_{k}^{\prime}-\nu_{k}\right)$.

Chemical reactions in cells

- For reactions in cells, the number of molecules involved, at least for some of the species, may be sufficiently small that the deterministic model does not provide a good representation of the behavior of the system.
- Some species may be present in much greater abundance than others.
- The rate constants κ_{k} may vary over several orders of magnitude.

A multiscale model

Take N to be of the order of magnitude of the abundance of the most abundant species in the system.

For each species $i, 0 \leq \alpha_{i} \leq 1$ and

$$
Z_{i}(t)=N^{-\alpha_{i}} X_{i}(t) .
$$

α_{i} should be selected so that $Z_{i}=O(1)$.
Express the reaction rates in terms of Z rather than X and also take into account large variation in the reaction rates.
Select β_{k} so that the reaction rates can be written as $N^{\beta_{k}} \lambda_{k}(z)$, where $\lambda_{k}(z)=O(1)$ for all relevant values of z. The model becomes

$$
Z_{i}(t)=Z_{i}(0)+\sum_{k} N^{-\alpha_{i}} Y_{k}\left(\int_{0}^{t} N^{\beta_{k}} \lambda_{k}(Z(s)) d s\right)\left(\nu_{i k}^{\prime}-\nu_{i k}\right)
$$

A model of intracellular viral infection

Srivastava, You, Summers, and Yin 2002
Three time-varying species, the viral template, the viral genome, and the viral structural protein (indexed, 1, 2, 3 respectively).

The model involves six reactions,

$$
\begin{aligned}
& X_{1}(t)= X_{1}(0)+Y_{b}\left(\int_{0}^{t} k_{2} X_{2}(s) d s\right)-Y_{d}\left(\int_{0}^{t} k_{4} X_{1}(s) d s\right) \\
& X_{2}(t)=X_{2}(0)+Y_{a}\left(\int_{0}^{t} k_{1} X_{1}(s) d s\right)-Y_{b}\left(\int_{0}^{t} k_{2} X_{2}(s) d s\right) \\
&-Y_{f}\left(\int_{0}^{t} k_{6} X_{2}(s) X_{3}(s) d s\right) \\
& X_{3}(t)=X_{3}(0)+Y_{c}\left(\int_{0}^{t} k_{3} X_{1}(s) d s\right)-Y_{e}\left(\int_{0}^{t} k_{5} X_{3}(s) d s\right) \\
&-Y_{f}\left(\int_{0}^{t} k_{6} X_{2}(s) X_{3}(s) d s\right)
\end{aligned}
$$

Scaling parameters

N measures the size of the system and each X_{i} is scaled according to its abundance in the system.
For $N=1000, X_{1}=O\left(N^{0}\right), X_{2}=O\left(N^{2 / 3}\right)$, and $X_{3}=O(N)$ and we take $Z_{1}=X_{1}, Z_{2}=X_{2} N^{-2 / 3}$, and $Z_{3}=X_{3} N^{-1}$.

Expressing the rate constants in terms of $N=1000$

k_{1}	1	1
k_{2}	0.025	$2.5 N^{-2 / 3}$
k_{3}	1000	N
k_{4}	0.25	.25
k_{5}	2	2
k_{6}	7.5×10^{-6}	$.75 N^{-5 / 3}$

The normalized system

$$
\begin{aligned}
& Z_{1}(t)= Z_{1}(0)+Y_{b}\left(\int_{0}^{t} k_{2} N^{2 / 3} Z_{2}(s) d s\right)-Y_{d}\left(\int_{0}^{t} k_{4} Z_{1}(s) d s\right) \\
& \begin{aligned}
Z_{2}(t)= & Z_{2}(0)+N^{-2 / 3} Y_{a}\left(\int_{0}^{t} k_{1} Z_{1}(s) d s\right)-N^{-2 / 3} Y_{b}\left(\int_{0}^{t} k_{2} N^{2 / 3} Z_{2}(s) d s\right) \\
& \quad-N^{-2 / 3} Y_{f}\left(\int_{0}^{t} k_{6} N^{5 / 3} Z_{2}(s) Z_{3}(s) d s\right) \\
Z_{3}(t)= & Z_{3}(0)+N^{-1} Y_{c}\left(\int_{0}^{t} k_{3} Z_{1}(s) d s\right)-N^{-1} Y_{e}\left(\int_{0}^{t} k_{5} N Z_{3}(s) d s\right) \\
& \quad-N^{-1} Y_{f}\left(\int_{0}^{t} k_{6} N^{5 / 3} Z_{2}(s) Z_{3}(s) d s\right),
\end{aligned}
\end{aligned}
$$

