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Abstract

The Bäcklund transformation for the generalized Weierstrass system is derived. The
permutability theorem for this Bäcklund transformation is formulated and several classes
of multi-soliton solutions are obtained through the use of the permutability theorem.

Résumé

On dérive la transformation de Bäcklund pour le système de Weierstrass géneralisé. Le
théorème de permutabilité de cette transformation de Bäcklund est formulé et plusieurs
classes de solutions multisolitoniques sont obtenues en utilisant ce théorème.





1. The Generalized Weierstrass System and Associated Sigma Model.
The generalized Weierstrass (GW) system for inducing constant mean curvature surfaces has

been introduced by B. Konopelchenko [1-3]. This system is described by the Dirac type equations

∂ψ1 = pψ2, ∂̄ψ2 = −pψ1, where p = |ψ1|2 + |ψ2|2, (1)

and their conjugates, where ∂ = ∂/∂z and ∂̄ = ∂/∂z̄.
The system (1) induces a set of constant mean curvature surfaces embedded in R

3. These
surfaces are obtained by the parametrization (z, z̄) → (X1(z, z̄), X2(z, z̄), X3(z, z̄)) such that

X1 + iX2 = 2i

∫ z

z0

(ψ̄2
1 dz

′ − ψ̄2
2 dz̄

′), X1 − iX2 = 2i

∫ z

z0

(ψ2
2 dz

′ − ψ2
1 dz̄

′),

X3 = −2

∫ z

z0

(ψ̄1ψ2 dz
′ + ψ1ψ̄2 dz̄

′).

We start our analysis by considering certain aspects of complete integrability of GW system (1)
in the context of a two-dimensional nonlinear sigma model. We define a new complex variable

ρ =
ψ1

ψ̄2

. (2)

It has been shown [4,5] that if ψ1 and ψ2 are solutions of GW system (1), then the function ρ
defined by (2) is a solution of the Euclidean sigma-model equations

∂∂̄ρ− 2ρ̄

1 + |ρ|2
∂ρ∂̄ρ = 0, ∂̄∂ρ̄− 2ρ

1 + |ρ|2
∂̄ρ̄∂ρ̄ = 0. (3)

Conversely, if ρ is a solution to (3), then the solutions ψ1 and ψ2 of GW system (1) take the form

ψ1 = ερ
(∂̄ρ)1/2

1 + |ρ|2
, ψ2 = ε

(∂ρ)1/2

1 + |ρ|2
, ε2 = 1. (4)

Formula (4) can be identified with the stereographic coordinate representation of the stationary
2-dimensional Heisenberg model [6]

[S, ∂∂̄S] = 0, S =

(
s3 s̄+

s+ −s3

)
, detS = −1,

where S is the spin matrix which belongs to the Hermitian space SU(2)/U(1). The matrix S in
terms of ρ is given by

S =
1

1 + |ρ|2

(
1− |ρ|2 2ρ̄

2ρ −1 + |ρ|2
)
, s+ =

2ρ

1 + |ρ|2
, s3 =

1− |ρ|2

1 + |ρ|2
.

and in terms of the complex functions ψ1 and ψ2 by

S =
1

p

(
−|ψ1|2 + |ψ2|2 2ψ̄1ψ̄2

2ψ1ψ2 |ψ1|2 − |ψ2|2
)
.

It is well known [7] that the sigma model equations (3) can be obtained from an Euler-Lagrange
equation if we take a Lagrangian of the form

L =

∫
∂ρ ∂ρ̄

(1 + |ρ|2)2
dz dz̄. (5)
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Then the Euler-Lagrange equation yields

∂̄
δL
δ(∂ρ̄)

− δL
δρ̄

=
1

(1 + |ρ|2)2
(∂̄∂ρ− 2ρ̄

1 + |ρ|2
∂ρ∂̄ρ) = 0.

This is identically satisfied whenever the sigma model equations (3) hold.
Now, we can derive GW system (1) from Hamiltonian equations. If we define new independent

variables t and x by z = t+ ix, then a real integral of the motion for GW system (1) is independent
of t and can be written in the form

H =

∫
ds[i(ψ1,sψ̄2 + ψ̄1ψ2,s) +

1

2
(|ψ1|2 + |ψ2|2)2].

The quantity H represents a Hamiltonian since it satisfies the following equations

ψ1,t = {ψ1,H}, ψ2,t = {ψ2,H}, (6)

where {} is the Poisson bracket defined by

{F1, F2} =

∫
dτ [(

δF1

δψ1

δF2

δψ̄2

− δF1

δψ2

δF2

δψ̄1

)− (
δF2

δψ1

δF1

δψ̄2

− δF2

δψ2

δF1

δψ̄1

)]. (7)

In order to derive equations (1) explicitly, it is convenient to consider first the case in which F1 =
ψ1 and F2 = H. From the condition of linear independence of derivatives δψ1 and δψ2, after
differentiating H we obtain

δH
δψ̄2(x)

= iψ1,τ + (|ψ1|2 + |ψ2|2)ψ2. (8)

Substituting (8) into (6), we get the first equation of system (1)

{F1, F2} = {ψ1(x),H} =

∫
dτ δ(τ − x){iψ1,τ + (|ψ1|2 + |ψ2|2)ψ2} = iψ1,x + (|ψ1|2 + |ψ2|2)ψ2.

