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ABSTRACT. For a general fixed duration optimal control problem, the proximal
aiming technique of nonsmooth analysis is employed in order to construct a discon-
tinuous feedback law, all of whose Euler solutions are optimal to within a prescribed
tolerance, universally for all intitial data in a prescribed bounded set. The technique
is adapted in order to construct universal near-saddle points for two-player fixed
duration differential games of Krasovskii-Subbotin type.

1. INTRODUCTION
Consider a control system

&= f(t,z,u), (1)

where f : R x R? x R™ — R is continuous and locally Lipschitz in the state variable
z. Controls are Lebesgue measurable functions « : 3t — U, where the control restraint
set U C R™ is compact. Assume also that f satisfies a growth condition. Then for each
control function u(-) and each initial phase (i.e. data pair) (7,«) € R x R” there is a
unique solution z(t) = z(¢; 7, , u(-)) on [r,00). A central issue in control theory is the
existence of feedback control laws which achieve desired behavior of the control system
(1) universally; that is, for all initial states or initial phases in a prescribed set.

In fixed duration endpoint cost optimal control problems, which will be the main
focus of our attention in the present work (with differential games being viewed as an
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application of the techniques to be developed), one seeks to design a feedback law & :
(=00, T] x R — U such that for any initial phase (7, «) in some specified subset of
(=00, T] x R, all trajectories of

&= f(t,z, k(t, ) (2)

satisfying #(7) = @ minimize a cost ¢(x(T')), where £ : R — R is assumed to be contin-
uous. We emphasize that the feedback k is nonautonomous; that is, it depends upon the
current time ¢ as well as the position z(¢) (as it must in a fixed-time problem).

Even in very simple cases, one cannot expect the existence of universal feedback laws
k which are continuous, this being the minimal condition for the classical existence theory
of ordinary differential equations to apply to (2). This inadequacy of continuous feedback
can be illustrated via the following example due to Clarke, Ledyaev and Subbotin [10].

Example 1.1. Consider the optimal control problem with dynamics

i=u, te01],
2(0) = «a,

where z € R, u(-) is valued in U = [—1, 1], and where it is desired to minimize the endpoint
cost functional —|z(1)|. First consider any continuous feedback k(¢, #) which is Lipschitz
in # and such that solutions of (2) are defined on [0, 1] for every « € [—1,1]. Then there
is a unique solution z(¢) = z(¢; &) of & = k(¢, ) on [0, 1] for each such «. Now note that
the function @ : [—1,1] — [—1, 1] given by

Qo) = —/0 k(t,x(t; o))dt

is continuous, and therefore has a fixed point & by virtue of Brouwer’s fixed point theorem.
Furthermore, z(1;&) = 0. Now consider the discontinuous feedback law

o) :{ & if 20
1 2f z=0

Upon substituting into the dynamics, we see that for any o € Bs, the resulting trajectory
satsifies —||z(1)|] < —1. This argument can be extended, by approximation, to the case
of merely continuous k. Therefore, given any continuous feedback &, there is at least one
initial phase (0, &) with & € Bs, such that the above discontinuous feedback produces
a better outcome than the continuous one. Hence, there does not exist a continuous
feedback which is optimal universally for initial phases in the set {0} x Bsy. Of course, it
is not always possible to obtain a classical solution to the differential equation

&= f(t,z, k(t,x))=:g(t,2)

when the feedback k is discontinuous, since the existence theory of ordinary differential
equations can break down, but in the present example, this difficulty does not occur.



UNIVERSAL NEAR-OPTIMAL FEEDBACKS 3

A reference which is relevant to the present work, is Clarke, Ledyaev, Sontag and
Subbotin [7], which dealt with the construction of (discontinuous) stabilizing feedback
and a discretized solution concept, wherin controls are iteratively reset and held constant
on successive time intervals. The discretized solution concept utilized in this article, that
of “Euler polygonal arcs” is somewhat akin to this. The departure point of the analysis
in [7] is the key fact, due to Sontag [17] (see also and Sontag and Sussmann [18]) that
asymptotic controllability (which is assumed) is equivalent to the existence of a continuous
(but nonsmooth) control Lyapunov function, or CLF. The methods of nonsmooth analysis
were then brought to bear; the stabilizing feedback is constructed by using the sublevel
sets of the Moreau-Yosida infimal convolution of the CLF and exploiting a nonsmooth
infinitesimal decrease property of this function. The methods of [7] were adapted to dif-
ferential games of pursuit by Clarke, Ledyaev, and Subbotin [11]. In that work, instead
of the sublevel sets of a CLF, the sublevel sets of the value function of the problem were
utilized. (See also Remark 3.5 below for further discussion of the connections between
[11] and other references with the present work.)

A major difference between the methods of [7] (or [11]) and the present work is that
here the Moreau-Yosida infimal convolutions is not required, and the prozimal aiming
method introduced in Clarke, Ledyaev, Stern and Wolenski [8], [9] can be applied in a
direct way. Proximal aiming is a geometric version of the “extremal aiming” method of
Krasovskii and Subbotin [13] in differential game theory. One important feature that [7],
[11] and the present work have in common is that feedbacks are constructed by utilizing a
nonsmooth “infinitesimal decrease” property of either a CLF (in stabilizability problems)
or a value function (in optimal control problems), with this property being expressed via
a generalized Hamilton-Jacobi inequality.

Berkowitz [2] provided a method of (universal) feedback construction for optimal con-
trol, quite different from those mentioned above, but one which also relies upon a nons-
mooth Hamilton-Jacobi approach. In the context of the present article, Berkowitz’s ap-
proach can be described as follows. Since the value function V' = V (¢, z) of the problem
is known to satisfy the generalized Hamilton-Jacobi inequality

in DV(t,z;1,0) =0, ({,z)€ (—00,T)x R, 3
\min DV(LaiL) =0, (L) € (=20,7) )

where DV (t,2;1,v) denotes the lower Dini derivate of V' at (¢, ) in the direction (1,v)
(see (31) below), one approach (which is known to work when V is smooth) is to consider
a set-valued “feedback map” U(t, z) such that

f(t) x, U(t) l‘)) = argmin’uef(tyny)DV(t) T 1) 'U)' (4)
One 1s then led to consider the differential inclusion
& € f(t,z,U(t, x)). (5)

It transpires that under the present hypotheses, any solution of this differential inclusion
corresponds to an optimal trajectory of the optimal control problem. On the other hand,
as is noted in [2], the multifunction f(¢, 2, U(¢, x)) on the right-hand-side of (5) in general
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lacks sufficient regularity (most notably, convexity and upper semicontinuity) for existence
of solutions to hold in general, or, for that matter, for discretized solution procedures to
be applicable. A reference related to Berkowitz [2] is Rowland and Vinter [16]. There a
modification of Berkowitz’s method is given which overcomes this lack of regularity with-
out imposing extra conditions. Rowland and Vinter provided a discretization procedure
(but not a feedback law) which in the limit produces an optimal trajectory for any intitial
phase. Another related approach to feedback construction was undertaken by Cannarsa
and Frankowska in [3]; in that work, additional conditions on the cost functional and dy-
namics were given which provide the requisite regularity in Berkowitz’s original procedure.