Normalized system

With the scaled rate constants, we have

$$
\begin{aligned}
Z_{1}^{N}(t)= & Z_{1}^{N}(0)+Y_{b}\left(\int_{0}^{t} 2.5 Z_{2}^{N}(s) d s\right)-Y_{d}\left(\int_{0}^{t} .25 Z_{1}^{N}(s) d s\right) \\
Z_{2}^{N}(t)= & Z_{2}^{N}(0)+N^{-2 / 3} Y_{a}\left(\int_{0}^{t} Z_{1}^{N}(s) d s\right)-N^{-2 / 3} Y_{b}\left(\int_{0}^{t} 2.5 Z_{2}^{N}(s) d s\right) \\
& \quad-N^{-2 / 3} Y_{f}\left(\int_{0}^{t} .75 Z_{2}^{N}(s) Z_{3}^{N}(s) d s\right) \\
Z_{3}^{N}(t)= & Z_{3}^{N}(0)+N^{-1} Y_{c}\left(\int_{0}^{t} N Z_{1}^{N}(s) d s\right)-N^{-1} Y_{e}\left(\int_{0}^{t} 2 N Z_{3}^{N}(s) d s\right) \\
& \quad-N^{-1} Y_{f}\left(\int_{0}^{t} .75 Z_{2}^{N}(s) Z_{3}^{N}(s) d s\right),
\end{aligned}
$$

Probability of a successful infection

We assume that $X_{1}^{N}(0)=1$ and $X_{2}^{N}(0)=X_{3}^{N}(0)=0$.

$$
\begin{aligned}
X_{1}^{N}(t)= & 1+Y_{b}\left(\int_{0}^{t} 2.5 N^{-2 / 3} X_{2}^{N}(s) d s\right)-Y_{d}\left(\int_{0}^{t} .25 X_{1}^{N}(s) d s\right) \\
X_{2}^{N}(t)= & Y_{a}\left(\int_{0}^{t} X_{1}^{N}(s) d s\right)-Y_{b}\left(\int_{0}^{t} N^{-2 / 3} 2.5 X_{2}^{N}(s) d s\right) \\
& \quad Y_{f}\left(\int_{0}^{t} .75 N^{-2 / 3} X_{2}^{N}(s) Z_{3}^{N}(s) d s\right) \\
Z_{3}^{N}(t)= & N^{-1} Y_{c}\left(\int_{0}^{t} N X_{1}^{N}(s) d s\right)-N^{-1} Y_{e}\left(\int_{0}^{t} 2 N Z_{3}^{N}(s) d s\right) \\
& \quad N^{-1} Y_{f}\left(\int_{0}^{t} .75 N^{-2 / 3} X_{2}^{N}(s) Z_{3}^{N}(s) d s\right)
\end{aligned}
$$

$P\{$ successful infection $\} \approx .75$.

Law of large numbers

Let $0<\epsilon<2$ and define $\tau_{\epsilon}^{N}=\inf \left\{t: Z_{2}^{N}(t) \geq \epsilon\right\}=\inf \left\{t: X_{2}^{N}(t) \geq\right.$ $\left.N^{2 / 3} \epsilon\right\}$. When $\tau_{\epsilon}^{N}<\infty$, define $V_{i}^{N}(t)=Z_{i}\left(\tau_{\epsilon}^{N}+N^{2 / 3} t\right)$.

