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Clausius’s contribution

@ After Waterson, Clausius, Maxwell and Boltzmann
developed the kinetic theory of gases.

@ The famous paper of Clausius Uber die Art der Bewegung
welche wir Warme nennen (On the kind of motion which
we call heat), was published in 1857.

@ This was a consequence of several theoretical and
experimental developments.

@ Thermodynamics was one, in particular energy
conservation as expressed by the first law.

@ Experiments by Joule and Thompson showed that the
pressure of a gas is not caused by repulsive intermolecular
forces (these were associated with the caloric theory of
fluids that prevailed at the time), and indeed that long
range forces are attractive, rather than repulsive.

Tony Guttmann Stat. mech. course



Clausius’s contribution

@ The wave theory of light was being accepted at that time,
and that, together with the view that heat and light were
similar phenomena, also led to the view that heat was a
form of motion, and so the laws of mechanics could apply.

@ Historically, there was an opposing view, led by Mayer and
Ernst Mach (1838-1916), who felt that heat was a separate
form of energy.

@ This school was known as the “energetics" movement. It
was becoming increasingly rejected by the end of the 19%
century.

@ Clausius had been thinking of molecular motion as the
basis of heat as far back as 1850, and in 1857 developed a
theory of gases based on including translational and
rotational molecular motion.
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Clausius’s assumptions

@ His theory contained a number of simplifying
assumptions—the molecules must be very small, the
interactions must be negligible, and he then calculated the
specific heat as a consequence of the kinetic energy of the
molecules.

@ He also made the simplifying assumption that the
molecules all had the same velocity.

@ Clausius also proposed a qualitative description of other
states of matter—liquid and solid, and was even able to
develop a theory of changes of state, a precursor to our
contemporary study of phase transitions.

@ In the liquid state, the molecules were assumed to have no
fixed positions, but to remain in close proximity to one
another.

@ In the solid state, they were assumed to be in fixed
positions, vibrating about these positions.
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Clausius’s calculations

@ Clausius was also able to calculate the average speeds of
molecules of the gases making up the atmosphere, and
got numbers in the range 460—1850 m/sec.

@ A Dutch meteorologist, C H D Buys-Ballot realised an
overlooked consequence of these values.

@ If correct, the mixing of gases by diffusion should occur
much more rapidly than is observed experimentally.

@ A smell produced in one corner of a room should be
noticed instantly in the opposite corner, and it isn’t. (BB
thought that this killed C’s theory).

@ Clausius then modified his theory in 1858 in an important
way. He gave his molecules a non-zero diameter, and
postulated an effective “sphere of action” so that a
molecule will collide with another fairly rapidly. He
quantified this with the notion of a mean-free path L, which
is the average distance a molecule travels between
collisions.
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Clausius’s calculations

@ If N denotes the number of molecules of effective diameter
d in a volume V, we have L = ,(,‘—C‘,/z, where the constant k is

of order-of-magnitude 1.

@ While an ad hoc assumption, Maxwell (1831-79), in the
first of three great papers on the subject, showed that it
was a logical mechanism to explain viscosity, and
incorporated it naturally into his theory.

@ Clausius did realise that not all molecules travelled at the
same speed, but used the average velocity in his
calculations.

@ Maxwell first pointed out in 1859 that the concepts of
probability and statistics are appropriate to a model of
collisions, as even if the molecules initially (whatever that
means) had the same velocity, energy transfer by collisions
would soon give a distribution of velocities.
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Maxwell’s contribution

@ He obtained by heuristic, but non-rigorous arguments the
famous distribution, now called the Maxwell-Boltzmann
distribution function for a dilute gas of particle density
n= N/V, each particle of mass m and average
momentum pg, at temperature T,

n 2
— —(P—Po)~/2mkT
f(p) = (27rka)3/2e :

which gives the probability of finding a molecule with
momentum p in the gas.
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Statistical mechanics—contemporary theory

@ Statistical mechanics provides a framework for relating the
microscopic properties of individual atoms and molecules
to the macroscopic or bulk properties of materials that can
be observed in everyday life, therefore explaining
thermodynamics as a natural result of statistics and
mechanics (classical and quantum) at the microscopic
level.

@ In particular, it can be used to calculate the thermodynamic
properties of bulk materials from the spectroscopic data of
individual molecules.

@ This ability to make macroscopic predictions based on
microscopic properties is the main asset of statistical
mechanics over thermodynamics.

@ Both theories are governed by the second law of
thermodynamics through the medium of entropy.
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Statistical mechanics—contemporary theory

@ However, entropy in thermodynamics can only be known

empirically, whereas in statistical mechanics, it is a function
of the distribution of the system on its micro-states, as we
will define and explain.

