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Sindo Núñez (CWI,TUE), Dennis van Ooteghem (TUE).



The basic model: GI/GI/1 PS

• Jobs arrive according to a renewal process;

i.e. interarrival times {Ai, i ∈ N} are i.i.d.;

• Job sizes {Bi, i ∈ N} are i.i.d.;

•When there are n jobs in the system, each of
them is served at rate 1/n.

• Stability criterion: ρ := E{B}/E{A} < 1.
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Motivation

• PS queues were originally intended to analyze
time-sharing in computer networks (see e.g. Klein-
rock).

• Nowadays: PS is commonly used to model elas-
tic traffic in communication networks.

Elastic traffic: Traffic that is not subject to tight
delay requirements (e.g. data opposed to voice).

• Example: A link with long-lived identical TCP
flows (elephants). By the nature of TCP, every
data flow eventually gets the same share of the
bandwidth, i.e. the server divides its attention
equally over all flows.

•Warning: PS is an idealization of TCP (the
above fair-sharing property is assumed to be es-
tablished instantaneously)
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Main performance measures

Q := Steady-state queue length

V := Sojourn time of an arbitrary customer

V (τ ) := Sojourn time of an arbitrary

customer with job size τ .

Well-known results for M/G/1 PS:

• Q has a geometric distribution:

P{Q = n} = (1− ρ)ρn.

• The mean of V (τ ) is linear in τ :

E{V (τ )} =
τ

1− ρ
.

• Fluid and diffusion limits for GI/GI/1: Gro-
moll,Puha,Stolyar,Williams.
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Main topic of this talk:
Long sojourn times

• P{V > x}, x→∞.

• Large deviations techniques.

“Unlikely events happen in the most likely way”

• Long sojourn times can be caused by

1. The job of the tagged customer;

2. The jobs present at the arrival of the tagged
customer;

3. The jobs arriving during the sojourn time of
the tagged customer.
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Overview

• Heavy tails

• Light (exponential) tails

• A mixed (two-class) scenario
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Heavy tails

Theorem (for M/G/1 PS)

If P{B > x} ∼ L(x)x−ν, ν > 1, then

P{V > x} ∼ P{B > x(1− ρ)}. (1)

• First shown in Zwart & Boxma (2000). Exten-
sions by Nunez-Queija (2002) (to IR) and Je-
lenkovic & Momcilovic (2003) (to SC).

• Extension to state dependent PS queues (e.g.
M/G/s PS) in Guillemin, Robert & Zwart (2004).

• Intuition: In the long run, a large customer is
served at a reduced rate 1− ρ.

Therefore, (1) is sometimes called a reduced
service rate (RSR) approximation.

• PS behaves superior to FIFO (which gives O(xP{B >
x}) behavior).
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Cycle formula approach (BOZ04)

In all cases considered so far, proofs exploited in-
formation about the queue length (exact results or
upper bounds).

Problem in e.g. GI/GI/1 PS and DPS: No results
about queue length are known.

Different idea for the GI/GI/1 queue: Use the for-
mula

P{V > x} =
1

E{N}E{
N

∑

i=1

I(Vi > x)}.

N is the number of customers in a busy cycle.
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Heuristics

Recall that P is the length of a busy period.
Z01: P{P > x} ∼ E{N}P{B > x(1− ρ)}.

Claim: A large (O(x)) busy period contains exactly
one large customer indexed by i∗.

P{V > x} =
1

E{N}E{
N

∑

i=1

I(Vi > x)}

=
1

E{N}E{
N

∑

i=1

I(Vi > x)I(P > x)}

=
1

E{N}P{Vi∗ > x; P > x}

+
1

E{N}E{
∑

i6=i∗
I(Vi > x)I(P > x)}

≈ 1

E{N}P{P > x} + o(P{B > x})

∼ P{B > x(1− ρ)}.

Main problem: Get precise information on the num-
ber of large customers conditionally upon P > x.
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Multiclass extensions, e.g. DPS

DPS discriminates between various customer classes.
There are weights gi such that customers of class i
are served with rate gi/

∑

j njgj, with nj the num-
ber of customers in the system which belong to class
j.

Theorem (BOZ04)
If P{B1 > x} = L(x)x−ν and P{Bj > x} =
o(P{B1 > x}), j > 1, then

P{V1 > x} ∼ P{B1 > (1− ρ)x}
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Recall that long sojourn times can be caused by

1. The job of the tagged customer;

2. The jobs present at the arrival of the tagged cus-
tomer;

3. The jobs arriving during the sojourn time of the
tagged customer.

Conclusion:
Effect 1 dominates in the heavy-tailed case.
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Light tails

(In)famous!

Flatto (1997) for M/M/1
(arrival rate λ, mean service time µ−1):

P{V > x} ∼ c x−5/6e−αx1/3
e−γx, x→∞,

where γ := (
√

µ−
√

λ)2.

Interestingly, for the busy period P :

P{P > x} ∼ c ′ x−3/2e−γx, x→∞,

see Cox & Smith (1961), Palmowski & Rolski (2004).

Conjecture: V and P have the same logarithmic
asymptotics...
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Upper bound

Sojourn time is always shorter than residual busy
period!