The plan of this article is as follows. In the next section, we provide the required
preliminaries in nonsmooth analysis, differential inclusions and Euler solutions. Then in
§3 we present a proximal aiming based method for constructing near-optimal feedbacks,
universal with respect to all initial phases in a specified generalized rectangle of (¢, z)-
space, in fixed duration endpoint cost optimal control problems. The dynamics considered
in §3 are taken to be in the form of a differential inclusion

i=F(t ), (6)

which can serve to model a classical control system of the form (1) upon identifying
F(t,z) := f(t,2,U); the trajectory equivalence of (6) and (1) is well understood. Tt
appears that the weakening of “optimal” to “near-optimal” (to arbitrary tolerance) in
our constructions is the price to be paid for universality. Then in §4 our proximal aiming
method is extended to differential games of Krasovskii-Subbotin type, where the goal is
the construction of a universal e-saddle point. Finally, §5 consists of concluding remarks
concerning the relaxation of hypotheses on the dynamics in the results of §3.

2. PRELIMINARIES

2.1. Nonsmooth analysis background. A general reference for this section is Clarke,
Ledyaev, Stern and Wolenski [9]; see also [8], Clarke [5], [6] and Loewen [15]. First some

basic notation is provided: The Euclidean norm is denoted || ||, and {, ) is the usual inner

product. The open unit ball in " is denoted B,,. For a set Z C R", we denote by co(7),

Z, bdry(Z) and int(Z) the convex hull, closure, boundary and interior of Z, respectively.

We denote the cone generated by 7 as cone(Z7); that is,

cone(Z) :={az:a>0,z€ Z}.
Let S be a nonempty subset of ®”. The distance of a point u to S is given by
ds(u) .= inf{||ju — z|| : z € S}.
The metric projection of u on S i1s denoted
projs(u) = {z € S : Ju— al| = ds(u)}.

If u¢ S and = € projs(u), then the vector u — x is called a perpendicular to S at z. The
cone consisting of all nonnegative multiples of these perpendiculars is denoted N 5 (), and
is referred to as the prozimal normal cone (or P-normal cone) to S at z. If z € int(S) or



UNIVERSAL NEAR-OPTIMAL FEEDBACKS 5

no perpendiculars to S exist at z, then we set N¥(z) = {0}. Observe that the P-normal
cone is a local construct, since as can readily be shown,

N (z) = Néjﬂ{zc+6Bn}(x) Vé>0.
Let f: U — R be continuous, where U C R” is open. Denote the epigraph of f by

epi(f) ={(z,y) €U xR:z €U, y> f(x)}.

A vector ( € R is said to be a prozimal subgradient (or P-subgradient) of f at x € U
provided that

(¢, —1) e NDi sy (=, f(2)).

The set of all such vectors is called the P-subdifferential of f at x, denoted dp f(x). One
can show that ¢ € dp f(x) iff there exists ¢ > 0 such that

fly) = fle) +olly — 2| > (C.y — 2)
for all y € U near x, and that Op f(x) # ¢ for a dense set of z € U.

The limiting normal cone (or L-normal cone) to S at x € S is defined to be the set
N§(z) :={C: G — ¢, G € N§(xi), @i — z}.

In particular, N¥'(z) C NZ(z) and NE(z) = {0} if € int(S). One can show that the
multifunction # — NZ(z) is closed on S. Also, if SN {z + rB,} is nonempty and closed
and z € bdry(S), then NZ(z) # {0}. The L-normal cone leads to a corresponding limiting
subdifferential (or L-subdifferential) set for f:

O f(x) =1{C: (¢, =1) € Ny (@, f(2)},

the members of which are called limiting subgradients (or L-subgradients). One has

Orf(x) ={C:¢G — ¢, G edpfla), x; — =, f(x;) — f(x)}.

We now summarize some required facts from nonsmooth calculus:

(a) Sum rule: Suppose that g is C? near a point € U. Then

Ip(g+ f(x) Cg'(z) + Opf(z), (7)
where ¢’ denotes the Fréchet derivative.

(b) Local Lipschitzness: Assume U to be convex as well as open. Then f is Lipschitz of
rank K on U iff
K[| <K V(¢eopf(x), Veel.
Also, dr f(x) # ¢ if f is Lipschitz near x, and we have f is Lipschitz of rank K on
U iff
IK|< K V¢eorf(x), Yeel.
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(¢) L-normals to sublevel sets: Let f be Lipschitz on U (open and convex) and let a € .
Denote

S(a) ={zx €U : f(z) <a}.
Suppose that # € U is such that f(Z) = a, and assume that

0¢drf(a). (8)

Then
N§(a)(%) C coneldr f(2)]. (9)

2.2. Differential inclusions and Euler solutions. Consider the differential inclu-
sion (or generalized control system)

i€ F(t, ), (10)

where by a solution or trajectory of (10) on an interval J we mean an absolutely continuous
function ¢t — z(¢) € R™ satisfying (10) a.e. on J. Here F' is a multifunction which is
assumed to satisfy the following standing hypotheses:

(SH) (a) For each point (¢,2) € ® x R", F(¢, ) is a nonempty compact convex subset
of }™.

(b) Linear growth: There exist 41 > 0 and 72 such that
o]l < 7llzll +7v2 Yo € F(t,x), V(,z)€RxR".

(¢) F is locally Lipschitz on R x R"; that is, to every bounded set .S C R x R
there corresponds K > 0 such that

F(tl)l‘l) C F(tz)l‘z) + I{”(tl;xl) — (tz)l‘z)”B V(tz,l‘z) c S, 1 =1,2.

Remark 2.1. The main results of this article can be extended to the case where the
sets F'(¢,z) are not assumed to be convex or closed, but only bounded. Furthermore, the
Lipschitz hypothesis on F' can be relaxed to upper semicontinuity. This is taken up in §5;
until then, however, (SH) will be assumed to hold.

(SH) suffices for global existence of solutions of (10); that is, for any initial data
(1) € ® x R”, there exists a solution of (10) on [r,c0). Furthermore, we require the
following well known fact, commonly referred to as “compactness of trajectories”: Given
a sequence of solutions {zx(-)}32; of (10) on a compact interval [7,T], each satisfying
2;(7) = @, there exists a subsequence converging uniformly to a solution #(-) of (10) on
that interval, also satisfying «(7) = «. If convexity of the velocity sets F(¢, z) is omitted
from the hypothesis, then a limit arc z(-) still exists, which is a solution of the differential
inclusion & = co[F(¢,2)] on [r,T]. (In addition to [9], see e.g. Aubin and Cellina [1],
Deimling [12] or Castaing and Valadier [4] for this fact as well as the general existence
theory of differential inclusions.)

A feedback f for F is simply a selection of F'; that is, for every (£,z) € R x R” one
has f(t,z) € F(t,x). In the classical control system case, where the dynamics are of the
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form & = f(t,z,u), upon defining F(¢, ) := f(t,2,U), such a feedback corresponds to a
selection k(t,z) € U, where U is the control restraint set.

The generalized solution concept with which we will be working will now be described.
Given o € R” and a compact time interval [r, T], then should it exist, an Fuler solution
of the initial value problem

&= f(t,z), z(r)=« (11)

is the uniform limit of piecewise linear functions as follows: Given a partition = of [r, T,

T=itg <t <. <N, =T,

the Fuler polygonal arc x:(-) is generated on successive subintervals via the recursive
formula

l‘ﬂ—(t) = l‘ﬂ—(ti) + (t — ti)f(ti, l‘ﬂ—(ti)), te [ti)tﬂ_l], 1=0,1,...,N; — 1,

where (1) = a. The instants ¢; are referred to as the meshpoints of the partition, and
for convenience we denote z(t;) = x;. The nodes of the scheme are the points (¢;, z;),
i=0,1,...,N; — 1. An Euler solution on [r,{] is then defined to be the uniform limit of
a sequence Zr,(-) such that diam(w;) — 0; here

diam(7;) == max{|t; —t;_1| : 1 <@ < N, }

is referred to as the mesh diameter of the partition #. Under the standing hypotheses
(SH), if f is a feedback for F, then at least one Euler solution on [r,T] exists, and any
such Euler solution is necessarily also a trajectory for the underlying differential inclusion

(10) on [r, TY; see [9].

