11th Industrial Problem Solving Workshop

SOCIÉTÉ GÉNÉRALE PROBLEM

Topic

Categorical variables selection in risk modeling

Team members: Yichao Chen; William Désilets; Faith Lee; Bruno Monsia; Ahmed SidAli

Supervisors: Adrian Gonzalez-Sanchez; Helena Liu; Alejandro Murua; Jiaxin Yang

1 Introduction

- 2 Description of variables
- 3 Discretization of continuous variables
- 4 Classical Models
- 5 Machine Learning methods

Risk analysis is very important for financial institutions to identify different types of dangers and to make decisions:

- be in a position to take a decision as to whether to enter into a relationship or maintain an exisiting relationship with a client;
- evaluate the legitimacy of transactions instructed by a customer regard to the information financial institutions have of such client.

Tools: Risk modeling to calculate the risk rating of clients based on their risk profiles.

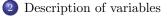
Introduction:

Each risk profile (response variable) is assessed on the basis of 4 risk levels: Low , $Med\text{-}Low,\ Med\text{-}High$ and High

There are continuous and categorical predictors on dataset. All categorical variables are one-hot encoded before entering the model.

Questions :

- How should the continuous variables be discretized and encoded, if at all?
- e How can-we select predictors for risk modeling so that monotonic relationship among the dummy coefficients be preserved ?
- Which categorical predictor should be included in the model?
- Which levels within one categorical predictor should be distinguished?



3 Discretization of continuous variables

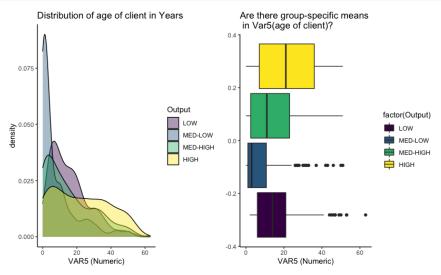
4 Classical Models

- Dataset contains 740 subjects, 12 predictors and output variable
- 119 cases of High risk; 296 of Low risk, 179 cases of Med-High and 146 cases of Med-Low (Does not seem strong case of Imbalanced classes)
- Variables 5,6,10,12,13 are numeric. The rest of the variables are ordered categorical variables

Is it relevant to discretize certain continuous variables ?

Cont. variables	Output	mean	std	\min	25%	50%	75%	max
	HIGH	0.72	1.85	0	0	0	0	7
VAR10	LOW	0.45	0.63	0	0	0	1	3
VARIO	MED-HIGH	1.00	1.83	0	0	0	1	7
	MED-LOW	1.35	1.80	0	0	1	1	7
	HIGH	0.06	0.10	0	0	0.03	0.06	0.58
VAR12	LOW	0.01	0.07	0	0	0	0	0.58
VAR12	MED-HIGH	0.06	0.13	0	0	0	0.05	0.55
	MED-LOW	0.11	0.18	0	0	0	0.155	0.58
	HIGH	577.95	3960.60	0	0	0	2	41831
VAR13	LOW	1152.73	11244.04	0	0	0	27.25	175878
VARIO	MED-HIGH	117.88	581.94	0	0	0	8.5	6022
	MED-LOW	67.40	344.12	0	0	0	0	3482

Challenges during exploratory analysis (monotonicity)



Challenges: (non-monotonicity) Higher number of years does not translate to lower risk.

Team: SOCIETE GENERALE

Description of variables

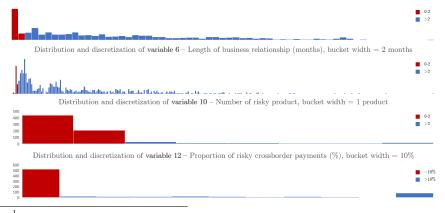
3 Discretization of continuous variables

- Classical Models
- 5 Machine Learning methods

In the original dataset, 4 variables¹ are encoded as one-hot categorical encoding

Each variable is split into only two classes, whose ranges appear to be mostly arbitrary. As a result, **the classes are strongly imbalanced**.

