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Abstract

This article is devoted to the construction of integrable and superintegrable two-dimensional
Hamiltonian systems with scalar and vector potentials. All integrable systems with a
quadratic polar coordinate type integral of motion are found. Classical trajectories are
calculated in integrable cases and compared with those for a system that is not inte-
grable.

PACS numbers: 02.02.Sv, 45.05.+x, 05.45.-a, 02.30.Hq.

Résumé

Cet article se consacre à la construction de systèmes hamiltoniens bidimensionnels in-
tégrables et super-intégrables à potentiels scalaire et vectoriel. On y détermine tous les
systèmes intégrables comportant une intégrale de mouvement de type polaire. On calcule
aussi certaines trajectoires classiques dans les cas intégrables et on les compare avec les
trajectoires obtenues pour un système non intégrable.





I Introduction

A classical result, due to Bertrand [1], states that the only central potentials in which all finite
trajectories are closed are the Kepler potential V = α

r
and the harmonic oscillator V = αr2. These

two physical systems have many other interesting properties valid also in n-dimensional space for
any finite n. The corresponding Hamiltonian systems are not only completely integrable, in the
Liouville sense [2], they are both “maximally superintegrable”. That means that they possess not
only n integrals of motion in involution, but rather 2n − 1 integrals, amongst which it is possible
to choose different subsets of n in involution. The corresponding quantum systems have degenerate
energy levels. The degeneracy has been called “accidental”, in that it goes beyond that explained
by rotational invariance in any central potential. The integrals of motion in classical mechanics
form Lie algebras: o(n + 1) in the case of the Kepler potential [3, 4] (or hydrogen atom) and su(n)
in the case of the harmonic oscillator [5]. In both cases, there is an o(n) subalgebra, realized by
first-order operators corresponding to the “geometric” rotational symmetry. The other operators,
completing the algebra to o(n + 1), or su(n), respectively are second order ones. This implies that
the corresponding symmetry transformations are not point ones: “higher” symmetries are involved.

Both of the above systems are not only superintegrable, they are also separable in at least
two coordinate systems in configuration space. That is, the corresponding Hamilton-Jacobi and
Schrödinger equations can be separated in more than one coordinate system.

A systematic search for the Hamiltonian systems with higher symmetries was initiated some time
ago [6, 7, 8, 9, 10] for space dimensions n = 2 and n = 3. The restriction to spherically symmetric
systems was dropped, the integrals of motion were assumed to be second order polynomials in the
momenta, or second order linear operators in the quantum case.

The results of the study can be summed up as follows. All integrable systems in two- and
three-dimensional real Euclidean spaces with second order integrals of motion allow the separation
of variables in at least one of the coordinate systems in which the free Schrödinger equation (or free
Hamilton-Jacobi equation) allows separation. All superintegrable systems allow the separation of
variables in at least two such coordinate systems.

Integrable Hamiltonian systems with velocity dependent potentials have also been studied [11]
for n = 2, i.e. in a Euclidean plane. The classical Hamiltonian was assumed to have the form

H =
1

2
(p2

x + p2
y) + A(x, y)px + B(x, y)py + W (x, y), (1.1)

and the corresponding integral of motion by assumption was

C = g0ẋ
2 + g1ẋẏ + g2ẏ

2 + k0ẋ + k1ẏ + h, (1.2)

where g0, g1, g2, k0, k1 and h are functions of x and y. They are determined from the requirement
that C be constant on solutions of the equations of motion corresponding to the Hamiltonian (1.1).
For any Hamiltonian of the form (1.1), the condition

dC

dt
= 0 (1.3)

implies that the integral C will have the form

C =α(xẏ − yẋ)2 + βẋ(xẏ − yẋ) + γẏ(xẏ − yẋ)

+ δẋ2 + ζẏ2 + ξẋẏ + k0(x, y)ẋ + k1(x, y)ẏ + h(x, y),
(1.4)
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where α, β, γ, δ, ζ and ξ are real constants. The dots denote time derivatives. The quadratic part
of the invariant C can thus be interpreted as a second order element in the Euclidean Lie algebra
e(2), with basis elements

L3 = (xẏ − yẋ) ∼ y∂x− x∂y,

P1 = ẋ ∼ ∂x,

P2 = ẏ ∼ ∂y.