3. UNIVERSAL FEEDBACK CONSTRUCTION IN OPTIMAL CONTROL
Suppose that F satifies the standing hypotheses (SH) and that £ : " — R is a continuous
function. Given T' € R, we shall consider the following parametrized family of optimal
control problems {P(r, «)}, where (7, &) € (—o0, T] x R™:

minimize L(x(T)) over all trajectories x of the differential inclusion #(t) € F(t,z(1))
satisfying x(1) = o.

In view of compactness of trajectories, the minimum in each problem P(r,«) is attained;
we denote this minimum by V (7, «), and call the function V' : (—o0, 7] x £* — R the
value function.

We shall require a characterization of V' as the unique solution of a proximal Hamilton-
Jacobi partial differential equation with an associated natural boundary condition. Prior
to stating it, we need to introduce the lower Hamiltonian hp : ¥ x B x B — N and the
augmented lower Hamiltonian hp : R} x R? x R x R* — R. These functions are defined as

hF(t) x, C) = 'UGI;'l(itn.'L‘)<,U) C)
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and

hp(t,,0,() =0+ hp(t,z,{) = min {(1,v), (6,()).
veF(t,x)

Theorem 3.1.

(a) The value function V is the unique continuous function ¢ : (—oo,T] X R* — R
satisfying -
hp(t,z,0pp(t,z)) =0 V(t,z)€ (—o0,T) x R, (12)

o(T,2) = l(x) YzeR (13)

(b) Furthermore, if { is assumed to be locally Lipschitz on R, then V is locally Lipschitz
on (—oo, T] x R".

In order to clarify the meaning of the equation (12), let us note that it is rephrasable
as

hp(t,z,0,) =0+hp(t,2,()=0 VY (0,0) €pp(t,x), Y(t,x)€(—00,T)x R".

For the proof of Theorem 3.1, see [9], §§4.3, 4.7 as well as [8]. The proximal character-
ization that the theorem provides can be rephrased in terms of viscosity, or alternatively,
minimax solutions to the nonsmooth Hamilton-Jacobi equation; see [9], [8] for definitions,
proofs of these equivalences; and for historical references regarding these generalized so-
lution concepts. We wish to point out that the proximal viewpoint taken in the present
work capitalizes upon the intrinisic (and quite natural) geometry of the problem in order
to construct near-optimal feedbacks, a route which appears problematic in the context of
viscosity or minimax solutions.

Our main result is the following.

Theorem 3.2. Suppose that the multifunction F' satisfies (SH) and that the cost func-
tional £ is continuous. Let M > 0 and to € (—o0,T) be specified. Then for any given
€ > 0, there exists a feedback f. for F' and a scalar i > 0 such that the following holds:
Given any initial data

(r,a) € [to, T] x M B, (14)

and any partition = of [7, T with diam(w) < fi, every Euler polygonal arc x, of the initial
value problem

w(t) = fo(t,2(t), =(r)=« (15)
satisfies

U (T)) < V(r,a) +¢. (16)

An immediate consequence of the theorem holds for Euler (limit) solutions:
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Corollary 3.3. Under the hypotheses of the theorem, for any intial data satisfying (14)
and any given ¢ > 0, every Euler solution x of (15) on [r,T] satisfies

Ux(T)) < V(7 a) +e. (17)

The statement of the above corollary can be rephrased as follows:

All Fuler solutions generated by the feedback f. are c-optimal trajectories of_P(T, «) for
any given initial data (7, &) in the (n + 1)-dimensional rectangle [to, T] x M By

The proof of Theorem 3.2 also yields the following corollary, which is useful in case
V is not known, but a continuous solution (also called a “semisolution”) to a proxi-
mal Hamilton-Jacobi inequality is available; the other hypotheses of the theorem are
unchanged.

Corollary 3.4. Let ¢ : (—00,T] X R” — R be a continuous function satisfying
hr(t,z,0pp(t,z)) <0 Y(t,z) € (—o0,T) x R", (18)

o(T,2) > l(x) VzeR (19)

Then given € > 0, there exists a feedback f. for F' and a scalar i > 0 such that for any
initial data (14) and any partition @ of [r,T] with diam(w) < fi, every Euler polygonal
arc x of the initial value problem (15) satisfies

Uz (T)) < o(7, ) + <. (20)
Furthermore, every Euler solution x of (15) on [r, T satisfies

Lx(T)) < p(r,a) + ¢. (21)

Remark 3.5. We pause to discuss the relationship of Theorem 3.2 and its corollaries to
certain known results.

e If V is known, then a special case of Theorem 4.8.1 of [9] (which first appeared as
Theorem 10.1 in [8]) provides a proximal aiming method for constructing a feedback
(using the proximal characterization of V' given by (12)-(13)), such that all its Euler
solutions are optimal (that is, £ = 0), for a given initial data pair (7, «). Actually,
the invariance-based proof shows that a somewhat better result holds: The feedback
produces optimal Euler solutions for any initial data in the set

S ={(7,d) € (o0, T] x R" : V(r,a) < V(r,a)}.

In contrast to this scenario, the feedback f. that we will build is operative for all
initial data in a prescribed generalized rectangle. This “universal” property of the
feedback f. 1s an important distinction, and in a sense, the weakening of “optimal”
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to “c-optimal for any given £ > 0”7 in our results can be viewed as the price paid
for universality in Corollary 3.3, albeit a small one in any practical sense. Whether
this price is truly unavoidable is an open question, since we do not at present have
a counterexample to the £ = 0 case of Corollary 3.3. On the other hand, Krasovskii
and Subbotin [13] have provided an example of a fixed duration differential game
which does not possess a universal saddle point, under hypotheses which imply the
existence of a saddle point for each individual startpoint; see also the discussion
in §4.1 below. In §4.2 we will construct a universal e-saddle point in proximal
aiming feedback controls. We refer the reader to Krasovskii [14] (see also [13]) for a
different construction of a universal e-saddle point, one which is less in the spirit of
our geometric and dynamic programming approach, in that it does directly utilize
a generalized Hamilton-Jacobi system.

In Theorem 10.2 of [8], a sufficient condition is given for the existence of a universal
e-optimal feedback, in the classical ordinary differential equations (as opposed to
Euler) solution sense. This condition requires finding a Lipschitz semisolution to a
strict version of (18) (along with the boundary condition (19)), but with the proximal
subdifferential dpV replaced by the generalized subdifferential dc V' of Clarke, which
is in general a larger object than the P-subdifferential. Because of this, the value
function in general does not satisfy this condition, so there is the difficulty of finding
an appropriate semisolution if one seeks to apply this result.

In Clarke, Ledyaev and Subbotin [11], a proximal analytic method is given for
producing universal e-optimal feedback controls in differential games of pursuit,
in the Krasovskii-Subbotin framework. (The pursuit strategy constructed there
happens to be autonomous, because the payoff in the game is the minimum-time
function to a target.) The feedbacks in [11] are constructed with the aid of Moreau-
Yosida infimal convolutions of a not necessarily continuous proximal semisolution
to a Hamilton-Jacobi inequality; this lack of continuity is a natural feature of the
value function in time-optimal control, and more generally, in differential games of
pursuit. In the present work, we will employ a technique dubbed prozimal aiming
in [8], which has as an antecedent the “extremal aiming” method employed by
Krasovskii and Subbotin [13] in their theory of differential games. The proximal
aiming method we shall employ involves metric projection directly onto the sublevel
sets of the value function (which in many cases is determined first heuristically, and
then verified via Theorem 3.1); the infimal convolution operation is not required.