This procedure can be repeated by taking F1 = ψ2 and F2 = H, and using the second equation
in (6), what leads to the second equation in system (1). Thus, we obtain an explicit form of GW
system (1) in terms of the independent variables t and x

ψ1,t − iψ1,x = (|ψ1|2 + |ψ2|2)ψ2, ψ2,t + iψ2,x = −(|ψ1|2 + |ψ2|2)ψ1.

System (1) admits several conserved quantities [2]. The conservation of current is given by

J = ψ̄1∂ψ2 − ψ2∂ψ̄1, ∂̄J = 0. (9)

Note that some classes of solutions to GW system (1) can be obtained directly by applying the
transformation (4) to the solutions of the sigma-model equation (3). A simple class of solutions of
(1), corresponding to an analytic choice for the function ρ, (and to so called splitting solutions of
(3), since ∂∂̄ρ = 0), was discussed in detail in [5]. In this case, the current J in (9) is identically
zero. In Section 3, we demonstrate the construction of more complex, multi-soliton solutions for
which ∂∂̄ρ 6= 0 holds and consequently, the current J is a nonzero function.
2. The Auto-BT for the Generalized Weierstrass System.

In this section we demonstrate a connection between the GW system and the Sh-Gordon type
equation, and derive through this link the Auto-Bäcklund transformation (BT). Let us change the
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dependent variables ψ1, and ψ2 in (1) to the variables p and J given in (1) and (9), respectively.
Differentiating p with respect to z and z̄, we obtain

∂p = ψ1(∂ψ̄1) + ψ̄2(∂ψ2), ∂̄p = ψ̄1(∂̄ψ1) + ψ2(∂̄ψ̄2), ∂∂̄p = ∂̄ψ1∂ψ̄1 + ∂̄ψ2∂ψ2 − p3. (10)

It has been shown in [8] that, by using (10) and conservation law (9), GW system (1) can be
decoupled into a direct sum of an elliptic Sh-Gordon type equation and Laplace equation

∂∂̄ ln p = −p2 +
|J |2

p2
, ∂̄J = 0. (11)

We now apply the conditional symmetry method, developed in [9], to equation (11) in order to
construct the BT and to build N -soliton solutions. We subject equations (11) to the differential
constraints (DCs) of the Riccati form

∂p = A0
1(z, z̄) + A1

1(z, z̄)p+ A2
1(z, z̄)p

2, ∂̄p = A0
2(z, z̄) + A1

2(z, z̄)p+ A2
2(z, z̄)p

2, (12)

where the Ai
j are some functions to be determined. Then, for any holomorphic function J , the

overdetermined system composed of (11) and (12) possesses nontrivial solutions of the form

A0
1 = −λJ

q
, A1

1 =
∂q

q
, A2

1 = −λq, A0
2 = − q

λ
, A1

2 = −∂q
q
, A2

2 = − J̄

λq
, (13)

where the function q satisfies equation (11) and λ is a complex constant. Substituting (13) into
(12), we have

∂p = −λq p2 +
∂q

q
p− λJ

q
, ∂̄p = − J̄

λq
p2 − ∂̄q

q
p− q

λ
, ∂̄J = 0. (14)

Hence, for any holomorphic function J , there exists an Auto-BT, defined by first order DC’s (14),
between the sets of solutions of system (11). The arbitrary complex constant λ is called the Bäcklund
parameter. Taking p = φ1/φ2 we get the linear spectral problem with spectral parameter µ

∂

(
φ1

φ2

)
=


∂q

2q

µ

q

−µq −∂q
2q


(
φ1

φ2

)
, ∂̄

(
φ1

φ2

)
=


∂̄q

2q

q

µ

− J̄

µq
− ∂̄q

2q


(
φ1

φ2

)
,

since the compatibility condition for them reproduces the original system (1). Now to see the
connection to the modified Sinh-Gordon equation, we introduce the new variable ϕ = 2 ln p in
equation (11)

∂∂̄ϕ = −2(eϕ − |J |2e−ϕ) = −4 sinhϕ− 2(1− |J |2)e−ϕ, ∂̄J = 0, (15)

and differential constraints (14) become

∂ϕ = −λeϕ+v + ∂v − Jλe−v, ∂̄ϕ = − J̄
λ
eϕ−v − ∂̄v eϕ − ev

λ
, ∂̄J = 0,

where the function v satisfies (15).
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Now we discuss the permutability theorem [10] for the system (11). The Auto-BT (14) can be
written in the form