It should be noted that statistical mechanics gives an
explanation for the second law by postulating that a
material is composed of atoms and molecules which are in
constant motion.

A particular set of positions and velocities for each particle
in the system is called a microstate of the system and
because of the constant motion, the system is constantly
changing its microstate.

@ Statistical mechanics postulates that, in equilibrium, each
possible microstate is equally likely to occur.

@ When this assumption is made, it leads to the conclusion
that the second law must hold in a statistical sense.
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Statistical mechanics—the 2nd law

@ That is, the second law will hold on average, with a
statistical variation on the order of 1/v/N where N is the
number of particles in the system.

@ For everyday (macroscopic) situations, the probability that
the second law will be violated is practically nil.

@ However, for systems with a small number of particles,
thermodynamic parameters, including the entropy, may
show significant statistical deviations from that predicted by
the second law.

@ Classical thermodynamic theory does not deal with these
statistical variations.
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Ensemble theory

@ In discussing the kinetic theory of gases, we found that a
key result, the Maxwell-Boltzmann distribution, was
elegantly simple, but the route to its discovery was quite
complicated.

@ In hindsight the result can be derived straightforwardly,
without recourse to details of the molecular interactions, by
making use of the method of most probable distribution.

@ This suggests that a similar treatment might enable us to
treat more general systems. This is indeed true, and gives
rise to classical statistical mechanics.
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Ensemble theory

@ Statistical mechanics usually involves three different
ensembles:

(i) The microcanonical ensemble, in which the number of
particles and the energy are constant. Thus we are dealing
with an isolated system.

(i) More commonly, if we allow energy exchange, so that
energy is not a constant, the appropriate ensemble is the
canonical ensemble,

(iii) and if we permit the number of particles to vary, we
then need to consider the grand canonical ensemble.

@ In practice, the canonical ensemble is the most commonly
used.

@ In the following description of ensembles | have largely
reproduced the treatment of K. Huang, Statistical
Mechanics, 2nd edition, John Wiley & Sons 1987 and M.
Plischke and B. Bergersen, Equilibrium Statistical
Mechanics, 2nd edition, World Scientific.1994.



J W Gibbs 1839-1903

@ Josiah Willard Gibbs (1839-1903) is considered the father
of modern stat. mech. He is undoubtedly one of the
greatest, and many would argue, the greatest American
scientist.

@ He was the 7th in a line of academics stretching from the
17th century.

@ He obtained the first US PhD in engineering from Yale in
1863, and in 1866 went to Europe and worked in Paris,
Berlin and Heidelberg, returning to Yale in 1869 where he
was appointed to the first chair of mathematical physics
(unpaid), which he held until his death.

@ Between 1876 and 1878 he put physical chemistry on a
thermodynamic footing.

@ He developed the ensembles of statistical mechanics,
defined the Gibbs free energy, introduced the concept of
chemical potential and a number of other fundamental
concepts.
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Ensemble theory

@ From 1880 he moved to marthematics, developing the
subject of vector analysis, based on the quaternions of
Hamilton and exterior algebra of Grassmann.

@ He then applied this to the theory of optics, and
electromagnetism, and subsequently to planetary and
comet orbits.

@ He never married, and received little recognition in his
life-time.

@ He wasn'’t elected to any of the US academies, and only
when his papers were translated into German in 1892, and
into French by Le Chatelier in 1899, did they receive
widespread recognition in Europe.

@ He was nevertheless quietly confident as to the value of
his contribution. In 1901 he received the Copley Medal of
the Royal society, the highest honour of the international
community.
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J W Gibbs—continued

@ Some quotations of Gibbs:

Mathematics is a language (at a Yale Faculty Board
meeting), and

A mathematician may say anything he pleases, but a
physicist must be at least partially sane.

@ In 1945 Yale created the J. Willard Gibbs Chair of
Theoretical Chemistry, held until 1973 by Lars Onsager, a
worthy successor, who applied mathematical ideas to
problems in physical chemistry and statistical mechanics.
Onsager solved the 2d Ising model in 1944
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Microcanonical ensemble

@ We assume we are dealing with a large number of
particles N, typically 1023, in an appropriate volume V with
the density N/ V fixed.

@ ltis frequently the case that we consider the infinite limit of
both N and V, while keeping the density fixed.

@ Applying classical mechanics, we have Hamilton’s
equations of motion

OH(p.q) _
opi '

OH(p,q)

0q;

i

i=1...3N.