Distribution and discretization of variable 5 – Age of the client (years), bucket width = 1 year



¹Variables 5, 6, 10 and 12. Variable 13 is also continuous, but it was not discretized.

For each of the variables, 8 new discretization schemes were tested

3 parameters were considered to create new schemes:

- Number of categories
 - 2, 3, 4 and 5 classes were considered
- **2** Type of categorical encoding²
 - Mean encoding the mean of each class is used, and the variable is considered continuous in the modeling
 - One-hot "dummy" encoding using K-1 binary variables
- Octoportion Categorical distribution³,⁴
 - $\bullet\,$ Equal distribution between classes every class has the same number of observations 5

Team: SOCIETE GENERALE

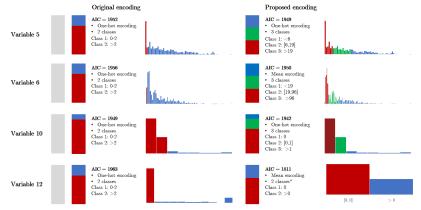
 $^{^{2}}$ Harmonic mean encoding was considered, but could not be implemented within the time allowed 3 The class distribution proposed by Pasta (2009) was implemented in the code but not tested

 $^{^4}$ Other possible distributions not explored within this workshop include: inferring class ranges from visual observations, clustering analysis, treating 0's as special values

 $^{{}^{5}}$ If the distribution is highly asymmetric and a value accounts for more than $\frac{100}{Nb \ categories}$ % of the values, classes will be imbalanced.

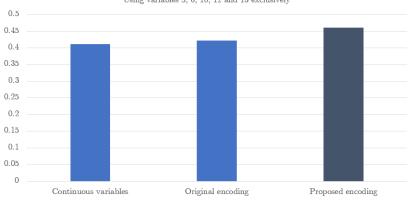
New discretization schemes were selected based on the AIC value of single-variable cumulative logit models

A cumulative logit model was adjusted for each of the discretization schemes. The variable discretization scheme that yielded the model with the smallest AIC value was selected.



The new discretization proposed increased prediction accuracy by 3.9%

However, the proposed discretization scheme proposed does not take into account possible interactions between variables and as such, should be extensively tested before being used.



Prediction accuracy for the different types of encoding using statsmodels.OrderedModel Using variables 5, 6, 10, 12 and 13 exclusively

Introduction

- 2 Description of variables
- 3) Discretization of continuous variables

4 Classical Models

5 Machine Learning methods

- We first tackle the problem by trying various classical algorithms
- The **Ordinal Logistic Regression** is a classical method used when the response variable is Ordinal
- We use the Python library **OrderedModel** from **scipy.stats** following these steps:
 - Data transformation \Rightarrow Creating dummy variables to make use of the nominal independent variables
 - Fitting the model with different sets of independent variables
 - Variable selection by comparing the performances of the different models using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