∂ ln p = λ[−pq − J

pq
] + ∂ ln q, ∂̄ ln p =

1

λ
[−pJ̄

q
− q

p
]− ∂̄ ln q. (16)

We introduce new dependent variables y = ln
p

J1/4
, ŷ = ln

q

J1/4
. Then, we have,

pq = J1/2ey+ŷ, y − ŷ = ln
p

q
, ∂̄ ln pq = ∂̄(y + ŷ +

1

2
ln J),

and so, the equations (16) can be written as follows

∂(y − ŷ) = −2λJ1/2 cosh(y + ŷ), ∂̄(y + ŷ +
1

2
ln J) = −2

λ
J1/2 cosh(y − ŷ +

1

2
ln J). (17)

Two solutions (y0, y1) can be linked through a Bäcklund parameter λ1 using the first equation in
(17). The solutions (y1, y12) can be linked in the same way through another value of the Bäcklund
parameter λ2. Repeating this procedure with the parameters in the reverse order starting from y0

we arrive at a solution y21. The permutability theorem states that y12 = y21 which leads to the
following relationship between the particular solutions y0, y1, y2 and y12

tanh
y12 − y0

2
=

(µ1 + µ2)

(µ1 − µ2)
tanh

y1 − y2

2
, where µi = λiJ

1/2
i . (18)

3. Multi-Soliton Solutions.
We now proceed to construct multi-soliton solutions to GW system (1) based on the nonsplitting

class of solutions of (3) and obtained by exploiting the Auto-BT (14). In transformation (18), we
take the Bäcklund parameters in the form µ1 = −η + iξ and µ2 = η + iξ with |µ1|2 = 1. This
choice of parameters leads to a real valued function p12(z, z̄) = exp(J1/4y12) which satisfy equation
(11) for a given value of the current J given by (9). So, the functions ψ1 and ψ2 have to satisfy the
overdetermined system composed of GW system (1) and the functional constraint

|ψ1|2 + |ψ2|2 = p12(z, z̄) ∈ R.

3.1. Algebraic multi-soliton solutions of the GW system. A particular class of ratio-
nal solutions to the sigma model equation (3) is obtained by taking products of the fundamental
solutions of the form

ρj =
z − aj

z̄ − aj

,

where the aj ∈ R and j = 1, · · · , N . Using transformation (4), we can find the corresponding
solutions to GW system (1) and then use the so obtained functions ψi to determine the expression
for q. Once we have defined q, then, from BT (14), we can calculate multi-soliton solutions. This
leads us to the following algebraic multi-soliton solution of the GW system (1)

ψ1 =
ε

2
{

N∑
j=1

1

(z̄ − aj)

N∏
k=1

z − ak

z̄ − ak

}1/2, ψ2 =
ε

2
{

N∑
j=1

1

(z − aj)

N∏
k=1

z − ak

z̄ − ak

}1/2, p =
1

2
|

N∑
j=1

1

z − aj

|.

Another nonsplitting class of solutions to (1) can be obtained from the following rational solution
of the sigma model equation (3)

ρn = (
z − an

z̄ − an

)n.
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By exploiting BT (14) we obtain the explicit form of an algebraic multi-soliton solution of GW
system (1)

ψ1 =
ε

2
[

N∑
j=1

j

(z̄ − aj)

N∏
k=1

(
z − ak

z̄ − ak

)k]1/2, ψ2 =
ε

2
[

N∑
j=1

j

(z − aj)

N∏
k=1

(
z − ak

z̄ − ak

)k]1/2,

p =
1

2
|

N∑
j=1

j

z − aj

|.

where ak ∈ R. Note that both of the above multi-soliton solutions admit N simple poles. Their
topological charges are the same

I =
1

2πi

∫
C

1

p2
(|J |2 − p4) dzdz̄ = εN.

3.2. Periodic multi-soliton solutions of GW system. Finally, an interesting class of
nonsplitting solutions to the system (1) can be obtained from the following periodic solution to the
sigma model equation (3)

ρj = exp(cos(z − aj)− cos(z̄ − aj)), aj ∈ R. (19)

The associated periodic multi-soliton solution of GW system (1), obtained through the Auto-BT
(14), takes the form

ψ1 =
ε

2
{−

N∑
j=1

sin(z̄ − aj) exp
N∑

j=1

(cos(z − aj)− cos(z̄ − aj))}1/2,

ψ2 =
ε

2
{−

N∑
j=1

sin(z − aj) exp
N∑

j=1

(cos(z − aj)− cos(z̄ − aj))}1/2,

p =
1

2
|

N∑
j=1

sin(z − aj)|.

Similar classes of multi-soliton solutions of (1) can be obtained from expression (19) by replacing
the cosine function in the ρj by sine, sinh or cosh functions.

Acknowledgments: This work was supported by research grant from NSERC of Canada and
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