(1.5)

Euclidean transformations of the plane will change the potentials W , A and B, but leave the
form of the Hamiltonian (1.1) invariant. The integral C can be simplified by these transformations
and taken into one of the following standard forms:

CC = ẋ2 + k0ẋ + k1ẏ + h, (1.6)

CR = (xẏ − yẋ)2 + k0ẋ + k1ẏ + h, (1.7)

CP = ẋ(xẏ − yẋ) + k0ẋ + k1ẏ + h, (1.8)

CE = (xẏ − yẋ)2 + σ(ẋ2 − ẏ2) + k0ẋ + k1ẏ + h, (1.9)

where k0, k1 and h are functions of x and y, and σ is a constant (related to the focal distance
in elliptic coordinates). For purely scalar potentials, we have A = B = 0 and k0 = k1 = 0.
The existence of the integrals CC , CR, CP and CE then implies the separation of variables in the
Hamilton-Jacobi equation (and in the Schrödinger equation) for the corresponding Hamiltonian, in
Cartesian, polar, parabolic or elliptic coordinates, respectively [6, 7].

The case of the “Cartesian integral” (1.6) in the presence of a magnetic field was studied earlier
[11]. The potentials were completely determined in terms of two functions, f(x) ang g(y) that are
either elliptic functions, or the elementary ones arising as special cases of elliptic functions. The
equations of motion no longer separate, but all the attributes of integrability remain.

The purpose of this article is to analyse the integrable Hamiltonian system (1.1) and (1.7), i.e.
the case of a second order integral of motion of the“polar type”. The corresponding scalar and vector
potentials are found in section II, together with the integral CR. The possibility of superintegrability
is studied in section III, where it is shown that the only system allowing simultaneously a Cartesian
and a polar integral of motion is that of a particle in a constant magnetic field. Section IV is devoted
to analytical and numerical solutions of the equations of motion. Some conclusions are drawn in
section V.

II The polar integrable system

The equations of motion corresponding to the Hamiltonian (1.1) can be written in the form

ẍ = −Vx + Ωẏ,

ÿ = −Vy − Ωẋ,
(2.1)

with

V (x, y) = W − 1

2
(A2 + B2),

Ω(x, y) = Ay −Bx.
(2.2)

Notice that the equations of motion (2.1) are invariant with respect to a gauge transformation of
the potentials

W̃ = W + ( ~A, ~∇Φ) +
1

2
(~∇Φ)2,

~̃A = ~A + ~∇Φ,

(2.3)
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where we have put ~A ≡ (A,B) and Φ(x, y) is an arbitrary function.
Now, let us assume that the Hamiltonian (1.1) allows a“polar integral of motion”CR of the form

(1.7). We wish to determine the physical quantities V (x, y), Ω(x, y) and k0(x, y), k1(x, y), h(x, y)
that arise in this case.

Let us first transform to polar coordinates: x = r cos φ, y = r sin φ. The integral CR is trans-
formed into

CR = r4φ̇2 + P (r, φ)ṙ + Q(r, φ)rφ̇ + h(r, φ), (2.4)

P = k0 cos φ + k1 sin φ, Q = −k0 sin φ + k1 cos φ. (2.5)

The equations of motion (2.1) in polar coordinates are

r̈ − rφ̇2 = −Vr + Ωrφ̇, (2.6)

rφ̈ + 2ṙφ̇ = −1

r
Vφ − Ωṙ. (2.7)

The condition that CR be an integral of motion is imposed by differentiating CR with respect to
time and replacing r̈ and φ̈ using eqs. (2.6) and (2.7). Setting the coefficients of φ̇2, ṙ2, ṙ, ṙφ̇, φ̇, ṙ
and 1 to zero, we obtain an overdetermined system of equations for the functions V , Ω, P , Q and
h. These determining equations are

Pr = 0, P + Qφ = 0, (2.8)

2r3Ω− Pφ − rQr + Q = 0, (2.9)

hφ − 2r2Vφ + rPΩ = 0, hr −QΩ = 0, (2.10)

PVr +
1

r
QVφ = 0. (2.11)