Ordinal Logistic Regression-Complete model

OrderedModel Results							
	T and T (back		22	10			
Dep. Variable: Output Model: OrderedMod	Log-Likel	inood:	-33 708	2.19			
Method: Maximum Like			-	309.7			
Date: Thu, 26 Aug 202	21						
Time: 18:25:58							
No. Observations: 740)						
Df Residuals: 718							
Df Model: 22							
coef std err	z P>	z [0.	025 0.9	75]			
VAR1_LOW					11.669	-7.512	
VAR1_MED-LOW	-11.5317	1.149	-10.037	0.000	-13.784	-9.280	
VAR1_MED-HIGH	-9.3654	1.062	-8.820	0.000	-11.446	-7.284	
VAR2_NO	0.8400	0.428	1.962	0.050	0.001	1.679	
VAR2_YES EQUIVALENT	-3.9074	0.507		0.000	-4.902	-2.913	
VAR3_LOW	-0.2891	0.213	-1.355	0.176	-0.707	0.129	
VAR4_NO	2.2185	1.171	1.895	0.058	-0.076	4.513	
VAR5_Discrete_1	1.2280	0.329	3.738	0.000	0.584	1.872	
VAR5_Discrete_2	0.5070	0.333	1.524	0.128	-0.145	1.159	
VAR6_Discrete_MEAN	-0.0062	0.002	-3.305	0.001	-0.010	-0.003	
VAR7_YES NOT MATERIAL	-9.6501	1.047	-9.221	0.000	-11.701	-7.599	
VAR7_NO	-10.3330	1.026	-10.071	0.000	-12.344	-8.322	
VAR8_YES POTENTIAL	8.5025	1.347	6.313	0.000	5.863	11.142	
VAR8_NO	-1.1847	0.379	-3.130	0.002	-1.927	-0.443	
VAR9_NO	-9.9385	1.011	-9.833	0.000	-11.920	-7.957	
VAR9_PRESENCE	-8.2455	0.991	-8.320	0.000	-10.188	-6.303	
VAR10_Discrete_1	-1.9991	0.326	-6.124	0.000	-2.639	-1.359	
VAR10_Discrete_2	-2.1351	0.378	-5.652	0.000	-2.875	-1.395	
VAR12 (Numeric)	1.9468	0.815	2.390	0.017	0.350	3.544	
LOW/MED-LOW	-32.1294	2.906	-11.055	0.000	-37.826	6 -26.433	
MED-LOW/MED-HIGH	1.0820	0.077	13.968	0.000	0.930	1.234	
MED-HIGH/HIGH	2.1665	0.110	19.675	0.000	1.951	2.382	
				======			

Team: SOCIETE GENERALE

Ordinal Logistic Regression-Reduced model 1: remove VAR3, VAR4, VAR5

OrderedModel Results							
Dep. Variable: Output Model: OrderedModel Method: Maximum Likeli Date: Fri, 27 Aug 2021 Time: 07:15:37 No. Observations: 740 Df Residuals: 722 Df Model: 18	nood	Log-Lik AIC: BIC:	elihood:		-342.62 721.2 804.2		
	coef	std err	z	P> z	[0.025	0.975]	
VAR1_LOW	-8.9415	1.008	-8.866	0.000			
VAR1_MED-LOW	-10.8260		-9.935				
VAR1_MED-HIGH	-8.7208		-8.644				
VAR2_NO	1.0088		2.409	0.016	0.188	1.830	
VAR2_YES EQUIVALENT			-7.361	0.000			
VAR6_Discrete_MEAN	-0.0097		-5.782				
VAR7_YES NOT MATERIAL			-8.776				
VAR7_NO	-9.8402	1.019		0.000		-7.844	
VAR8_YES POTENTIAL	8.2074		6.063	0.000	5.554		
VAR8_NO	-1.0519	0.369	-2.852	0.004	-1.775	-0.329	
VAR9_NO	-9.3276	0.941	-9.907	0.000	-11.173	-7.482	
VAR9_PRESENCE	-7.6601	0.927	-8.268	0.000	-9.476	-5.844	
VAR10_Discrete_1	-1.9452	0.317	-6.127	0.000	-2.567		
VAR10_Discrete_2	-1.9707	0.367	-5.377	0.000	-2.689	-1.252	
VAR12 (Numeric)	1.9475	0.803	2.425	0.015	0.373	3.522	
LOW/MED-LOW	-32.9839	2.802	-11.772	0.000	-38.476	-27.492	
MED-LOW/MED-HIGH	1.0482	0.077	13.560	0.000	0.897	1.200	
MED-HIGH/HIGH	2.1268	0.111	19.223	0.000	1.910	2.344	