Theorem 1 a) For $0<\epsilon<2, \lim _{N \rightarrow \infty} P\left\{\tau_{\epsilon}^{N}<\infty\right\}=.75$.
b)

$$
\lim _{N \rightarrow \infty} \frac{\tau_{\epsilon}^{N}}{N^{2 / 3} \log N}=\text { constant }
$$

c) Conditioning on $\tau_{\epsilon}^{N}<\infty$, for each $\delta>0$ and $t>0$,

$$
\lim _{N \rightarrow \infty} P\left\{\sup _{0 \leq s \leq t}\left|V_{2}^{N}(s)-V_{2}(s)\right| \geq \delta\right\}=0
$$

where V_{2} is the solution of

$$
\begin{equation*}
\left.V_{2}(t)=\epsilon+\int_{0}^{t} 7.5 V_{2}(s) d s\right)-\int_{0}^{t} 3.75 V_{2}(s)^{2} d s \tag{1}
\end{equation*}
$$

Fast time scale

On the event $\tau_{\epsilon}^{N}<\infty$,

$$
\begin{aligned}
& V_{1}^{N}(t)= Z_{1}\left(\tau_{\epsilon}^{N}\right)+Y_{b}^{*}\left(\int_{0}^{t}\right. \\
&\left.2.5 N^{2 / 3} V_{2}^{N}(s) d s\right)-Y_{d}^{*}\left(\int_{0}^{t} .25 N^{2 / 3} V_{1}^{N}(s) d s\right) \\
& V_{2}^{N}(t)= \frac{\left\lceil\epsilon N^{2 / 3}\right\rceil}{N^{2 / 3}}+N^{-2 / 3} Y_{a}^{*}\left(\int_{0}^{t} N^{2 / 3} V_{1}^{N}(s) d s\right) \\
& \quad-N^{-2 / 3} Y_{b}^{*}\left(\int_{0}^{t} 2.5 N^{2 / 3} V_{2}^{N}(s) d s\right) \\
& \quad-N^{-2 / 3} Y_{f}^{*}\left(\int_{0}^{t} .75 N^{2 / 3} V_{2}^{N}(s) V_{3}^{N}(s) d s\right) \\
& V_{3}^{N}(t)= Z_{3}\left(\tau_{\epsilon}^{N}\right)+N^{-1} Y_{c}^{*}\left(\int_{0}^{t} N^{5 / 3} V_{1}^{N}(s) d s\right)-N^{-1} Y_{e}^{*}\left(\int_{0}^{t} 2 N^{5 / 3} V_{3}^{N}(s) d s\right) \\
& \quad-N^{-1} Y_{f}^{*}\left(\int_{0}^{t} .75 N^{2 / 3} V_{2}^{N}(s) V_{3}^{N}(s) d s\right)
\end{aligned}
$$

Averaging

As $N \rightarrow \infty$, dividing the equations for V_{1}^{N} and V_{3}^{N} by $N^{2 / 3}$ shows that

$$
\begin{aligned}
& \int_{0}^{t} V_{1}^{N}(s) d s-10 \int_{0}^{t} V_{2}^{N}(s) d s \rightarrow 0 \\
& \int_{0}^{t} V_{3}^{N}(s) d s-5 \int_{0}^{t} V_{2}^{N}(s) d s \rightarrow 0
\end{aligned}
$$

The assertion for V_{3}^{N} and the fact that V_{2}^{N} is asymptotically regular imply

$$
\int_{0}^{t} V_{2}^{N}(s) V_{3}^{N}(s) d s-5 \int_{0}^{t} V_{2}^{N}(s)^{2} d s \rightarrow 0
$$

It follows that V_{2}^{N} converges to the solution of (1).

Behavior of V_{1}^{N} and V_{3}^{N}

V_{1}^{N} and V_{3}^{N} fluctuate rapidly and locally in time. V_{1}^{N} behaves like a simple birth and death process with V_{2}^{N} entering as a parameter, and V_{3}^{N} tries to follow V_{1}^{N} via an ordinary differential equation, on the intervals of constancy of $V_{1}^{N}(t)$, that is,
$V_{3}^{N}\left(a+N^{-2 / 3} r\right) \approx V_{3}^{N}(a)+\int_{0}^{r}\left(V_{1}^{N}\left(a+N^{-2 / 3} s\right)-2 V_{3}^{N}\left(a+N^{-2 / 3} s\right)\right) d s$,
and except for a short interval of time after each jump of $V_{1}^{N}, V_{3}^{N}(t) \approx$ $\frac{1}{2} V_{1}^{N}(t)$.

