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Abstract

A classification of maximal Abelian subalgebras (MASAs) of the pseudoeuclidean Lie algebras is
presented. It is then used to generate coordinate systems in the pseudo-Euclidean space M(p,q)
in which the Laplace-Beltrami equation allows the separation of variables. The MASAs induce
ignorable variables; i.e. variables that do not figure explicitly in the metric tensor. Darboux
transformations are then used to introduce solvable potentials depending on these ignorable
variables.

Résumé
La classification des sous-algèbres maximales abéliennes (SAMAs) d’algèbre pseudo-euclidiennes
est présentée. On l’utilise pour construire des systèmes de coordonnées dans l’espace pseudo-
euclidien M(p,q) das lesquels l’équation de Laplace-Beltrami admet une séparation des variables.
Les SAMA induisent des variables ignorables, i.e. des variables qui n’apparaissent pas explicite-
ment dans le tenseur métrique. Les transformations de Darboux sont utilisées pour introduire
des potentiels solubles qui dépendent de ces variables ignorables.





1 Introduction

The purpose of this article is to show how classical Darboux transformations [1] can be applied to partial
differential equations. The context will be that of the separation of variables in Laplace and wave equa-
tions, or more generally, in Laplace-Beltrami equations on homogeneous spaces. We shall use separable
coordinates with a maximal number of ignorable variables, i.e. coordinates that do not figure in the metric
tensor and hence in the Laplace-Beltrami operator. The ignorable variables are induced by the action
of maximal Abelian subgroups of the isometry group of the corresponding space. A classification of the
maximal Abelian subalgebras (MASAs) of the isometry algebra will provide a classification of coordinate
systems with a maximal number of ignorable variables.

In Euclidean spaces only two types of ignorable variables exist. Cartesian ones correspond to translation
generators Pi in a MASA, polar ones to rotation generators Mjk. In pseudoeuclidean spaces E(p, q),
p ≥ q ≥ 1 the situation is much richer, since MASAs of the isometry algebra can involve nilpotent elements
in o(p, q). This is already true for Minkowski space (q = 1), as we shall see below.

Darboux transformations have gained new importance, new applications and new geometric applications
with the advent of soliton theory (see Ref. [2], [3] and the references therein).

They were first introduced by Darboux in 1882 in a study of linear ordinary differential equations [1],
in particular the Sturm-Liouville problem

ψ′′(x)− u(x)ψ(x) = −Eψ(x). (1.1)

Indeed, let us assume that we know two distinct solutions ψ and ψ0 of the above equation corresponding
to the eigenvalues E and E0, respectively. The Darboux transformation

ψ̃ = (
d

dx
− ψ′0
ψ0

)ψ (1.2)

provides us with a solution of a related equation, namely

ψ̃′′(x)− ũ(x)ψ̃(x) = −Eψ̃(x) (1.3)

ũ(x) = u− 2(
ψ′0
ψ0

)′. (1.4)

Eq. (1.2) gives us solutions the new Sturm-Liouville problems in terms of known ones. Notice that
general eigenvalue E is the same in the original equation (1.1) and in the new equation (1.2). The“specific”
eigenvalue E0 only figures via the eigenfunction ψ0 in the new potential ũ(x) of eq. (1.4) and the new
solution ψ̃(x) in eq. (1.2).

In Section 2 we sum up some previously obtained results [4, 5] on the MASAs of the pseudoeuclidean
algebras e(p, q) with an emphasis on e(p, 0) and e(p, 1). Section 3 is devoted to separable coordinate
systems in Euclidean and Minkowski spaces related to these MASAs. Finally, in Section 4 we use Darboux
transformations to introduce multidimensional solvable potentials into Laplace and wave equations.