Team: SOCIETE GENERALE

Ordinal Logistic Regression-Reduced model 2: remove VAR3, VAR4, VAR12

OrderedMode	l Results					
======						
Dep. Variable: Output		Log-L	ikelihood:		-337.55	
Model: OrderedMod	el	AIC:			713.1	
Method: Maximum Like	ihood	BIC:			800.6	
Date: Fri, 27 Aug 2021	L					
Time: 07:57:11						
No. Observations: 740						
Df Residuals: 721						
Df Model: 19						
	coef	std err	Z	P> z	[0.025	0.975]
VAR1_LOW	-9.4570		-9.176	0.000	-11.477	-7.437
VAR1_MED-LOW			-10.178		-13.530	-9.160
VAR1_MED-HIGH		1.033	-8.907	0.000	-11.224	-7.175
VAR2_NO	0.8942	0.425	2.106	0.035	0.062	1.726
VAR2_YES EQUIVALENT				0.000	-4.651	-2.715
VAR5_Discrete_1	1.1801	0.325	3.629	0.000	0.543	1.817
VAR5_Discrete_2	0.4588	0.327	1.402	0.161	-0.183	1.100
VAR6_Discrete_MEAN	-0.0064	0.002	-3.458	0.001	-0.010	-0.003
VAR7_YES NOT MATERIAL	-9.1556	1.027	-8.916	0.000	-11.168	-7.143
VAR7_NO	-9.9559	1.011	-9.844	0.000	-11.938	-7.974
VAR8_YES POTENTIAL	8.0509	1.294	6.222	0.000	5.515	10.587
VAR8_NO	-1.3819	0.368		0.000	-2.104	-0.660
VAR9_NO	-9.7369	0.979		0.000	-11.656	-7.818
VAR9_PRESENCE	-7.9329	0.955		0.000	-9.804	-6.062
VAR10_Discrete_1	-1.9938	0.323	-6.174	0.000		-1.361
VAR10_Discrete_2	-2.1912	0.374	-5.863	0.000		-1.459
LOW/MED-LOW	-33.6562			0.000	-39.214	-28.099
MED-LOW/MED-HIGH	1.0644	0.077	13.765	0.000	0.913	1.216
MED-HIGH/HIGH	2.1461	0.109	19.702	0.000	1.933	2.360

OrderedModel Results

Team: SOCIETE GENERALE

Models	Log-Likelihood	AIC	BIC
Complete Model	-332.19	708.4	809.7
Reduced Model 1	-342.62	721.2	804.2
Reduced Model 2	-337.55	713.1	800.6

Note: The same strategy can be used to test the other models!

Because the response variable is ordered, we proposed to use fused Lasso regularization (Tibshirani et al., 2005) with has the property of ordering the predictors and the metrical responses.

- proportional odds cumulative logit model
- Cumulative ordinal logistic regression model with fused Lasso regularization

The proportional odds cumulative logit model is one of the commonly used methods for fitting ordinal response data. For an outcome with j=4 levels in increasing order and an n x p covariate matrix **X**,

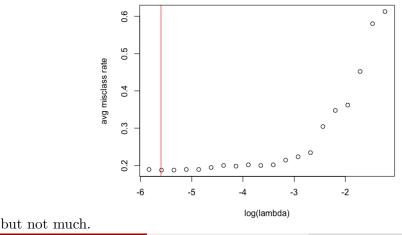
$$\operatorname{logit} P(Y \le j | \mathbf{X}) = \alpha_j + \beta^T \mathbf{X}, j = 1, ..., J-1$$
(1)

This means that the **cumulative probability** for a certain level of response \mathbf{j}

$$P(Y \le j | \mathbf{X}) = \frac{\exp(\alpha_j + \beta^T \mathbf{X})}{1 + \exp(\alpha_j + \beta^T \mathbf{X})}$$
(2)

The Proportional Odds Model: Variable Selection

We use ordinalNet for variable selection. At the best λ ($\lambda = 0.0037$) returned by the ordinalNet, it shows that there is some penalization