Computation of generator

$$
\begin{aligned}
& g\left(V_{1}^{N}(t), V_{3}^{N}(t)\right) \\
&= g\left(Z_{1}\left(\tau_{\epsilon}^{N}\right), Z_{3}\left(\tau_{\epsilon}^{N}\right)\right)+\text { martingale } \\
&+N^{2 / 3} \int_{0}^{t} 2.5 V_{2}^{N}(s)\left[g\left(V_{1}^{N}(s)+1, V_{3}^{N}(s)\right)-g\left(V_{1}^{N}(s), V_{3}^{N}(s)\right)\right] d s \\
&+N^{2 / 3} \int_{0}^{t} V_{1}^{N}(s) N\left[g\left(V_{1}^{N}(s), V_{3}^{N}(s)+1 / N\right)-g\left(V_{1}^{N}(s), V_{3}^{N}(s)\right)\right] d s \\
&+N^{2 / 3} \int_{0}^{t} \cdot 25 V_{1}^{N}(s)\left[g\left(V_{1}^{N}(s)-1, V_{3}^{N}(s)\right)-g\left(V_{1}^{N}(s), V_{3}^{N}(s)\right)\right] d s \\
&+N^{2 / 3} \int_{0}^{t} 2 V_{3}^{N}(s) N\left[g\left(V_{1}^{N}(s), V_{3}^{N}(s)-1 / N\right)-g\left(V_{1}^{N}(s), V_{3}^{N}(s)\right)\right] d s
\end{aligned}
$$

Identification of quasistationary distribution

Define $\Gamma^{N}(C \times D \times[0, t])=\int_{0}^{t} \mathbf{1}_{C}\left(V_{1}^{N}(s)\right) \mathbf{1}_{D}\left(V_{3}^{N}(s)\right) d s$ and note that

$$
\begin{aligned}
& g\left(V_{1}^{N}(t), V_{3}^{N}(t)\right. \\
& =g\left(Z_{1}\left(\tau_{\epsilon}^{N}\right), Z_{3}\left(\tau_{\epsilon}^{N}\right)\right) \\
& \quad+M^{N}(t)+N^{2 / 3} \int_{\mathbb{Z}_{+} \times \mathbb{R}_{+} \times[0, t]} B_{s}^{N} g(z, y) \Gamma^{N}(d z \times d y \times d s),
\end{aligned}
$$

where M^{N} is a martingale and

$$
\begin{aligned}
\lim _{N \rightarrow \infty} B_{s}^{N} g(z, y)- & {\left[2.5 V_{2}^{N}(s)(g(z+1, y)-g(z, y))\right.} \\
& \left.+.25 z(g(z-1, y)-g(z, y))+(z-2 y) \frac{\partial g}{\partial y}(z, y)\right]=0 .
\end{aligned}
$$

Relative compactness, in an appropriate sense, is easy to verify for $\left(V_{2}^{N}, \Gamma^{N}\right)$ and any limit point $\left(V_{2}, \Gamma\right)$ will satisfy

$$
\Gamma([0, t] \times C \times D)=\int_{0}^{t} \mu_{s}^{13}(C \times D) d s
$$

Dividing by $N^{2 / 3}$ and letting $N \rightarrow \infty$, we have

$$
\int_{\mathbb{Z}_{+} \times \mathbb{R}_{+} \times[0, t]} B_{V_{2}(s)} g(z, y) \Gamma(d z \times d y \times d s)=0
$$

where

$$
\begin{array}{r}
B_{v} g(z, y)=[2.5 v(g(z+1, y)-g(z, y))+.25 z(g(z-1, y) \\
\left.-g(z, y))+(z-2 y) \frac{\partial g}{\partial y}(z, y)\right] .
\end{array}
$$

