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Introduction
Background : For e-commerce platforms, it is important to understand whether a
user is a “buyer” or “window shopper” based on clickstream data.

Goal: to use in-session data to predict whether the customer carry out purchase
within the session, and eventually, to predict the sales revenue.

What has been done: product recommendation models in COVEO competitions.



Task: Predict conversion rate based on set amount of time

Given X amount of time for a session, how likely is an user to buy something?

Things to note:

~50% of buying sessions had at least 20 non-buying events before a “buy” event.
~50% of all sessions only had 3 or fewer events in total.

~50% of buyers spent at least 12.7 minutes before buying.

Given the last point, we chose 10 minutes as our observation period.



Model: Gradient-boosted Decision Trees (using LightGBM)

Using LightGBM, we achieve a very modest (but consistent) improvement over a
zero-baseline in the task of predicting whether people will buy after observing the
first 10 minutes of a session.

Zero-baseline: 88.1% of user session (with at least one add-to-cart) do not make a
purchase after the 10 minutes mark (purchases before the 10 minutes mark are
not counted)

Prediction model: 88.2% accuracy, which seems disappointing, but...



Output probabilities seem heavily reliable

Estimated vs observed probabilities in 10% bins

Our model’s outputted probabilities
match the observed outcomes.

The lackluster accuracy mentioned
previously is because very, very few
sessions have a higher than 50%
chance of converting (according to our
model).

Could be useful to target likely buyers.
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Top features used by the model

fime_since_last_event
last_product_action_add
unique_product_count
number_of_pageview
purchase
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Average user versus likely user
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Conclusions

e We can use a fast model to decide which sessions are likely to convert into purchases.
e The feature importance of the model gives insight on “good” session behaviors.
e The model can easily be modified to take into account more historical user-based session information.

e While we weren’t supposed to know which sessions were from recurring users, the model was able to figure out
some of them by looking at cart removal, and those were our most likely buyers.

e In the future, we should try smaller amounts of time.



Future Work

e Deep learning-based model can be applied to analyze
sequential pattern data
e Models to explore: LSTM
BERT
Similarity based KNNs



LSTM (long short term memory) model
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BERT pretrained model
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Similarity based Knn prediction
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https://arxiv.org/pdf/2011.03424.pdf

Similarity based Knn prediction

cosine similarity rank

4037: array([0.8660254]),
917: array([0.70710678]),
2074: array([0.70710678]),

[[96380620826578266469318133744184003839031081590997243396626982699094538122908, 2617: array([0.70710678])

44297012095267874781791954586361890043451461601002885694472248489390940114371, 2776: array([0.70710678]),
96380620826578266469318133744184003839031081590997243396626982699094538122908, 3383: array([0.70710678]),
96380620826578266469318133744184003839031081590997243396626982699094538122908, 1800: array([0.63245553]),
43260002728482340560160164711482007021397593594839323509015929544791451025559, 1647: array([0.61237244]),
45099488808365921900055769430129954344350166663107958302648621721690448205520], P> 2467: array([0.61237244]),
[57595948465506079590504928701135293251739742064736119493712315564068450772731, 2831: array([0.61237244]),
40571668546655405749448577880779572826110600810968450706225809315797936753496, 3625: array([0.61237244]),
57595948465506079590504928701135293251739742064736119493712315564068450772731, 155: array([0.57735027]),
57595948465506079590504928701135293251739742064736119493712315564068450772731], 784: array([0.577350271),

895: array([0.57735027]),
1801z array([0:57735027] );
2095: array([0.57735027]),



Max Sum_. . [ x_s - Expected[purchase_s] ]
(X—S)s inS

(yiL ’yiU ’ yi)i in |
Subject to: z" <= yY - fY for everyiin |
zb <=yt - ft for everyiin |
yt+yl-1<=y for everyiin |
M.y, >=X, for every sin S

y;-.y,”,y,in{0,1}



Motivation and avenues for future work

We have studied the dataset from the following two perspectives:

1. Purchase prediction
2. Segmentation

We want to use these information to guide the decision making of COVEO.

Problem of COVEOQ:

Sessions is all you need

The personalization of the session

High bounce rates
Around 40%-50% of u: 2b:

should be done quickly.

We address this problem from a

Few recurring users
Less than 10% of users come back more than

methodological point of view.




Thank you.



