10 juin 2011 de 16 h 00 à 18 h 00 (heure de Montréal/HNE) Sur place
Given a Hamiltonian on $T^n\times R^n$, we shall explain how the sequence of rescaled Hamiltonians, $(\theta,p)\to H(k\theta , p)$, converges, for a suitably defined symplectic metric, as $k$ goes to infinity. We shall then explain some applications, in particular to symplectic topology and invariant measures of dynamical systems.
Adresse
CRM, UdeM, Pav. André-Aisenstadt, 2920, ch. de la Tour, salle 6214