@ We now introduce a 6 N-dimensional phase space, often
called '-space, in which each point represents a
micro-state of the system.
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Microcanonical ensemble—continued

@ The energy surface is given by H(p, q) = E, and as time
evolves, according to the above equations, a path is traced
in [-space.

@ The ensemble concept comes from the idea that we don'’t
care about the state of the system at a particular time, but
rather we want to know some macroscopic features of the
system.

@ Rather than trace the time evolution of the system, we take
an infinite number of mental copies of the system, which
can be in any state satisfying the conditions on N, V and
E.

@ The ensembile is represented by a density function

p(p; g, t) where

p(p,q,t)d*Npd®Ng = the number of points in the volume element

centred around (p, g) at time t.
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Microcanonical ensemble—continued

@ Next we recall Liouville’s theorem,

% 3~ (o o0omty
ot 0q; 0p;  Op; 0q;

i=1

)

which states that the distribution of points behaves like an
incompressible fluid.

@ Next we restrict our attention to ensembles which depend
on (p, q) only through the Hamiltonian. Then % =0, so0
the ensemble is time invariant.

@ The fundamental postulate, which we need to continue, is
the Postulate of equal a priori probability, which says that a
macroscopic system is equally likely to be in any allowed
state.

@ This is logically not very satisfactory, as we should not
require an independent postulate. The justification is
usually a posteriori.
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Microcanonical ensemble—continued

@ Then the ensemble average of any quantity f(p, q) is given
by

(i, = J 8 e af(p.q)p(p. q)

J &*Npd®Ngp(p, q)

@ In the usual formulation of this ensemble, we actually allow
the energy to lie between E and E + 6E.

@ This is to take into account that in quantum mechanics,
energy levels are discrete, but closely spaced.

@ In classical statistical mechanics, this tolerance must play
no role in the so called thermodynamic limit when N — oo,
V — o0, n/V fixed.

@ Define

r(E) = / N pdNgp(p, q),
E<H(p,q)<E+E

then it is just the volume in I'-space occupied by the
microcanonical ensemble.
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Microcanonical ensemble—continued

@ Equivalently, it is often more convenient to consider the
volume in '-space occupied by the energy surface of
energy E, viz:

£E)= [ d™pdNg
H(p,q)<E

@ Then
MNE)=X(E+0E)—X(E).
This precludes us having to calculate p directly.
@ The next step is to write the entropy S(E, V) as

S(E, V) =klogTl(E).
(This is defined up to an arbitrary additive constant).
@ Here k is a constant, known as Boltzmann’s constant, and
the justification is by analogy with the formula derived

above, and more particularly that it satisfies all the
properties of the entropy function in thermodynamics.
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Microcanonical ensemble—continued

@ These are:
(i) it is extensive, which we prove below, and
(i) it satisfies the properties of entropy as dictated by the
second law.

@ An equivalent definition (up to an additive constant of order
log N or smaller) is

S(E, V) =klogx(E),

which is usually easier to use in calculations.

@ The recipe for using the microcanonical ensemble is
therefore
(i) to calculate the volume in I'-space occupied by the
microcanonical ensemble, and then
(ii) to calculate the entropy up to an additive constant by
taking the logarithm, and then
(iii) solve for the energy E in terms of Sand V.
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Microcanonical ensemble—continued

@ This gives the internal energy U(S, V), and the rules of
thermodynamics, given above, prevail

@ Example: Consider an ideal gas of N particles of mass m
in a volume V.

@ The Hamiltonian is

1N
- 2
@ We next calculate the entropy:
1 3N, 3N
H(E) = faw [, I"p .

where h is a constant of dimension momentum x distance,
introduced to make ¥(E) dimensionless.

@ The integration over g immediately yields VN.
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Microcanonical ensemble—continued

@ if Q,(R) denotes the volume of an n-dimensional sphere of
radius R:

Qn(R) = dxidxs - - - dxp

/)(12+x22+~--+x,2,<R2
then a little work establishes
2ﬂ_n/2Rn
S Horz 1y
and
VAN
Y(E)= <h3> Qsn(V2mE).

@ Recall that S(E, V) = klog X(E), and using Stirling’s

formula for the Gamma function, we obtain

v 4rmE\%/?
3h2N

v

S(E, V) = NKlog 5
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Microcanonical ensemble—continued

@ Solving for E, which is the internal energy U(S, V), we find

2
U(S,V):Sh Nexp<28 1).

47m V2/3 3Nk

@ Applying the rules of thermodynamics above, we
immediately obtain:
_2u
~ 3Nk’
3

T

and finally
2U  NKT

T3V v
or, in more familiar form, the ideal gas equation of state,

PV = NKT.