From eq. (2.8), we obtain

P = −f ′(φ), Q = f(φ) + R(r), (2.12)

where f and R are so far arbitrary. Eq. (2.11) can now be solved by the method of characteristics
and we have

V = V (ξ), ξ = rf(φ) + ψ(r),

ψr = R(r), (P, Q) 6= (0, 0).
(2.13)

We mention that the case of a purely scalar potential is recovered if we set Ω = P = Q = 0. Then
eqs. (2.8), (2.9) and (2.11) are satisfied trivially and eq. (2.10) implies

V = V0(r) +
1

r2
h(φ), (2.14)

i.e. we recover a separable potential.
In the following, we will assume Ω 6= 0. From (2.9), we have

Ω = − 1

2r3
(fφφ + f + ψr − rψ). (2.15)

The remaining two equations (2.10) are compatible only if the potential V (ξ) satisfies

Vξξ +
3

rf
Vξ +

1

4r6ff ′
(
ff ′′′ + 3f ′f ′′ + 4ff ′ + f ′′′ψ̇ + f ′(r2

...
ψ − 3rψ̈ + 4ψ̇)

)
= 0, (2.16)
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where primes denote derivatives with respect to φ, dots with respect to r. Eq. (2.16) requires that
rf be a function of ξ. This is possible in two cases only. Let us investigate each separately.

The first possibility is ψ̇ = 0. We obtain

ξ = rf(φ), P = −f ′(φ), Q = f(φ), (2.17)

Ω = − 1

2r3
(f ′′ + f), (2.18)

V =
α

ξ4
+

β

ξ2
, (2.19)

where α and β are constants. Substituting eq. (2.19) into (2.16), we find that f(φ) must satisfy the
following equation:

ff ′′′ + 3f ′f ′′ + 4ff ′ +
32αf ′

f 5
= 0. (2.20)

Eq. (2.20) can be integrated twice to obtain

f ′2 + f 2 +
8α

f 4
+

K

f 2
+ C = 0, (2.21)

where K and C are constants.
The function h(r, φ) is obtained from eq. (2.9) and is

h =
1

4r2
f(f ′′ + f) +

2β

f 2
. (2.22)

Thus, V , Ω, P , Q and h are all expressed in terms of the function f(φ), itself satisfying eq. (2.21).
This equation is a first order differential equation with constant coefficients and is thus already
reduced to a quadrature, expressible in terms of elliptic integrals.

Here, we just discuss some special cases when f(φ) is an elementary function.
a. α = 0.

f = (a + b cos 2φ)
1
2 . (2.23)

The constants a and b are related to K and C. A second solution, f = a sin φ, is of no interest since
it implies Ω = 0.

b. α 6= 0.

f =
√

(− 8α) cos
1
3 φ, α < 0. (2.24)

This corresponds to K = C = 0 in eq. (2.21).
The second possibility of satisfying eq. (2.16) is to have f ′(φ) = 0 and hence ξ = ξ(r), yielding

V = V (r), Ω =
rQr −Q

2r3
,

P = 0, Q = Q(r), h =
Q2

4r2
.

(2.25)

Thus both V and Ω depend on r alone. In this case, a first order integral also exists, namely

C1,R = r2φ̇ + H(r), V = V (r), Ω =
Hr

r
, (2.26)

The second order integral CR in this case is simply

CR = (C1,R)2, Q = 2Hr. (2.27)
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III Superintegrability in a magnetic field

The Hamiltonian system with Hamiltonian (1.1) will be superintegrable if it allows at least two
functionally independent integrals of motion. Here, we will restrict ourselves to systems that are
not only superintegrable, but actually “doubly separable”: separable in at least two coordinate
systems. This means that both integrals are at most quadratic in the velocities. We shall moreover
require that separation should occur in Cartesian and polar coordinates.

