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Abstract

We examine a family of discrete second-order systems which are integrable through reduction to a linear
system. These systems were previously identified using the singularity confinement criterion. Here we
analyse them using the more stringent criterion of nonexponential growth of the degrees of the iterates.
We show that the linearisable mappings are characterised by a very special degree growth. The ones
linearisable by reduction to projective systems exhibit zero growth, i.e. they behave like linear systems,
while the remaining ones (derivatives of Riccati, Gambier mapping) lead to linear growth. This feature may
well serve as a detector of integrability through linearisation.

Résumé

Nour étudions une famille de systèmes discrets du deuxième ordre intégrables par linéarisation. Ces systèmes
furent découvèrent précédemment à l’aide du critère de confinement des singularités. Ici, nous les étudions
en utilisant le critère plus contraignant de croissance non exponentielle des degrés des itérations. Nous mon-
trons que les systèmes linéarisables montrent une croissance bien particulière. Les systèmes linéarisable par
réduction à un système projectif ne présentent aucune croissance alors que les autres systèmes linéarisables
présentent une croissance linéaire. Cette découverte pourra très bien servir comme détecteur de l’intégrabilité
par linéarisation.





Integrability of discrete systems is a concept that can be understood on the basis of our experience on integrable
continuous systems. The progress accomplished in the domain of discrete systems this last decade has made possible
the identification of the possible types of integrability. The parallel with continuous systems is almost perfect. Three
main types of integrable discrete systems seem to exist [1]:

a) Systems which possess a sufficient number of constants of motion. The QRT family of mappings [2] is a nice
example of such a system.

b) Systems which can be reduced to linear mappings. They will be examined in detail in this paper.
c) Systems which can be obtained as the compatibility condition for some linear system i.e. systems that possess

a Lax pair. Nice examples of such systems are the discrete Painlevé equations [3]. Given the Lax pair one can reduce
the integration of the nonlinear mapping to the solution of an isomonodromy problem.

It is clear that the integration of a given integrable discrete system may proceed along any of the lines sketched
above. One can, for example, perform one first integration using a constant of motion whereupon the system becomes
linearisable and so on.

The very existence of integrable mappings (and their relative rarity) made their detection particularly interesting.
Integrability detectors must, of course, be based on the properties which are characteristic of integrability. In
this spirit we have proposed the singularity confinement property [4] based on the observation that a singularity
spontaneously appearing in an integrable mapping disappears after some iterations: it is “confined” in the sense that
it does not propagate ad infinitum. The singularity confinement criterion is a necessary one for integrability but, as
we have already remarked in [1], it is not sufficient. This was explained in ample details by Hietarinta and Viallet [5]
who have proposed the notion of algebraic entropy as a stronger criterion which could well be sufficient. This criterion
is based on the ideas of Arnold [6] and Veselov [7] on the growth of the degrees of the iterates of some initial data
under the action of the mapping. The main argument is that a generic, nonintegrable mapping has an exponential
degree growth, while integrability is associated with low growth, typically polynomial. Although the degree itself is
not invariant under coordinate changes, the type of growth, as pointed out by Bellon and Viallet [8], is invariant. The
authors of [5] and [8] have introduced the notion of algebraic entropy defined as E = limn→∞ (log dn)/n, where
dn is the degree of the nth iterate. Generic, nonintegrable mappings have nonzero algebraic entropy. The conjecture
is that integrability, associated to polynomial growth, leads to zero algebraic entropy. In [9] we have examined the
results on discrete Painlevé equations based on the singularity confinement criterion in the light of the low-growth
approach. Our main finding was that singularity confinement is sufficient in order to deautonomize a given integrable
autonomous mapping. This result led to the proposal of a dual approach for the study of discrete integrability based
on the successive applications on the singularity confinement and low-growth criteria, the latter being implemented
only after the first is used to simplify the problem down to tractable proportions.

The aim of this paper is to examine this particular class of mappings which are linearisable and study their
growth properties. Most of these systems were obtained using the singularity confinement criterion and thus a study
of the growth of the degree of the iterates would be an interesting complementary information. Moreover, as we will
show, the linearisable systems do possess particular growth properties which set them apart from the other integrable
discrete systems.

The first mapping we are going to treat is a two-point mapping of the form xn+1 = f(xn, n) where f is rational
in xn and analytical in n. In [1] we have shown that for all f ’s of the form

∑
i

αi

(x+βi)νi
the singularity confinement

requirement is satisfied. However all those mappings cannot be integrable: the discrete Riccati, xn+1 = α + λ
xn+β

,
is the only expected integrable one. Our argument in [1], for the rejection of these confining but nonintegrable cases,
was based on the proliferation of the preimages of a given point. If we solve the mapping for xn in terms of xn+1

we do not find a uniquely defined xn and, iterating, the number of xn−k grows exponentially. In what follows we
shall analyse this two-point mapping in the light of the algebraic entropy approach. We start from the simplest case
which we expect to be nonintegrable,

xn+1 = α +
λ

xn + β
+

µ

xn + γ
. (1)