(2) determines all the moments

Let $\left(Z_{s}, Y_{s}\right)$ be a random vector with the law μ_{s}^{13}.
Z_{s} is just a Poisson variable with expectation $10 V_{2}(s)$.
With $g(z, y)=y$ in (2), we get

$$
\sum_{z} \int_{y}[z-2 y] \mu_{s}^{13}(d z, d y)=0 \Rightarrow \quad E Y_{s}=\frac{1}{2} E Z_{s}=5 V_{2}(s)
$$

With $g(z, y)=z y$, we get
$\sum_{z} \int_{y}\left[z(z-2 y)+\frac{5}{2} y V_{2}(s)-\frac{1}{4} y z\right] \mu_{s}^{13}(d z, d y)=0 \Rightarrow E Z_{s} Y_{s}=\frac{4}{9} E Z_{s}^{2}+\frac{10}{9} V_{2}(s)$ and

$$
E\left[Z_{s} Y_{s}\right]=\frac{40}{9} V_{2}(s)+50 V_{2}(s)^{2}
$$

With $g(z, y)=y^{2}$,

$$
\sum_{z} \int_{y}[2 y(z-2 y)] \mu_{s}^{13}(d z, d y)=0
$$

implies

$$
E Y_{s}^{2}=\frac{1}{2} E Z_{s} Y_{s}, \quad \text { etc. }
$$

Quasistationarity of fast components

Theorem 2 Conditioning on $\tau_{\epsilon}^{N}<\infty$, for each $t \geq 0,\left(V_{1}^{N}(t), V_{3}^{N}(t)\right)$ converges in distribution to a pair $\left(V_{1}(t), V_{3}(t)\right)$ with joint distribution μ_{t}^{13} satisfying

$$
\begin{array}{r}
\int\left[2.5 V_{2}(t)(g(z+1, y)-g(z, y))+.25 z(g(z-1, y)-g(z, y))\right. \tag{2}\\
\left.+(z-2 y) \frac{\partial g}{\partial y}(z, y)\right] \mu_{t}^{13}(d z, d y)=0 .
\end{array}
$$

In particular, $V_{1}(t)$ has a Poisson distribution with parameter $10 V_{2}(t)$, so

$$
\begin{gathered}
E\left[V_{1}(t)\right]=\operatorname{Var}\left(V_{1}(t)\right)=10 V_{2}(t) ; \\
E\left[V_{3}(t)\right]=5 V_{2}(t), \quad \operatorname{Var}\left(V_{3}(t)\right)=\frac{20}{9} V_{2}(t) ;
\end{gathered}
$$

and

$$
\operatorname{Cov}\left(V_{1}(t), V_{3}(t)\right)=\frac{40}{9} V_{2}(t) .
$$

Branching approximation

Change time variable: $\int_{0}^{\gamma^{N}(t)}\left(\mathbf{1}_{\left\{X_{1}^{N}(s) \geq 1\right\}}+N^{-2 / 3} \mathbf{1}_{\left\{X_{1}^{N}(s)=0\right\}}\right) d s=t$
Define $\hat{X}_{i}^{N}(t)=X_{i}^{N} \circ \gamma^{N}(t)$ and $\hat{Z}_{3}^{N}(t)=Z_{3}^{N} \circ \gamma^{N}(t)$.