2 MASAs of e(p,q)

2.1 General formulation

The pseudoeuclidean Lie algebra e(p, q) is the semidirect sum of the pseudoorthogonal Lie algebra o(p, q)
and an abelian algebra T (n) of translations

e(p, q) = o(p, q) +⊃ T (n), n = p+ q. (2.1)

We will make use of the following matrix representation of the Lie algebra e(p, q) and the corresponding
Lie group E(p, q). We introduce an “extended metric”

Ke =
(
K 0
0 01

)
, (2.2)

3



where K satisfies

K = KT ∈ R
n×n, n = p+ q, detK 6= 0, (2.3)

sgnK = (p, q), p ≥ q ≥ 0. (2.4)

Here sgnK denotes the signature of K, where p and q are the numbers of positive and negative eigenvalues,
respectively. Then Xe ∈ e(p, q) and H ∈ E(p, q) are represented as

Xe(X,α) ≡ Xe =
(
X αT

0 0

)
, X ∈ R

n×n, α ∈ R
1×n, (2.5)

H =
(
G aT

0 1

)
, G ∈ R

n×n, a ∈ R
1×n, (2.6)

XK +KXT = 0, GKGT = K, XeKe +KeX
T
e = 0. (2.7)

The vector α ∈ R
1×n represents the translations. We say that the translations are of positive, negative

or zero length if
αKαT > 0, αKαT < 0, αKαT = 0, (2.8)

respectively. Zero length vectors are called isotropic.
We will be classifying maximal Abelian subalgebras of the pseudoeuclidean Lie algebra e(p, q) into

conjugacy classes under the action of the pseudoeuclidean Lie group E(p, q).

2.2 Classification strategy

The classification of MASAs of e(p, q) is based on the fact that e(p, q) is the semidirect sum of the Lie
algebra o(p, q) and an abelian ideal T (n) (the translations). We proceed in five steps.

1. Classify subalgebras T (k+, k−, k0) of T (n). They are characterized by a triplet (k+, k−, k0), where
k+, k− and k0 are the number of positive length, negative length and isotropic vectors, respectively.
They are represented by matrices of type (2.5) with X = 0.

2. Find the centralizer C(k+, k−, k0) of T (k+, k−, k0) in o(p, q)

C(k+, k−, k0) = {X ∈ o(p, q)|[X,T (k+, k−, k0)] = 0}. (2.9)

3. Construct all MASAsM(k+, k−, k0) of C(k+, k−, k0) and classify them under the action of the normalizer
N ≡ Nor[T (k+, k−, k0), G] of T (k+, k−, k0) in the group G ∼ E(p, q).

4. Obtain a representative list of all splitting MASAs of e(p, q) as direct sums

M(k+, k−, k0)⊕ T (k+, k−, k0) (2.10)

and keep only those amongst them that are indeed maximal (and mutually inequivalent).

5. Construct all nonsplitting MASAs from the splitting ones and classify them under the action of the
group N +⊃ T (n). A nonsplitting MASA is any MASA of e(p, q) not conjugate to one of the form (2.10).
This involves some elementary cohomology theory and the procedure is described elsewhere [4].

2.3 MASAs of e(p,0) and e(p,1)

In this section we shall list all splitting MASAs of e(p, 0) and e(p, 1). The results are given as theorems.
For the proofs we refer to the original articles [4, 5].

Let us first consider the real Euclidean algebra e(n, 0) with a basis {Pi, Ljk, i = 1, . . . , n, 1 ≤ k ≤ n}
consisting of infinitesimal translations and rotations. The structure of the MASAs is very simple and we
have:
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Theorem 2.1 Every MASA of e(p, 0) splits into the direct sum M(k) = F (k) ⊕ T (k) and is E(p, 0)
conjugate to precisely one subalgebra with

F (k) = {L12, L34, . . . , L2l−1,2l}, T (k) = {P2l+1, . . . , Pp}

where k is such that p− k is even (p− k=2l).

Now let us consider the Lie algebra e(n, 1). Every MASA of e(n, 1) can be represented by a matrix
pair {M,Ke}, satisfying

M(k+, k−, k0) ≡M =



M0 γT

M1 0
. . .

...
Ml 0

0k+ xT

01


, (2.11)

Ke =


K0

I2l

Ik+

01

 , sgnK0 = (n− k+ − 2l, 1),

where Mi =
(

0 ai

−ai 0

)
, ai ∈ R, x ∈ R1×k+ , M0 ∈ R(n−k+−2l+1)×(n−k+−2l+1), M0K0 +K0M

T
0 = 0. The

conditions on M0, γ and x are given in two theorems.