In the scalar case (Ω = 0, i.e. no magnetic field), there is such a superintegrable system, namely

H =
1

2
(p2

1 + p2
2) + α(x2 + y2) +

β

x2
+

γ

y2
(3.1)

We shall now require Ω 6= 0 and that a Cartesian and a polar invariant exist. With no loss of
generality, we can take the polar invariant CR in the standard form (1.7) with V , Ω, P , Q and h as
in (2.17), (2.18), (2.19) or as in (2.25). The Cartesian invariant can also be chosen in the standard
form (the rotation needed for the standardiztion will not change CR):

CC =
1

2
ẋ2 + k0(x, y)ẋ + k1(x, y)ẏ + h(x, y). (3.2)

In the Cartesian case [7], all physical quantities are expressed in terms of the two functions f(x)
and g(y), satisfying

fxx = αf 2 + βf + γ, gyy = −αg2 + δg + ξ. (3.3)

In particular, we have

Ω = α(f 2 − g2) + βf + δg + γ + ξ,

V =
α

3
(g − f)3 +

β + δ

2
(g − f)2 + (γ + κ− ξ)(g − f),

(3.4)

where all greek letters denote constants. The question now is: when are equations (3.4) compatible
with the existence of a polar invariant CR ?

Let us first consider Ω and V as in eqs. (2.18) and (2.19). We must have

∂

∂r
r3Ω = 0. (3.5)

This requires that f and g be constant, hence Ω and V are constant. However, if Ω is constant in
eq. (2.18), it must vanish—i.e. we have Ω = 0—which we are not interested in.

Now, let us consider the case V = V (r) and Ω = Ω(r) and require that a Cartesian invariant
should exist, in addition to the polar one. From equations (3.3) and (3.4), we obtain in this case
that both V (r) and Ω(r) are constant.

The result is that the only superintegrable system in a magnetic field with a polar and Cartesian
invariant is that of a zero scalar potential and a constant magnetic field:

V = 0, Ω = Ω0 6= 0. (3.6)

It is easy to verify that in this case, three invariants exist that are linear in the momenta, namely

C1 = ẋ− Ωy, C2 = ẏ + Ωx, C3 = yẋ− xẏ − 1

2
Ω(x2 + y2). (3.7)
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Out of these, we can form all quadratic integrals that exist in this highly degenerate, but physically
important case. Thus, we have

CC = C2
1 , CR = C2

3 , CP = C1C3, CE = C2
3 + σ(C2

1 − C2
2). (3.8)

We mention that the original Hamiltonian (1.1) corresponding to V = 0, Ω = const can be written
in the standard form

H =
1

2
(px + Ωy)2 +

1

2
p2

y. (3.9)

In the quantum mechanical case, we obtain three first order operators commuting with the quantum
Hamiltonian corresponding to H of eq. (3.9), namely

P1 = −i∂x, P2 = −i∂y, L3 = −i(y∂x− x∂y)− 1

2
Ω(x2 + y2). (3.10)

They generate a Lie algebra isomorphic to the Galilei algebra with a central extension

[L3, P1] = iP2, [L3, P2] = −iP1, [P1, P2] = −iΩ. (3.11)

While the case of a classical, or quantum mechanical particle in a constant magnetic field is well
studied, its superintegrability, to our knowledge has not been noticed. The Schrödinger equation
obviously separates in Cartesian coordinates. Less obviously, it also “R-separates” [12, 13] in polar
coordinates, that is the wave function can be written as

ψ(r, φ) = R(r, φ)A(r)B(φ) (3.12)

where R is an overall multiplier that does not depend on the separation constants. More specifically,
we have

ψ(r, φ) = e−
i
4
Ωr2 sin 2φJm(kr)eimφ, k2 = 2E + mΩ (3.13)

where E is the energy, and Jm(z) a Bessel function.

IV Examples of solutions

IV.1 The superintegrable case

We have V = 0, Ω = const. We integrate by setting two integrals C1 and C2 of eq. (3.7) equal to
constants:

ẋ− Ωy = −Ωy0, ẏ + Ωx = Ωx0. (4.1)

The solution is
x = A sin(Ωt + φ) + x0, y = A cos(Ωt + φ) + y0, (4.2)

where A, φ, x0 and y0 are integration constants. We have of course obtained a well known result:
the trajectories are circles.