For easier exposition, we will without loss of generality assume that 0 < tg < 7. Also,

let us denote

C:=1[0,T]x MB,. (22)

Recalling the discussion of Euler polygonal arcs in §2.2; it is a straightforward exercise
to show that there exists A7 > 0 such that the following holds: For any feedback f of
F, any initial data (7,«) € C, and any partition « of [, T], the Euler polygonal arc =,
generated by f on [r, T] satisfies

(Ol < My Vi€ [r,T]. (23)
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We denote

Cy ==1[0,T] x 2M,B,. (24)
Then for any (7, «) € C, we clearly have

(t,z(1)) €[0,T] x M1B, CC, Vte[rT). (25)
For § > 0, consider the mollifier of £ given by

i) = [ e+ gy,

where w : R — [0, 00) is a function in C°°(%") with support in B,, such that

/w w(y)dy = 1.

Then standard arguments concerning regularization of continuous functions yield that
Ly € C°(R™), and what is more, for any given x > 0, § may be chosen small enough to
ensure that

[o() — £&)| < x Vo € M,
Upon denoting by Vp the value function obtained by replacing £ with ¢4, it follows that

Vo(r,0) =V(r,a)| <x V(r,a)elC.

The next lemma follows readily from the preceding discussion. It will prove to be
quite useful, since for technical reasons that will become plain as we proceed, we shall
require (in the proof of Lemma 3.13, specifically) Lipschitz behavior of the value function,
as opposed to mere continuity.

Lemma 3.6. In Theorem 3.2, it suffices to consider only the case where £ is C°° on R".

From this point on, whether explicitly stated or not, the hypotheses of Theorem 3.2
will be in force, and we will assume that £ is C* on ®”. Then in view of part (b) of
Theorem 3.1, V' is locally Lipschitz on (—oo, T x R”.

The proof of Theorem 3.2 is quite long and somewhat technical, and its component
parts will be dealt with in the two ensuing subsections.

3.1. Artificial inwardness and sublevel sets. Let us fix # > 0, a parameter which
will later be taken sufficiently small. Denote by {P?(r,a)} the version of the family of
problems { P(r, )} one obtains by adding a “running cost” S(7T — 1) to the original cost
{(z(T)). Thus the problem P?(r,a) is

minimize {(x(T)) + (T — 7) over all trajectories x of the differential inclusion (1) €
F(t,x(t)) satisfying x(7) = a.

By compactness of trajectories, the minimum is attained in P?(7,a); we denote the
associated value function by V7.

Straightforward arguments yield the following:
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Lemma 3.7. For every (1,«) € C, one has
VA(r,a) = V(r,a)+ 3T — 1), (26)

and in particular,

VA(r,a) < V(r,a)+ BT, (27)

Since one the functions in the sum defining V? is linear, the sum rule (7) implies
opVP(r,a) = 9pV(r,a) — (3,0).
Then Theorem 3.1 together with (26) readily yields the following.
Lemma 3.8. The value function V? is locally Lipschitz on (—oo,T] x R" and satisfies
he(t,x,0pV7(t,2)) = =B V(t,x) € (—00,T) x R”, (28)

as well as

VA(T,z) = () YzeR (29)

The addition of the running cost term (7T —7) has the effect of “artificially” producing
a type of decrease property, at the rate 3, of the value function, via the Hamiltonian
inequality (28). This is most naturally observed by invoking the fact that (28) is equivalent
to the Dini version

min  DVP((t,z);(1,v)) = =3 V(t,z) € (=00, T) x K", (30)
veF(t,x)

where for a locally Lipschitz function g, the lower Dini derivate of ¢ at y in the direction
w 18

A

The equivalence of (28) and (30) rests upon a deep result of Subbotin linking proximal
and directional calculus; in this regard we refer the reader to [9], §§3.4, 4.7. On the other
hand, to our knowledge, no way is known to directly use the Dini inequality to construct
optimal or suboptimal feedbacks in problems of stabilizability or control. As will be seen
below (in Lemma 3.13), a geometric version of the decrease property can meaningfully be
termed “artificial strict inwardness” of the velocity sets F' with respect to a certain family
of sets constructed from the sublevel sets of V#. This property will be vital in the design
of the feedback f. in Theorem 3.2.

Dy(y; w) :=lim %nfg (y+w) = 9(y) (31)

The following simple example, which is part of Exercise 4.7.11 in [9], illustrates a
related effect of adding the running cost to the problem; namely, the creation of a new
family of level sets for the value function which can be suitably “packed” in a way needed
for the implementation of the proximal aiming methodology.
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Figure 1: Altered level sets

Example 3.9. Let n =1, F(z) = [—1,1], {(x) = |z|, and T = 1. Tt is not difficult to see
that
V(t, ) = max{|z|+¢t—1,0}.

Figure 1(a) shows some sublevel sets of the original V' as well as a region where V =0
when the cost functional is |z(1)|. Figure 1(b) shows sublevel sets {(¢,z) : VP(¢,z) < a}
(where 0 < a < 3) obtained when the cost is |#(1)|+ (1 — 7) for a fixed parameter value
3 > 0. These sublevel sets form a nested family of triangles, reducing to {(1,0)} when
a = 0. The reader is invited to (heuristically at least) verify the picture.

Let
am = min{VP(t,2): (t,x) € C1},
ay =max{VP(t,z): (t,x) € C1},
and for a € [a,,, ay], let us denote the a-sublevel sets of V7 (relative to Cy) by
S(a) == {(t,z) € C1 : VP(t,z) < a}.
Obviously one has the nesting property
am < a<d <ay = S(a) C S(d'),

and clearly S(apy) = C1. Also, one can use the infinitesimal decrease property (30) in
order to show that S(a,) Nint(Cy) = ¢.

The next lemma provides basic properties of the multifunction 5.
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Lemma 3.10. For each a € [an,, ay], the following hold:

(a) The set S(a) is nonempty and compact.

(b) The multifunction S is Hausdorff continuous on [am,, ay].

Proof: The verification of (a) is easy and left to the reader. As for part (b), let
a € [am, apr]. Given € > 0, we must verify the existence of § > 0 such that

a' € [am, an] S(a’) C S(a) + €Bpta (i)
la — a| < 6 } { S(a)C S(@)+eBos1 (i) (32)

Case 1. ' > a.

In this case, (ii) is obvious. Suppose (i) was false. Then there would exist sequences
a; | a, a; € [am,apr], and (t;,2;) € S(a;) such that dg,)(ti, ;) > €. Since (#;, ;) is
clearly a bounded sequence, we can assume convergence to a point (¢,z) € C7. Then
continuity of the distance function implies dg(q)(t, ) > ¢. But continuity of V7 implies
VP(t,z) < a, providing a contradiction.

Case 2. a>a'.