Theorem 2.2 Three different kinds of splitting MASAs of e(p, 1) exist. They are characterized by the
triplet (k+, k−, k0):

A) M(k+, 1, 0), 0 ≤ k+ ≤ p

M0 = 0 ∈ R, γT = z ∈ R and K0 = −1 (2.12)

p− k+ is even, 0 ≤ l ≤ p−k+

2 , d = dimM(k+, 1, 0) = 1 + l + k+,
[

p+3
2

]
≤ d ≤ p+ 1

B) M(k+, 0, 0), 0 ≤ k+ ≤ p− 1

M0 =
(
c 0
0 −c

)
, γT =

(
0
0

)
, K0 =

(
0 1
1 0

)
(2.13)

where p− k+ is odd, 0 ≤ l ≤ p−k+−1
2 , d = dimM(k+, 0, 0) = 1 + l + k+,

[
p+2
2

]
≤ d ≤ p

C) M(k+, 0, 1), 0 ≤ k+ ≤ p− 2

M0 =

 0 α 0
0 0 −αT

0 0 0

 , γT =

 z
0µ

0

 , K0 =

 1
Iµ

1

 (2.14)

where 1 ≤ µ ≤ p−1 and 0 ≤ l ≤ p−k+−2
2 , z ∈ R, α ∈ R1×µ, d = dimM(k+, 0, 1) = µ+l+k++1,

[
p+3
2

]
≤

d ≤ p.

All entries ai, x, z, α and c are free.
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Theorem 2.3 Nonsplitting MASA’s of e(p, 1) are obtained from splitting ones of type C in Theorem 2.2
and are conjugate to precisely one MASA of the form
i) for µ ≥ 2

M0 =

 0 α 0
0 0 −αT

0 0 0

 , γT =

 z
AαT

0

 (2.15)

where A is a diagonal matrix with a1 = 1 ≥ |a2| ≥ . . . ≥ |aµ| ≥ 0 and TrA = 0, K0 is as in (2.14)
ii) for µ = 1 we have a special case for which the nonsplitting MASA has the following form

M0 =

 0 a 0
0 0 −a
0 0 0

 , γT =

 z
0
a

 , K0 =

 0 0 1
0 1 0
1 0 0

 . (2.16)

No other nonsplitting MASAs of e(p, 1) exist.

3 Separation of variables in the Laplace Beltrami operator

Specifically for the spaces M(p, q) of this article, we generate the coordinates as follows. We use the
realization (2.6) of the group E(p, q), but restrict H to be a maximal Abelian subgroup of E(p, q). We
have G =< expX >, where X is one of the MASAs we have constructed. We then write(

x
1

)
= eX

(
s
1

)
, s ∈ R

p+q (3.1)

where s represents a vector in a subspace of M(p, q) parameterized by nonignorable variables (s1, . . . , sk),
and X is a MASA of e(p, q), parametrized by a set of ignorable variables.
Euclidean space M(p)

In cartesian coordinates we have

∆ =
∂2

∂x2
1

+ . . .+
∂2

∂x2
n

. (3.2)

Space M(p) is split into a direct sum of one and two-dimensional spaces. In each M(1) we have a Cartesian
coordinate xi, corresponding to the translation Pi. In each subspace M(2) we have polar coordinates, e.g.
M12 = ∂

∂α1
corresponds to

x1 = s1 cosα1

x2 = s1 sinα1 (3.3)

with α1 ignorable.

Minkowski space M(p,1)
The Laplace-Beltrami operator in Cartesian coordinates is written as

2p,1Ψ = EΨ

∆LB ≡ 2p,1 =
∂2

∂x2
1

+ . . .+
∂2

∂x2
p

− ∂2

∂x2
0

. (3.4)

We introduce a separable system of coordinates in each indecomposable subspace of M(p, 1). Space
M(1, 0) corresponds to a Cartesian coordinate, M(2, 0) to polar coordinate as in eq. (3.3). Now let us
consider the coordinates corresponding to M(k, 1).