IV.2 Rotationally symmetric case

We have V = V (r), Ω = Ω(r). The first integral (2.26) gives us the general solution of eq. (2.7):

r2φ̇ + H(r) = C, Ω =
Hr

r
. (4.3)
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Substituting φ̇ from eq. (4.3) into eq. (2.6), we can integrate once to obtain:

ṙ2 + 2V +
(C −H)2

r2
= K, Ω =

Hr

r
, (4.4)

where C and K are constants. Since there is no explicit t dependence, eq. (4.4) is integrated in
quadratures. For instance, if we consider a potential and magnetic field of the form

V =
γ1

r2
+ γ2r

2 + γ3r
4 + γ4r

6,

Ω = Ω0 + Ω1r
2,

(4.5)

where γi and Ωj are constants, we can express r in terms of elliptic functions, or elementary ones
in special cases.

The special case V = 1
2
ω2(x2 + y2), Ω = const was considered earlier [11]. It can easily be

solved in Cartesian coordinates. Equations (2.1) in this case yield

x =
ω2 − α2

1

α1Ω
A cos(α1t + φ1) +

ω2 − α2
2

α2Ω
B cos(α2t + φ2),

y = A sin(α1t + φ1) + B sin(α2t + φ2),

(4.6)

α2
1,2 =

2ω2 + Ω2 ±
√

(2ω2 + Ω2)2 − 4ω4

2
, (4.7)

where A, B, φ1 and φ2 are arbitrary constants. Thus the motion is always bounded and quasiperi-
odic. It is periodic if the ratio α1/α2 is rational.

Two such periodic cases are shown on Fig. 1, with α1/α2 = 1/2 and α1/α2 = 1/50, respectively.

IV.3 Potential and magnetic field with azimuthal dependence

Let us consider the magnetic field and potential of eqs. (2.17) and (2.18), with the function f(φ)
as in eq. (2.23). We then have

V =
β

r2(a + b cos 2φ)
, Ω =

b2 − a2

r3(a + b cos 2φ)3/2
. (4.8)

The trajectories of a particle in this case will in general not be closed. For |b| > |a|, the potential
V and the field Ω only have a point singularity at r = 0 (not along the line cos 2φ = −a

b
.

The integral of motion in this case is

C =r4φ̇2 +
b sin 2φ

(a + b cos 2φ)1/2
ṙ + (a + b cos 2φ)1/2rφ̇

+
1

(a + b cos 2φ)

(
a2 − b2

4r2
+ 2β

) (4.9)

An example of a trajectory in this integrable case is shown on Fig. 2(a). For comparison, we show
a trajectory in a nonintegrable case on Fig. 2(b). We see that, while the difference in the formulas
seems slight (namely, r−3 in Ω is replaced by r−4) the trajectory becomes quite irregular.
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Figure 1: Trajectories in an integrable rotationally symmetric case.
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(b) A non-integrable case:

V = β
r2(a+b cos 2φ) , Ω = b2−a2

r4(a+b cos 2φ)3/2

Figure 2: Trajectories in potentials with angular dependence.
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V Conclusions

A very sizable literature exists on integrable and super-integrable finite-dimensional systems of the
form (1.1) with a purely scalar potential, i.e. with A = B = 0. For recent reviews containing
numerous references, see e.g. ref. [14, 15, 16].

A systematic search for such superintegrable systems in two- and three-dimensional Euclidean
spaces has been conducted some time ago [6, 7, 8, 9, 10]. A more recent series of articles is devoted
to superintegrable systems in space of constant curvature [17, 18, 19]. The emphasis is on special
function aspects of these systems.

The obtained systems have been analyzed using algebraic techniques originally developed for the
hydrogen atom [20, 21, 22, 23]. A different approach to these systems makes use of path integrals
[14, 24].

In addition to being explixitly solvable, many superintegrable systems occur in applications.
They include the ring-shaped Hartmann potential used in quantum chemistry [25, 26, 27], the
Aharonov-Bohm potential [28], the Calogero-Moser system [29] and many others. Interesting math-
ematical objects arise in these studies, including quadratic algebras [30] and twisted Kac-Moody
algebras [31, 32].

Systems invloving vector potenitals have been studied to a much lesser degree. A systematic
search for integrable systems with vector potentials in two dimensions was initiated in ref. [11].
This article is a continuation of that search and, to our knowledge, the first in which the question of
superintegrability is posed. The study of “parabolic” and “elliptic” integrals of motion is postponed
to a future article. Further questions under study include a search for superintegrable velocity-
dependent systems in 3 and, more generally, n dimensions.
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