In this case, (i) is obvious. Again arguing by way of contradiction, suppose that (ii)
was false. Then there would exist ¢ > 0 such that for sequences a; 1 a, a; € [anm, ay], and
(t;, z;) € S(a), one had

dsa(ti, x) > Vi>ig

for some index 5. By compactness, we can assume (¢;, #;) — (t,2) € S(a). Then

£ . .
dg(al)(t,l‘) > 3 Vi>ig. (33)

Now, since Cj i1s compact, convex and has nonempty interior, it is the closure of its
interior. Hence without loss of generality, we may assume that the point (¢,2) in (33) is
in int(C}), and in particular, t+ < 7. Then, by the infinitesimal decrease property of V?
provided by (30), there exist points (¢/,2’) € C; such that

I¢2") = )l < < (34)
and
VO, 2) < VPt z). (35)

Then (35) implies VZ(#', 2') < a, and therefore there exists i) such that
t',2') € S(a;) Vi>1dy. (36)
But (33) and (34) together imply

dS(a,)(t/;lJ) > % Y1 Z io)
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which contradicts (36). O

The next lemma’s proof follows readily from part (b) of the preceding one, along with
a routine uniform continuity argument; we therefore omit the proof.

Lemma 3.11. Let v > 0 be given. Then there exists kg > 0 such that for all integers
k > kg, the partition {bj}fzo of the interval [a,, ayr] given by

apr — Am

=0,1,...k— 1.
]C bl J 0)) bl (37)

bo = am, bpi=aym, bjy1 =0+

satisfies

Let us denote
v:=sup{||v|]| :v € F(t,x), (t,z) € C1}.
Lemma 3.12. There exists § > 0 such that one has
[1(6,0)]| > 6 Y(0,() € dpVP(t,x), Y(t z)€int(Cy). (39)

Furthermore,

0 £OLVP(t,x) Y(t,z)€int(Ch). (40)

Proof: The infinitesimal decrease property (28) implies
Ep(t, x, 8pVﬂ(t, z)) = —p.
Let (6,¢) € 9pVP(t,x). Then for some ¥ € F(t,z) one has
0+(v,¢) =5,

or equivalently,
<(1) 6) ) (H)C» =-p.
Then by the Cauchy-Schwartz inequality, we obtain

ICL )18, Ol = 5,

whence

__B
160,01 > 6= 2.

which verifies (39). Now (40) follows from the definition of the L-subdifferential. O

The following lemma provides a key property, which amounts to a type of “uniform
strict inwardness” of F' with respect to the family of sets {S(a) Nint(C1)} as a varies in
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[am, an]; note that boundary points of C are excluded in this family. The proof of the
lemma requires locally Lipschitz behavior of the value function V7. We denote by &’ a
Lipschitz constant for V on 7. Then in view of (26), x := &'+ 1 is a Lipschitz constant
for V# on () provided that 3 < 1, which will henceforth be tacitly assumed. (This upper
bound on § will subsequently be decreased.) Also, we denote by & a Lipschitz constant
for the multifunction F on C7.

Lemma 3.13. For any given a € [a;,, ap], one has

hr(t,z,n) < —%Hn” V(t,z) € S(a) Nint(Cy), Vne Nf(a)(t,x). (41)

Proof: Note that (41) is vacuously true if S(a) Nint(Cy) = ¢.

As far as proving the inequality (41) is concerned, let us first note that it is equivalent
to 1ts limiting form

hp(t, z,m) < —gllﬁll V(t,2) € S(a) Nint(Ch), ¥n € Ng,(t,2), (42)
as follows directly from the definition of the L-normal cone and the continuity of hp in 7.

Given a € [am,ap], let (t,2) € S(a) Nint(Cy) and n € Nﬁ(a)(t,x). Since the lower
Hamiltonian hp(, 2, 7) is positively homogeneous in 7, it suffices to verify (42) for [|n|| = 1,
which will be assumed from this point on in the proof. Then (¢,2) € bdry(S(a)), since
n = 0if (t,z) in the interior of S(a), and therefore V?(¢,z) = a. We are to prove that

EF(t,x,n) < —é. (43)

K

To this end, recall (9), which we are in position to apply by virtue of (40). Then

n=A(0,Q)

for some A > 0, where (8,¢) € 9, VP(t,z). Since V7 is rank x Lipschitz on Cy, we have
[|(8,C)]] < k. Therefore, since [|n|| = 1, we have

A>

x| =

. (44)
In view of (28), -
he(t,x,0,0) = =5,
and so -
hp(t,z,n) = —A8.
Upon combining this with (44), we arrive at (43). D
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3.2. Completing the proof of Theorem 3.2. From this point on, we shall take
B

7= SR

(45)
where 3 will subsequently be adjusted.

Consider a partition {b; }f:O of [am, apr] as in Lemma 3.11; that is, such that (37) and
(38) hold, for this value of 4. For j = 0,1,...,k — 1, we denote the open y-neighborhood
of S(b;) by Z;; that is,

Zj = S(bj)+¥Bny1, j=0,1,.. k—1.

We will refer to Z; as the absorption zone of the set S(b;), for reasons that will subse-
quently become clear; the value v given in (45) is called the absorption radius. Then (38)
says

S(bhis1) C Z;, j=01,... k—L (46)
Given (t,z) € S(by) = S(aar), denote
jtye) = min{j s (ta) € 75, =01, k—1}.

In other words, S(bj(; ) is the “most inner ” (or smallest) sublevel set S(b;) (i.e. the
sublevel set with the lowest possible j) whose absorption zone Z; contains the point (¢, z).

Note that if (¢, 2) € S(am) = S(bg), then j(¢,2) = 0.
We shall now define a certain feedback f of F'.
e For (t,z) € S(by), f(t,x) is taken to be an arbitrary element of F(t, z).
o Likewise, for (t,2) € R*"\{S(br}, f(t, ) is an arbitrary element of F(¢, ).
e For (t,2) € S(bx)\{S(bo)}, let

s = s(t,2) € projsqy,,, (1, @), (47)

and denote 5 := (t,2) — s. Note that n € NSP(b (s), and that

()
0<Is= @) =l = ds,q ¢ 2) <7 (48)

Let v = v(t, ) € F(s) be any point such that

hr(s,m) = ((1,0), 0).

We take f(¢, ) to be the (unique) closest point in F'(¢, ) to v.

It is important to observe that in view of Lemma 3.13, if (¢, 2) € S(a) Nint(Cy), then
we have

((Lv), m =((1,0), (1, 2) =) < —%Il(t)l‘) — |- (49)
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Therefore for such points (¢, z), since

<(1) f(t) l‘)) 3 (t) l‘) - 5) = <(1) 'U) 3 (t) l‘) - 5) + <(1) f(t) l‘)) - (1) 'U) 3 (t) l‘) - 5)

and F' is g-Lipschitz on C7, one has

(LS00 () = 3) < Rl (1) = D, (0,2, (50)

The next lemma asserts that if the running cost parameter 5 and the mesh diameter
of the partition 7 are small enough, then for any initial data in (', the Euler polygonal
arc x, generated by f exhibits a type of nonincrease property with respect to V7. After
the lemma is proven, the proof of Theorem 3.2 will be completed by adjusting the value
of # (depending upon the given ). We first need to specify certain constants.

o We set .
B — wity

= 2K

e It is clear from (46) that there exists ¢o > 0 such that

dS(bj+1)(t)l‘)§62:>(t)l‘)€Z]’) _]20)1))]6'—1 (51)
Lemma 3.14. Let 0 < £ < %, and assume that
B < min{kr M, KRE}. (52)

Let (r,a) € [¢,T — ¢] x MB,, C C, and let 7 be a partition of [, T] such that its mesh

diameter satisfies
C1C2

diam(7) < ji:= —5 (53)
where 7 Is given by (45). Set
k= max{i: t; <T — &}

Then node ix of the Euler polygonal arc x, on [r,T] generated by the feedback f in the
initial value problem

(t) = f(t, (1), 2(r) =« (54)
satisfies

(ti*; xz*) S Zj(ﬂoz)- (55)

Proof: In view of (45) and the bound (52), one has
v < min{ M, £}. (56)

Then o o
(t,z) € [6,T —£] x M1 By, = (t,2) + ¥Bp41 € int(C1), (57)
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and therefore, in view of (48),
(t,z) €[, T — €] x My B, = s = s(t,z) € int(C}). (58)

Since obviously

(t,z(t)) €[6,T— &l x M1 B, Yte][0,t],
(58) implies that the nodes of z, satisfy
s(ti, @) €int(Cy) 1 =0,1,..., %, (59)
a fact which enables us to employ Lemma 3.13 in the ensuing arguments.
We will show that for i = 0,1, ..., ¢, the nodes of &, beginning with the intitial point

(to,z0) = (7, @), continually enter absorption zones with nonincreasing indices j < j(7, «).