M(0, 1) : x0 (cartesian coordinate)
M(1, 1) : x0 = s coshα, x1 = s sinhα (hyperbolic coordinates)

x0 = s sinhα, x2 = s coshα
(for x2

0 − x2
1 = ±s2, respectively)
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M(2,1) : There are two ignorable variables, z and a and we have

x0 + x1 = r
√

2 + 2a
x0 − x1 = ra2

√
2 + 2

3a
3 − z

√
2

x2 = −a2 − ar
√

2.
(3.5)

And the operator in this M(2, 1) subspace of M(p, 1) is:

22,1 =
√

2
∂2

∂r∂z
+

1
2

1
r2

∂2

∂a2
+

1
r2

∂

∂r2
−
√

2
r2

∂2

∂r∂a

+
1√
2

1
r

∂

∂z
− 1
r3

∂

∂r
+

1√
2

1
r3

∂

∂a
(3.6)

Let us consider the space M(k, 1) with k ≥ 2 and the splitting MASA (2.14) Applying eq. (3.1) with

X =


0 α 0 z
0 0 −αT 0
0 0 0 0
0 0 0 0

 , s =


0
...
0
r

 , r ∈ R (3.7)

we obtain the coordinates

xk + x0 = r
√

2
xk − x0 = −rααT 1√

2
+ z

√
2

x1 = −rα1
...

xk−1 = −rαk−1.

(3.8)

The wave operator in these coordinates is

2k,1 = 2
∂2

∂z∂r
+
k − 1
r

∂

∂z
+

1
r2

k−1∑
i=1

∂2

∂α2
i

. (3.9)

The variables z and αi are ignorable (only r figures in eq.(3.9)) and solution of the wave equation then
separates

ψ = R(r)emz
k−1∏
i=1

ebiαi , (3.10)

with R(r)

R(r) = r
1−k
2 exp (

1
r

∑k−1
i=1 b

2
i

2m
) exp(

Er

2m
). (3.11)

Now consider the space M(k, 1) for k ≥ 3 and the nonsplitting MASA (2.15). The coordinates we
obtain are

xk + x0 = r
√

2
xk − x0 = 1√

2
(2z − rααT + αAαT )

x1 = (q1 − r)α1
...

xk−1 = (qk−1 − r)αk−1.

(3.12)
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The wave operator is

2k,1 = 2
∂2

∂z∂r
−

(
k−1∑
i=1

1
(qi − r)

)
∂

∂z
+

k−1∑
i=1

1
(qi − r)2

(
∂2

∂α2
i

)
. (3.13)

We see that αk and z are ignorable variables. The solution of the wave equation then separates and we
have

Ψ = R(r)emz
k−1∏
i=1

ebiαi (3.14)

with R(r) equal to

R(r) =
k−1∏
i=1

(qi − r)−
1
2 exp

(
− 1

2m

k−1∑
i=1

b2i
qi − r

)
exp

(
Er

2m

)
. (3.15)

4 Darboux transformations

4.1 Examples of Darboux transformations in 1 dimension

As stated in the introduction the Darboux transformations (1.2) relates solutions of two different one-
dimensional Schrödinger equation (1.1) and (1.3) with potentials u(x) and ũ(x), respectively.

Let us give several elementary examples to be used below. We always start from a solvable system for
which all solutions are known.

1. The free particle: u(x) = 0
For E0 = 0 in eq. (1.1) we have ψ0 = ax + b. With no loss of generality we can shift b to b = 0, since
we assume a 6= 0. Eq. (1.4) then gives an inverse square potential

ũ(x) =
2
x2
. (4.1)

For E0 = ω2 > 0 the solution of eq. (1.1) is ψ0 = A sin (ωx+ α). Again with no loss of generality we
can shift α to α = 0 and obtain the Poeschl-Teller potential [6]

ũ(x) =
2ω2

sin2 ωx
. (4.2)

For E0 = −ω2 < 0 we take ψ0 = A sinhωx and obtain a hyperbolic version of the potential (4.2), namely

ũ(x) =
2ω2

sinh2 ωx
. (4.3)

2. The harmonic oscillator: u(x) = ω2x2

Let us choose the solution ψ0 = xe
εω
2

x2
, ε = ±1, corresponding to E0 = −3εω. We obtain

ũ(x) = ω2x2 +
2
x2
− 2εω. (4.4)