Team: SOCIETE GENERALE

Proportional Odds - Original

```
vglm(formula = as.numeric(Output) ~ VAR1 + VAR3 + VAR4 + `VAR5 (Discrete)` +
VAR7 + VAR8 + VAR9 + `VAR10 (Discrete)`, family = cumulative(parallel = TRUE),
data = IPSW_dictionary_vF)
```

Coefficients:

	Estimate Std	. Error	z value	Pr(> z)	
(Intercept):1	0.9062	1.4558	0.622	0.533626	
(Intercept):2	2.9374	1.4626	2.008	0.044611	*
(Intercept):3	9.6919	1.7022	5.694	1.24e-08	***
VAR1MED-LOW	0.6446	0.2636	2.445	0.014466	*
VAR1MED-HIGH	-2.5501	0.2386	-10.689	< 2e-16	***
VAR1HIGH	-9.4036	0.9139	-10.290	< 2e-16	***
VAR3MED-LOW	-0.1508	0.1856	-0.812	0.416607	
VAR4N0	-0.6775	1.4093	-0.481	0.630702	
`VAR5 (Discrete)`0-2	-1.4931	0.2219	-6.729	1.71e-11	***
VAR7YES NOT MATERIAL	0.1473	0.2523	0.584	0.559292	
VAR7YES MATERIAL	-7.5952	0.9141	-8.309	< 2e-16	***
VAR8YES LIMITED	-1.0665	0.3336	-3.197	0.001391	**
VAR8YES POTENTIAL	-6.9746	1.1626	-5.999	1.99e-09	***
VAR9PRESENCE	-0.6770	0.2262	-2.993	0.002764	**
VAR9CLIENT	-7.0487	0.8650	-8.148	3.69e-16	***
`VAR10 (Discrete)`0-2	1.1623	0.3306	3.516	0.000438	***
Signif. codes: 0 '**	*' 0.001'**'	0.01 ''	*'0.05	'.'0.1'	'1

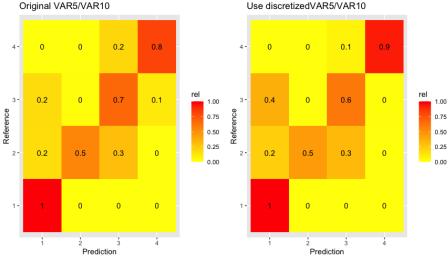
Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[Y<=2]), logitlink(P[Y<=

Residual deviance: 919.632 on 2204 degrees of freedom

Ordinal Regression: Retain the order of outcome risk variables. We use K -fold cross validation on the following variables: VAR1, VAR3, VAR4, VAR5(DISCRETE), VAR7, VAR8, VAR9, VAR10(DISCRETE) on a 80/20 split on the dataset

K	Train	Test	Train (Discretized)	Test (Discretized)
5	80,0	78,5	77.5	76,8
10	79,6	78,1	77,2	76,1
20	79,9	78,6	77,3	76,2

Confusion Matrix



Use discretizedVAR5/VAR10

Non Proportional Odds Model-Discrete Original Variables

To the same subset of variables selected from the ordinalNet previously, we fit an non-proportional odds model and found that it fares poorly than before.

Number of folds, K	Train	Test
5	76,8%	75,9%
10	73,8	71,5
20	73,6	71,5

Cumulative multinomial logistic regression penalized with Fused Lasso (Tibshirani et al., 2005)

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmax}_{\boldsymbol{\beta}} \{ l\left(\boldsymbol{\beta}\right) - FL_{\lambda}(\boldsymbol{\beta}) \} \text{ with } (3)$$

$$FL_{\lambda}(\boldsymbol{\beta}) = \lambda \sum_{j=2}^{p} |\beta_{j} - \beta_{j-1}| \qquad (4)$$

- select predictors with more influence on the response variable
- order predictors and the metrical responses.
- After the reparametrization of model ($\delta_j = \beta_j \beta_{j-1}$) as suggested by Gertheiss & Tutz we used used R package *OrnalNet* with ordinary Lasso penalization.