$$
\begin{aligned}
\hat{X}_{1}^{N}(t)=1+Y_{b}\left(\int _ { 0 } ^ { t } 2 . 5 \left(N^{-2 / 3} \mathbf{1}_{\left\{\hat{X}_{1}^{N}(s) \geq 1\right\}}\right.\right. & \left.\left.+\mathbf{1}_{\left\{\hat{X}_{1}^{N}(s)=0\right\}}\right) \hat{X}_{2}^{N}(s) d s\right) \\
& -Y_{d}\left(\int_{0}^{t} \cdot 25 \hat{X}_{1}^{N}(s) d s\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{X}_{2}^{N}(t)=Y_{a} & \left(\int_{0}^{t} \hat{X}_{1}^{N}(s) d s\right) \\
& -Y_{b}\left(\int_{0}^{t} 2.5\left(N^{-2 / 3 / 3} \mathbf{1}_{\left\{\hat{X}_{1}^{N}(s) \geq 1\right\}}+\mathbf{1}_{\left\{\hat{X}_{1}^{N}(s)=0\right\}}\right) \hat{X}_{2}^{N}(s) d s\right) \\
& -Y_{f}\left(\int_{0}^{t} \cdot 75\left(N^{-2 / 3} \mathbf{1}_{\left\{\hat{X}_{1}^{N}(s) \geq 1\right\}}+\mathbf{1}_{\left\{\hat{X}_{1}^{N}(s)=0\right\}}\right) \hat{X}_{2}^{N}(s) \hat{Z}_{3}^{N}(s) d s\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{Z}_{3}^{N}(t)= & N^{-1} Y_{c}\left(\int_{0}^{t} N \hat{X}_{1}^{N}(s) d s\right) \\
& -N^{-1} Y_{e}\left(\int_{0}^{t} 2 N\left(\mathbf{1}_{\left\{\hat{X}_{1}^{N}(s) \geq 1\right\}}+N^{2 / 3} \mathbf{1}_{\left\{\hat{X}_{1}^{N}(s)=0\right\}}\right) \hat{Z}_{3}^{N}(s) d s\right) \\
& -N^{-1} Y_{f}\left(\int_{0}^{t} .75\left(N^{-2 / 3} \mathbf{1}_{\left\{\hat{X}_{1}^{N}(s) \geq 1\right\}}+\mathbf{1}_{\left\{\hat{X}_{1}^{N}(s)=0\right\}}\right) \hat{X}_{2}^{N}(s) \hat{Z}_{3}^{N}(s) d s\right) .
\end{aligned}
$$

Since \hat{Z}_{3}^{N} decays at rate $N^{2 / 3}$ when $\hat{X}_{1}^{N}=0$, it follows that

$$
\left.\mathbf{1}_{\left\{\hat{X}_{1}^{N}(s)=0\right\}}\right) \hat{Z}_{3}^{N}(s) \rightarrow 0
$$

as $N \rightarrow \infty$ for almost every s.

Limiting branching process

Consequently, $\left(\hat{X}_{1}^{N}, \hat{X}_{2}^{N}\right)$ converges to the solution of

$$
\begin{aligned}
& \hat{X}_{1}(t)=1+Y_{b}\left(\int_{0}^{t} 2.51_{\left\{\hat{X}_{1}(s)=0\right\}} \hat{X}_{2}(s) d s\right)-Y_{d}\left(\int_{0}^{t} \cdot 25 \hat{X}_{1}(s) d s\right) \\
& \hat{X}_{2}(t)=Y_{a}\left(\int_{0}^{t} \hat{X}_{1}(s) d s\right)-Y_{b}\left(\int_{0}^{t} 2.5 \mathbf{1}_{\left\{\hat{X}_{1}(s)=0\right\}} \hat{X}_{2}(s) d s\right) .
\end{aligned}
$$

The solution of this system has the property that \hat{X}_{1} only takes on values 0 and 1. Note that the i th interval during which $\hat{X}_{1}=1$ is exponentially distributed with parameter .25 and the number ξ_{i} of Type 2 molecules created during that interval has distribution

$$
P\{\xi=k\}=\int_{0}^{\infty} .25 e^{-.25 t} e^{-t} \frac{t^{k}}{k!} d t=\frac{1}{5}\left(\frac{4}{5}\right)^{k}, \quad k=0,1, \ldots
$$

Let

$$
\sigma_{n}=\inf \left\{t: Y_{d}\left(\int_{0}^{t} .25 \hat{X}_{1}(s) d s\right)=n\right\}
$$

If $\sigma_{n}<\infty$, then

$$
\hat{X}_{2}\left(\sigma_{n}\right)=\sum_{i=1}^{n} \xi_{i}-(n-1)
$$

and for $n>1, \sigma_{n}<\infty$ if and only if $\hat{X}_{2}\left(\sigma_{k}\right)>0, k=1, \ldots, n-1$. In particular, $\sigma_{n}<\infty$ for all n if and only if the random walk

$$
S_{n}=\sum_{i=1}^{n} \xi_{i}-(n-1)
$$

never hits 0 for $n>0$, an event of probability .75. In particular, this is essentially the probability that a single virus successfully infects the cell.