3. The Coulomb potential: u(x) = 2α
x

Let us choose the solution ψ0 = xeαx corresponding to the energy E0 = −α2. The new potential is

ũ(x) =
2α
x

+
2
x2
. (4.5)
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4.2 Darboux transformations in Laplace-Beltrami equations

One interpretation of the separation variables in a Laplace-Beltrami equation is that we require the sep-
arated solutions ψ(z1, . . . zn) to be the eigenfunctions of a complete set of n second order commuting
operators in the enveloping algebra of the isometry algebra:

4LB ψ = −Eψ (4.6)
Yiψ = λiψ, i = 1, . . . , n− 1 (4.7)

[Yi, Yk] = 0, [4LB, Yi] = 0

ψ =
n∏

i=1

ψi(zi) (4.8)

The specific feature of ignorable variables αi is that for them the corresponding operator Yi is actually
the square of an element of the isometry algebra Yi = X2. The function ψi(αi) then satisfies

Xψi =
∂

∂αi
= λiψi (4.9)

and hence we have ψi = eλiαi . The only way that ignorable variables figure in the Laplace-Beltrami
operator is via the derivative operator ∂/∂αi. If the coordinates are orthogonal, only second derivatives
are present. Such is always the case in real Euclidean spaces and often also in Minkowski ones. We can
then replace eq. (4.9) by

∂2

∂α2
i

ψi = µiψi. (4.10)

A Darboux transformation can then be applied to eq. (4.10) to introduce a solvable potential into eq.
(4.10) and also into the original eq. (4.6). If the separable coordinates are not orthogonal, then terms of
the type ∂2/∂z∂α may occur, where α is ignorable, z not. Then the potential introduced into (4.10) will
destroy separability.

Let us now look at specific coordinate systems in Minkowski space and consider the Laplace-Beltrami
equation with potential

(2k,1 − u)ψ = −Eψ. (4.11)

We start with the coordinate system (3.8). To preserve separation of variables the potential u must have
the form

u = f(r) +
1
r2

k−1∑
1

vi(αi) (4.12)

The ignorable variable z is not orthogonal (see eq. (3.9)), however the variables αi do enter in the correct
form. Writing ψ(x) = R(r)Z(z)

∏k−1
i=1 Ai(αi), we obtain the following equations for each Ai

(
∂2

∂α2
i

+ vi(αi))Ai = −µiAi, i = 1, . . . , k − 1 (4.13)

and, for each αi separately, we can perform a Darboux transformation. Starting with the potential vi(αi) =
0 we obtain a potential of the form (4.1), (4.2), or (4.3) with x replaced by αi. Similarly, starting with
a harmonic oscillator, or Coulomb potential we obtain (4.4), or (4.5), respectively, again with x = αi.
Returning to Cartesian coordinates, we have

αi = − xi

√
2

xk + x0
, i = 1, . . . k − 1 (4.14)

in all potentials.
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The situation in the coordinates (3.12) is quite similar. A separable potential has the form (4.12), the
equations for Ai(αi) have the form (4.13). Darboux transformations can be used to induce all the potentials
(4.1), . . . , (4.5) with

x = αi =
xi

√
2√

2qi − xk − x0

, i = 1, . . . , k − 1 (4.15)

The Darboux transformation can be made for each variable αi separately and a different one can be chosen
in each case.

5 Conclusions

The examples considered in this contribution are typical for a more general situation. Instead of pseudo-
euclidean spaces we could consider the separation of variables in other homogeneous spaces. The corre-
sponding isometry or conformal groups will provide us with tools for separating variables in the Laplace-
Beltrami operator. Darboux transformations can then be used to generate integrable systems with non-
trivial interactions in these spaces. This can be done for ignorable variables that are orthogonal. In the
examples of Section 4 these are the ignorable variables αi, not hoverer the variable z, that is ignorable but
not orthogonal to the variable r. A crucial step in this procedure and in the construction of coordinate
systems with ignorable variables is classification of MASAs of the corresponding isometry or conformal Lie
algebra.
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