This will yield (55).
‘We introduce the function

g(t,x) =2 (Rdg(bj(f)a))(t,x) — ﬁ> .

K
We claim that
g(t,x) < =2¢1 V(t,%) € Zj(r,a) = S(bj(r,a)) + ¥ Bny1- (60)
To see this, first note that (60) will hold provided that
KRy =
2K

After some arithmetic, this last inequality 1s seen to be equivalent to

g

’}/<_~;
KK

Eds(bj(r)a))(t) l‘) - % <

which holds due to (45), and (60) follows.

In view of (50), for every (t,%) € Zj(7 a), one has

gt = :
(L ft, ), (t,2)—s) < (2 )dS(bj(T,a))(x) Vs e pI‘OJS(bj(T)Q)(t, x). (61)

Then
A5, te) < It z) = s(ra)]]?

= Ity 21) = ()| +[|(7, @) = s(7, @)

+ 2{(t1, 1) — (1, @), (1, ) — s(7, @v))
11

< d%(bj(f,a))(T’ a)+ 1/2(151 - T)2 + 2/ (A, f(ry)), (7,0) — s(7,))dt

S d%(bj(r,a))(T’ O[) -+ ]jz(tl - T)Z + g(T) O[)ds(bj(r)a))(T) O[)(tl - T)

< d?;(bj(f)a))(r, a) + [vidiam(7) + g(7, a)dg(bj(f)a))(ﬂ a)l(ty — 7).
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‘We now claim that

vidiam(r) + g(1, @)dsp, ) (1,0) < —ciea. (62)

To show this, first note that (60) implies

g(1, @)ds ) a) < —261d5(bj(7)a))(7', a).

J(r,a)
Therefore, in view of (53), the inequality (62) will hold if
dS(bj(T,cx))(T) OZ) > Co.

But this follows from the definition of ¢;. Hence (62) holds.

We conclude that

d?‘?(bj(f,a)(tl’ z1) < d%(bj(f,a))(ﬂ a) —ciea(ty — 7). (63)
Possibly (t1, 21) is in Z; for some ¢ < j(7, «). If so, restart the procedure just described,
with the node (¢1,z1) taking over the role played by (7, «) = (tg, #g) above. If not, then
since 1 is in Zj(; ), We can repeat the argument and obtain
d%(bj(f)a))(tg) 1‘2) S d%(bj(f,a))(tl’ 1‘1) — Clcg(tz — tl).
Then
d?;(bj(f,a))(t% x9) < d?;(bj(f)a))(r, a) — ciea(ta — 7).
Continuing in this way, if (7, «), (t1,21), ..., (fi=1, ;_1) are not in some Z; with j <
Jj(7, @), then since all these points are in Zj(; o), we have
d?‘?(bj(f,a))(ti’ z;) < d?;(bj(f)a))(r, a) —crea(ty — 7). (64)

The above argument shows that for ¢ = 0,1,... 2%, the nodes of the Fuler polygonal
arc remain in Zj(; o), possibly entering more and more inner absorption zones. In partic-
ular, (55) holds, which completes the proof. O

We now are in position to complete the proof of the theorem.

Proof of Theorem 3.2: Let € and (7, &) be as in the statement of the preceding lemma,
and let us denote
i'=7'(ra)=min{j : V7(r,a) < b;}.

Noting that (7, ) £S(bg), we have j(r,«) < j'—1, and therefore the Euler polygonal
arc produced in the lemma by the feedback f satisfies

(tixs 2x(tin)) € Zjr—1 = S(bjr—1) + ¥Bn1-
Hence there exists (¢, 2') such that VA (¥, 2") < bji_q (that is, (¢/,2") € S(b;1—1)) and

(', 2") = (tiw, wx(ti))l]| < 7- (65)
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‘We have

VAT, an(1)

VA(t), 22(t%)) + k(T —ti)
Vﬂ(t/, o)+ k(T — tix) + Ky
bjr1+ k(T — tis) + K7y

VA(r, a) 4+ w(T —ti) + K7y
VA(r, a) 4 w(diam(7) + &) + kv

L (tix)

VANRVAN VAR VAR VAN

Let K denote a Lipschitz constant for the cost functional £ on ;. From (27) we then
obtain, for any (7, «) € [£,T — £] x M B, the inequality

U (T) < V(r,a) + s(diam(7) + ¢) + wy + Kv(diam(7) + &) + 57 (66)

Then for for any (7,a) € [¢,T] x M B,,, one has

U (T) < V(1,a) + s(diam(7) + €) + wy + Kv(diam(7) + &) 4+ 51+ Kve. (67)

Now, bearing in mind that tq > 0, observe that (16) holds with the feedback f. taken
to be f as described above, when all the bounds demanded on &, the mesh diameter
diam(7) and running cost coefficient 3 are small enough to ensure that the right-hand-
side of (67) is less that £. This completes the proof of the theorem. O

4. APPLICATION TO DIFFERENTIAL GAMES

4.1. Krasovskii-Subbotin differential games. In this subsection we will describe
a variant of the Krasovskii-Subbotin framework for differential games (Krasovskii and
Subbotin [13], Subbotin [19]). The primary difference between the model presented here
and theirs is that in the discretized Krasovskii-Subbotin model, Euler polygonal arcs are
not utilized, but an alternate concept, that of “step-by-step motions” is employed. We
will not dwell upon this distinction here.

The dynamics of the differential game are furnished by the two-controller system
2(t) = g(t, z(t),u(?), w(t)), te€(—o0,T], (68)
where g : RxR" x RF x ®? — RN™. Admissible controls are Lebesgue measurable functions

UI(—OO)T]HP; w:(_OO)T]_)Q)
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where the control restraint sets P and ) are compact subsets of ®R? and R?, respectively.

The following standing hypotheses on the dynamics will be in effect throughout:

(a) The function g is continuous.

(b) For each bounded set G C (—o0, T x RP there exists a number A(G) > 0 such that
lg(t, z1,u,v)—g(ta, 22, u, )| S MG)||(E1, 21) = (t2, 22)[| V (L, 25, u,v) € GXPxQ,
i=1,2.

(¢) There exist positive constants y; and 2 such that

gt z,u, v)|| < 31|zl + v2, Y (t 2,u,v) € (—o0, T] x R" x P x Q.

(d) The set g(t,z,p,Q) is convex for all (¢,z,u) € (—o0,T] x R" x P, and the set
g(t,z, P,v) is convex for all (¢, 2,v) € (—oo, T] x R x Q.