Results of Fused Lasso regularization

Var.	intercept (MED-LOW)	intercept(MED-HIGH)	intercept(HIGH)	VAR1-HIGH	
Coef.	-4.53	-2.01	4.70	-5.33	
Var.	VAR1-MED_LOW	VAR1-MED_HIGH	VAR2-NO	VAR2-YES_EQUIVALENT	VAR3-MED_LOW
Coef.	1.68	2.74	-0.93	1.58	-0.23
Var.	VAR4-YES_EQUIVALENT	VAR5-Discrete_1	VAR5-Discrete_2	VAR6-Discrete_MEAN	VAR7-NO
Coef.	1.52	0.26	0.39	0.00	1.14
Var.	VAR7-YES_MATERIAL	VAR8-NO	VAR8-YES_POTENTIAL	VAR9-NO	VAR9-CLIENT
Coef.	-5.20	1.42	-3.12	1.80	-1.67
Var.	VAR10-Discrete_1	VAR10-Discrete_2	VAR12-Discrete_MEAN	VAR-13	
Coef.	0.00	-0.12	-7.69	0.00	

- Variables that have zero coefficients mean that they are irrelevant to the model
- dummy variables have zero coefficients mean the associated dummy variables modalities should have the same label as the reference modality.

Introduction

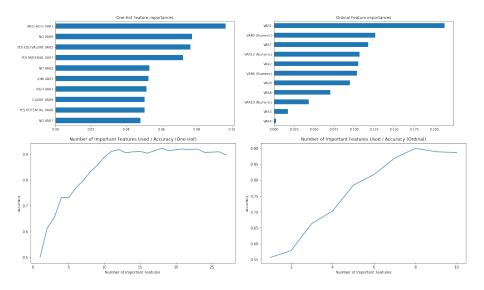
- 2 Description of variables
- 3) Discretization of continuous variables
- 4 Classical Models



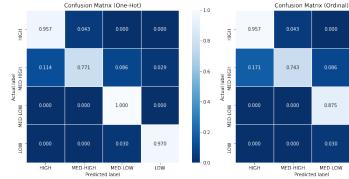
We tested some classic machine learning model like random forest model with two schemes of encoding: one-hot and ordinal. One-hot encoding outperforms.

# of folds, K	Test Accuracy (One-Hot)	Test Accuracy (Ordinal)
3	88.6%	87.7%
5	90.1%	89.5%
10	91.6%	90.0%

Feature Importance



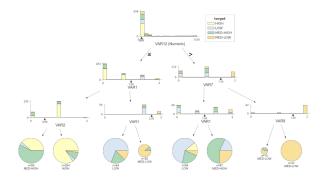
Confusion Matrix



0.000 0.000 - 0.8 0.000 - 0.6 - 0.4 0.875 0.970 0.0 MED-LOW LOW

Single Decision Tree

We then trained a single decision tree model. The trained decision tree model has maximum depth of 12 and test accuracy of 87.3% with 5-fold CV. For the purpose of illustration, we trained another decision tree of depth 3 which gave test accuracy 71.9% with 5-fold CV.



Conclusion

- In this project we would like to perform efficient feature selection that respects the intrinsic monotonicity within each categorical variable while giving reliable prediction accuracy for the ordinal response.
- We performed exploratory analysis on the dataset and tested various discretization schemes for numeric variables and selected a best scheme that boosts the performance of a benchmark model.
- We then implemented various models for comparison including Ordinal Logistic Regression, Proportional Odds Cumulative Logit Model, Cumulative Multinomial Logistic Regression Penalized with Fused Lasso and Random Forest Model
- Balance between the interpretability and prediction accuracy need to be found for the candidate models.