{V > x} ⊆ {B0 + W + A(x) > x},
where

B0 := The job of the tagged customer;

W := The amount of unfinished work of the

jobs present at time 0;

A(x) := The work generated by jobs arriving in (0,x ].

Recognize effect 1, 2, 3!

The usual Chernoff bound gives, for any ν > 0,

P{V > x} ≤ P{B0 + W + A(x)− x > 0}
≤ E{eνB}E{eνW}E{e−ν(x−A(x))}.
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Upper bound, ctd.

Define

ΦB(ν) := E{eνB}, ΦA(ω) := E{eωA}.

The asymptotic cgf of A(x) is given by

Ψ(s) := lim
x→∞

1

x
log EesA(x) = −Φ←A

(

1

ΦB(s)

)

,

Hence,

lim sup
x→∞

1

x
log E{e−ν(x−A(x))} ≤ inf

ν>0

(

−Φ←A

(

1

ΦB(ν)

)

− ν

)

.
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Upper bound, ctd.

We call

γ := − inf
ν>0

(

−Φ←A

(

1

ΦB(ν)

)

− ν

)

;

optimizer: ν∗.
It is easily verified that E{eν∗B} <∞ and
E{eν∗W} <∞. Hence

lim
x→∞

1

x
log P{V > x} ≤ −γ,

as desired.

For M/M/1, we indeed have

γ = (
√

µ−
√

λ)2.

Intuition: only effect 3 plays a role in logarithmic
asymptotics...
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Lower bound

Sketch of proof:

• Perform the following change of measure:

– Leave the tagged job unchanged;

– Leave the jobs present at time 0 unchanged;

– Perform an exponential change of measure

F̃A(dx) = FA(dx)
eωx

ΦA(ω)
;

F̃B(dx) = FB(dx)
eνx

ΦB(ν)

in the interval (0, x].

• Choose ω = ωε, ν = νε such that ΦA(ω)ΦB(ν) =
1, and the load under the new measure is 1 + ε

2
.
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Lower bound, ctd.

• Standard: P{V > x} = Eε{LxI(V > x)};
expectation under new probability measure.

Evidently, for any event S,

P{V > x} ≥ Eε{LxI(V > x)I(S)}.
• Choose an appropriate S such that

– On {V > x} ∩ S}, Lx can be bounded ap-
propriately:

lim
x→∞

1

x
log Eε{Lx | V > x, S} ≥ −νε − ωε(1 + ε);

– Pε{V > x, S} decays subexponentially.

• Let ε ↓ 0, then

−νε − ωε(1 + ε)→ −γ.

17



Lower bound, ctd.

In our proof:
Pε{V > x, S} decays subexponentially...

... because Pε{V > x} does.

Proof relies on Puha, Stolyar, Williams (2004): FLLN
for overloaded PS queus.

{Q(ut)/t}u≥0→ {qu}q≥0

Hence:

Pε{V > x} = Pε{B0 >

∫ x

0

1

1 + Q̄(u)
du}

≈ Pε{B0 >

∫ x

0

1

1 + qεu
du}

≈ P{B0 > const + (1/qε) log x}

18



Lower bound, ctd.

Additional condition is required:

For each constant c > 0, we have

lim
x→∞

1

x
log P{B0 > c log x} = 0.

Excludes:

• extremely light tails, and

• distributions of bounded support.

Indeed, M/D/1 PS gives a different decay rate...
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Conclusions

• For light-tailed service times, large sojourn times
primarily occur due to effect 3: After time 0 work
is arriving at rate 1(> ρ).

• For M/G/1 we formulate an asymptotically op-
timal importance sampling algorithm.

• Numerical experiments show that the algorithm
is superior w.r.t. straightforward Monte-Carlo sim-
ulation.

• Flatto’s exact asymptotic for M/M/1 behaves
poorly as an approximation if ρ is large.

• Large deviations and heavy traffic limits cannot
be interchanged!
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A mixed scenario (BNZ03)

Consider the following M/G/1 PS queue:

• Customers of type 1 arrive according to a Poisson
process with rate λ1 and have an exponential (µ)
service time distribution.

• Customers of type 2 arrive according to a Pois-
son process with rate λ2 with P{B2 > x} =
L(x)x−ν.

• Both customer types are served at rate 1/n.

Main question:
How is the tail of P{V1 > x} affected by class-2
customers?

• Finite waiting room K

• Infinite waiting room
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Finite waiting room K

Theorem

P{V1 > x} ∼ (1− ρ)ρK−1
2

1− ρK+1
P{Bres

2 > x/K}K−1e−µx/K.

Intuition:

• {V1 > x} is caused by the presence of K − 1
heavy-tailed customers who remain in the sys-
tem during the entire sojourn time of the tagged
customer.

• Effect 2 dominates in this situation.

•What if K =∞??
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If K =∞, we obtain subexponential behavior:

P{V1 > x} ≥ e−c
√

x logx(1+o(1)).

PS is not as bad as FIFO but (conjecture) SRPT
probably significantly better!
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Main conclusions

What causes a long sojourn time?

• If a customer has a heavy-tailed service time dis-
tribution, effect 1 dominates.

• If all customers have light-tailed service time dis-
tributions, effect 3 dominates.

• If the tagged customer is light-tailed, but other
customers are heavy-tailed, effect 2 dominates.
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