(e) The Isaacs condition holds; that is, for all (¢,2) € (—o0, T] x R" one has

i t = in(g(t V(¢ eR. 69
ﬂlpggg(g()x)u)w))C) :[Unggumelyg()x)u)w))é’) (€ (69)

Remark 4.1. It is well known that if the Isaacs condition is omitted from the hypotheses,
then it nevertheless holds in the differential game wherein controls are replaced by relaxed
controls; see the discussion of mixed strategies in Chapter 10 of [13].

The payoff functional of the differential game to be described here is of endpoint type,
and is given by ¢(x(T")), where £ : % — R is assumed to be locally Lipschitz. The u-player
is the minimizer, and the w player 1s the maximizer.

Feedback controls for the two players are simply any functions U : (—oo, T] x R* — P
and W : (—oo, T] x R" — @, with no continuity or measurability assumptions made. Note
that a pair (U, W) of feedback controls generates a feedback f for the multifunction

F(t,z):=g(t,z, P,Q),

namely
ft,x) = g(t, 2, Ut 2), W(t, x)).

Let (1, ) € (—00, T] x R™ be given initial data. We now describe our “Euler” differ-
ential game model, denoted G(7, «). Consider the partition 7 of [, T given by

T = {T =:to,t1,%9,...,IN, = T}
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Then the Euler polygonal arc z(-) = z(-;7,a,U, W, 7) generated! by a pair of feedback
controls (U, W) is described by

$(t) = $(tz) + / g(ti, x(ti), U(ti) $(ti)), W(ti, x(ti)))ds)

ti

z(t) = «, s€[t,tiyn], i=0,1,... Ny — 1L
Consider a sequence of such Euler polygonal arcs

zp()=2x( 510, U Wym), k=1,2,...,

where
mo= (= i it = T)

and the mesh diameters satisfy diam(w;) — 0 as ¥ — oco. A uniform limit of such Eu-
ler polygonal arcs on [, T] is called a motion generated by the pair of feedback controls
(U, W). The discussion of Euler solutions in §2 implies that this set of motions, denoted
X(r, o, U, W), is nonempty because, as pointed out above, each z;(-) is an Euler polygo-
nal arc generated by a certain feedback for the multifunction F(¢,2) = ¢(¢,z, P,Q), and
each such motion is a solution to the differential inclusion & € co[g(t, z, P, Q)].

We denote
Iy(r,0,U) = SII/Il/p{f(l‘(T) cx() € X (o, U, W)Y,
Lo(r,a, W) = iI{}f{f(l‘(T) cx(r) € X(r, o, U, W)Y

Then for any pair of feedback controls (U, W), one has
Ly(r, 0, W) < l(2(T)) < Ta(7,0,U) (70)
for every x(-) € X(r,a,U, W).
Let £ > 0 be given. If there exists a pair of feedback controls (U.,W,) such that
Ti(ra,U:) —e < To(r, o, We) + ¢, (71)
then (U., W) is said to be an e-saddle point of the game G(7, «). Observe that then

iI{}fPl(T) a,U)—e<Ti(r,a,U.)—e <Ta(r,a, W)+ e <supTa(r,a, W)+ e. (72)
w

Suppose that an e-saddle point exists for all small £ > 0. Since by (70) one always has

iI{}fPl(T)a,U) > sup Ia(7, a0, W), (73)
w

1Tn our discretized model, the two players make decisions at a common set of meshpoints, and it is at
these times that the Euler polygonal arc is redirected. A different framework is also possible, truer to the
original Krasovskii-Subbotin model, wherein the two players independently select sequences of partitions
in generating Euler polygonal arcs. For notational ease, however, we have opted to use the simplified
model.
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72) implies
(72) imp
inffl(T,oz,U) = sup FQ(T)O[) W)) (74)

in which case the differential game G(7, «) is said to have value equal to the expression

in (74).

For each individual initial data point (7, &) € (—o0, T] x R”, Krasovskii and Subbotin
obtained, for their model, the existence of value V(7, &) and a saddle point. The value
function of Krasovskii-Subbotin, which we will denote V', has a characterization in terms of
generalized Hamiltonian inequalities which is central to their theory of differential games.
One of its uses is in constructing (for specified initial data) a saddle point via a technique
known as “extremal aiming”. The characterization of V' is usually given in terms of Dini
directional derivates, but we state it here in a proximal form needed for our purposes,
which can be seen to be a generalization of Theorem 3.1 (upon adopting the point of view
that optimal control problems are differential games with one “invisible” player, by taking
the control restraint set @ to be a singleton). The equivalence between the original and
proximal forms is a straightforward exercise using Subbotin’s theorem, mentioned earlier
in the comment following (30) and (31).

Some further notation needs to be introduced. The Hamiltonian H : (—oo, T] x R™ x
R x N” — R of the game is given by

H(t,z,0,{) = 0+ géi}gnqnegdg(t) z,p,9),¢)

= O+ maxmin{g(t,z,p,q),¢) (by the Isaacs conditon).
g€Q pePp

The required characterization is as follows:

The value function V in the Krasovskui-Subbotin model 1s the unique locally Lipschitz
function ¢ : (—o0, T] — R" such that the following hold:

H(t,z,0pp(t,z)) <0 V(t,z) € (—oc0,T) x R, (75)
H(t,z,0p(—¢)(t,2)) <0 V(t,z) € (—oc0,T) x R, (76)
o(T,z)=0z) YzeR" (77)

4.2. Construction of a universal ¢-saddle point via proximal aiming. Our
goal now is the construction of an e-saddle point (U., W) in the differential game model
described above, universal with respect to initial data in a prescribed rectangle, for arbi-
trarily small . The significance of universality here is that one player more fully exploits
any “bad play” of the other player, than in the ordinary (non-universal) case. In this
regard, 1t is important to note that an example satisfying our hypotheses is provided in
§8.5 of [13] wherein a universal “exact” (that is ¢ = 0) saddle point does not exist. We will
extend the proximal aiming method of §3 for control problems to the differential game
setting, by exploiting the information provided by the relations (75)-(77). An immediate
consequence of the technique (Corollary 4.5 below) is that each differential game G(7, )
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has value, and this value agrees with V (7, «).

Adaptations of the proof of Theorem 3.2 yield the following lemma, where the view-
point of the minimizer is taken.

Lemma 4.2. Let M > 0 and 1o < T be given. Then for any given € > 0, there exists a
feedback control U, for the minimizer such that the following holds: There exists a scalar
/i > 0 such that for any feedback control W for the maximizer, any initial data as in (14)
and any partition = of [t, T| with mesh diameter diam(w) < fi, every Euler polygonal arc
x5 of the initial value problem

#(t) = g(t,z,U(t,z), W(t, z)) (78)

satisfies

Uz (7)) < V(7,) +e. (79)

Proof: As in the proof of Theorem 3.2, 1t suffices to consider 0 < t; < T. With respect
to the dynamics (68), which can be viewed as

2(t) € F(t,x) = g(t,z, P,Q), (80)
we let €', M and Cy be as in (22)—(24).
Analogously to Lemma 3.7, given [ > 0,
VA(r,a) = V(r,a)+ BT - 1)

is the Krasovskii-Subbotin value of the differential game where the payoff has been changed
to {(=(T)) + B(T — 7). Then V¥ is locally Lipschitz on (—oco,T] x %" and, because of
(75), (77), analogously to (28), (29), V# satisfies

H(t,z,0pVP(t,2)) < =B V(t,z) € (=00, T) x R", (81)
as well as the boundary condition
VAT, z) = l(z) YzeR" (82)

By employing the notation and arguments of §3, one then arrives at the following
analog of (41): For any a € [am, ap], one has

(e < =2l ¥t 2) € S@nint(Cy), Yne N (e (83)
We now define a feedback control I as follows:

e For (t,z) € S(by), ﬁ(t, x)) is an arbitrary element of P.

e For (t,z) € R™\{S(bs }, ﬁ(t, x) is again an arbitrary element of P.
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o For (¢,z) € S(by)\{S(bo)}, let
s=s(t,x) € projs(bj(t)z))(t, z), (84)

and denote n = (t,2) — s. Decompose i as 7 = (11,72) € £ x K", and let
Ut i t : 85
( )l‘) earggg}:l{%le%(<g(5( ;l’))u)v);ﬂz)} ( )

Now let W be an arbitrary feedback control for the maximizer, and let
vi=uo(t,z) = g(s(t, x), ﬁ(t, z), W(t, z)).
Then (49) holds for this v. Since g¢(t,z,u,v) is by hypothesis locally Lipschitz in (¢, z),
we then have that (50) holds for the feedback for F' given by
St z) = g(t, 2, Ut x), W(t, ). (86)

The proof of the lemma is then completed by directly following the proofs of Lemma
3.13 and Theorem 3.2, now with f as in (86). In accordance with this, one takes U, = U
as constructed above. O

One also has the following version of Lemma 4.2, where the point of view of the
maximizer is taken. It follows directly from Lemma 4.2, upon letting —V take the role
played by V in the preceding arguments, and utilizing the proximal Hamiltonian inequality

(76) in place of (75).

Lemma 4.3. Let M > 0 and 1o < T be given. Then for any given € > 0, there exists a
feedback control W, for the maximizer such that the following holds: There exists a scalar
ft > 0 such that for any feedback control U for the minimizer, any initial data as in (14)
and any partition = of [t, T| with mesh diameter diam(w) < fi, every FEuler polygonal arc
x5 of the initial value problem

2(t) = g(t,z,U(t,z), We(t, x)) (87)

satisfies

U (T)) > V(r,a) —e. (88)

The two preceding lemmas yield the following result.

Theorem 4.4. Let M > 0 and tqo < T be given. Then the s-saddle point condition (71)
holds for the pair of feedback controls (U., W.), for any (1, a) € [to, T] x M B,,.

Since every motion z(-) € X (7, o, U., W,) satisfies
V(ira)—e < z(T)) <V(x(T)+e V(ra)el,
we have the following corollary (in which universality is not relevant):

Corollary 4.5. For every (7,a) € (—o0, T] x R", the differential game G(1, &) has value
equal to the Krasovskii-Subbotin value V(r, «).
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5. RELAXING HYPOTHESES ON THE DYNAMICS IN §3

It is our intention here to justify our earlier Remark 2.1. We will show that Theorem 3.2
generalizes in a meaningful way if the standing hypotheses (SH) in that result are relaxed
to

(SH*) (a) For each point (¢,z) € & x R*, F(t, ) is a bounded subset of R".
(b) Linear growth: There exist 41 > 0 and 72 such that

o]l < 7llzl| +7v2 Yo € F(t,x), V(,z)€RxR".

(¢) F is upper semicontinuous on N x R"; that is, given (¢, 2) € R x RN, for any
€ > 0 there exists § > 0 such that

[|(t,2) = (t',2")|| < 6 = F(t',2") C F(t,x)+ £Bpy1.

We now define a new multifunction
F(t,z) :=[F(t,z)].

One can use Carathéodory’s theorem in order to show that F , which is obviously compact
convex valued, is also upper semicontinuous. Consider the parametrized family of opti-
mal control problems {P(7, &)}, where (7, &) € (—o0, T] x ", involving the minimization
of £(x(T)) over all trajectories x of the differential inclusion #(t) € F (t,z(t)) satisfying
2(T) = «. Since compactness of trajectories holds for these dynamics, the minimum in
each problem ]3(7', «) is attained, and we denote the associated value function by ‘A/(T) a).
Also, if f is any feedback (i-e. selection) of F , then for any compact time interval [, T]
and any « € R, there exists at least one Euler solution of the initial value problem
i=f () satisfying z(7) = «, and it is necessarily a solution of the differential inclusion
z € ﬁ(x) (These facts can be found e.g. in [9].)

The generalization of Theorem 3.2 that we wish to prove is the following.

Theorem 5.1. Suppose that the multifunction F satisfies (SH*) and that the cost func-
tional ¢ is continuous. Let M > 0 and tq € (—o0,T) be given. Then given € > 0, there
exists a feedback f. for F' and a scalar i > 0 such that the following holds: Given any
initial data

(r,a) € [to, T] x M B, (89)

and any partition = of [7, T with diam(w) < fi, every Euler polygonal arc x, of the initial
value problem

w(t) = fo(t,2(t), =(r)=« (90)
satisfies

Uar(T)) < V(ra)+e. (91)
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Proof: As in the proof of Theorem 3.2, we again assume 0 < g < 7', and we work
with a rectangle C' := [0,7] x R™. As earlier, there exists M; > 0 such that for any
feedback of F' (and therefore also of F'), any initial data (7, «) € C, and any partition «

of [r,T], the Euler polygonal arc z, generated by on [r, T] satisfies (23). We again denote
Cy :=[0,T] x 2MB,, as in (24). Then for any (7, a) € C, (25) holds.

We recall a result on multifunction approximation (see Deimling [12]): Given é > 0,
there exists a compact convex valued multifunction F'%, Lipschitz on C}, such that

F(t,z) CF*(t,z) C F(t,2)+ 6Boy1 V(t,2) € Cy. (92)

Hence F9 satisfies the original standing hypotheses (SH), and is an upper approximation
of F = @F on S. We denote by V% the value function obtained when the dynamics are
given by = € F #(x). In view of the first containment in (92), it is clear that for any § > 0
and F* asin (92), one has

Vi(r,a) <V(r,a) Y(r,a)eC. (93)

Hence, it suffices to prove a version of the theorem in which the inequality (91) is
replaced by R
U (T)) < V(r,0) +e (94)

for some 6§ > 0. Observe that because V? is associated with dynamics satisfying (SH),
Lemma 3.13 holds true, with the notational change that the extended lower Hamiltonian
hr be replaced by hps, and where the sublevel sets S(a) are replaced by S?(a), which are

those of (f/é)ﬂ, where
(VP (r,a) .= V(r,a) + (T — 7).

This version of the result will follow from the easily checked fact that given ¢/ > 0, one
can choose § > 0 sufficiently small that for any a € [a,, apr], one has

Ep(t, z,m) < Eﬁé(t) ) +e V(tz)e §5(a) Nint(Cy), Yne€ N;s(a)(t, z)N B,. (95)
This leads to
EF(t)l‘)ﬂ) S <_§ +€/> ||77|| V(t)l‘) € §6(a)mint(cl)) V77 € Né:’(a)(t)x)) (96)
which in the remainder of the proof can be used as (41) was in proving Theorem 3.2, since
we can take ¢ small enough that
_£ + <0.
K
Full details are left to the reader. O
Observe that, in analogy with Corollary 3.3, all Euler solutions on [r,T] generated

by the feedback f. of the original dynamics F' (and such solutions exist since F satsifies

linear growth) are s-optimal trajectories of ]3(7', «) for any given initial data (7, «) in the
rectangle [to,T] x M B,,.
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