The initial condition we are going to iterate is x0 = p/q and the degree we calculate is the homogeneous degree
in p and q of the numerator (or the denominator) of the iterate. We obtain readily the following degree sequence
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dn = 1, 2, 4, 8, 16, . . . i.e. dn = 2n. Thus the algebraic entropy of the mapping is log(2) > 0, an indication
that the mapping cannot be integrable. In the present case it was quite easy to guess an analytical expression for
the degree. What we do in general in order to obtain a closed-form expression for the degrees of the iterates, is to
compute a sufficient number of them. Then we establish heuristically an expression of the degree, compute the next
few ones and check that they agree with the analytical expression prediction. Now we ask how can one curb the
growth and make it nonexponential. It turns out that the only possibilities are λµ = 0 or β = γ. In either case
mapping (1) becomes a homography. The degree in this case is simply dn = 1 for all n. This is an interesting result,
clearly due to the fact that the homographic mapping is linearisable through a simple Cole-Hopf transformation.

The second mapping we shall examine is one due to Bellon and collaborators [10]

xn+1 =
xn + yn − 2xny

2
n

yn(xn − yn)
,

yn+1 =
xn + yn − 2x2

nyn

xn(yn − xn)
.

(2)

The degree growth in this case is studied starting from x0 = r, y0 = p/q and again we calculate the homogeneous
degree of the iterate in p and q, i.e. we set the degree of r to zero. (Other choices could have been possible
but the conclusion would not depend on these details.) We obtain the degrees dxn = 0, 2, 2, 4, 4, 6, 6, . . . and
dyn = 1, 1, 3, 3, 5, 5, . . . i.e. a linear degree-growth. This is in perfect agreement with the integrable character
of the mapping. As was shown in [11] it does satisfy the unique preimage requirement and possesses a constant of
motion k = 1−xnyn

yn−xn
, the use of which reduces it to a homographic mapping for xn or yn.

The third mapping we are going to study is the one proposed in [1]

xn+1 =
xn(xn − yn − a)

x2
n − yn

,

yn+1 =
(xn − yn)(xn − yn − a)

x2
n − yn

(3)

where a was taken constant. We start by assuming that a is an arbitrary function of n and compute the growth
of the degree. We find dxn = 0, 1, 2, 3, 4, 5, 6, 7, 8, . . . and dyn = 1, 2, 3, 4, 5, 6, 7, 8, 9, . . . i.e. again a linear
growth. This is an indication that (3) is integrable for arbitrary an and indeed it is. Dividing the two equations
we obtain yn+1/xn+1 = 1 − yn/xn i.e. yn/xn = 1/2 + k(−1)n whereupon (3) is reduced to a homographic
mapping for x. Thus in this case the degree-growth has succesfully predicted integrability.

A picture starts emerging at this point. While in our study of discrete Painlevé equations and the QRT mapping
we found quadratic growth of the degree of the iterate, linearisable second-order mappings seem to lead to slower
growth. In order to investigate this property in detail we shall analyse the three-point mapping we have studied in
[12,13] from the point of view of integrability in general and linearisability in particular. The generic mapping studied
in [13] was one trilinear in xn, xn+1, xn−1. Several cases were considered. Our starting point is the mapping,

xn+1xnxn−1 + βxnxn+1 + ζηxn+1xn−1 + γxnxn−1 + βγxn + ηxn−1 + ζxn+1 + 1 = 0. (4)

We start with the initial conditions x0 = r, x1 = p/q and compute the homogeneous degree in p, q at every n. We
find dn = 0, 1, 1, 2, 3, 5, 8, 13, . . . i.e. a Fibonacci sequence dn+1 = dn + dn−1 leading to exponential growth of

dn with asymptotic ratio 1+
√

5
2

. Thus mapping (4) is not expected to be integrable in general. However, as shown in
[13] integrable subcases do exist. We start by requiring that the degree growth be less rapid and as a drastic decrease
in the degree we demand that d3 = 1 instead of 2. We find that this is possible when either β = ζ = 0 in which
case the mapping reduces to:

xn+1 = −γ − η

xn

− 1

xnxn−1

(5)

or γ = η = 0, giving a mapping identical to (5) after x → 1/x. In this case the degree is dn = 1 for n > 0.
Equation (5) is the generic linearisable three-point mapping, written in canonical form. Its linearisation can be
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obtained in terms of a projective system [13] i.e. a system of three linear equations, a fact which explains the
constancy of the degree.

The trilinear three-point mapping possesses also many nongeneric subcases, some of which are integrable. The
first nongeneric case writes:

xn(γxn−1 + ε) + (xn+1 + 1)(ηxn−1 + 1) = 0. (6)

The degrees of the iterates of mapping (6) form again a Fibonacci sequence even in the case ε = 0 or η = 0. The
only case that presents a slightly different behaviour is the case γ = 0:

(xn+1 + 1)(ηxn−1 + 1) + εxn = 0. (7)

In the generic case the degree of the iterate behaves like dn =0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28,
37, 49,. . . satisfying the recursion relation dn+1 = dn−1 + dn−2 leading to an exponential growth with as-

ymptotic ratio
(

1
2

+
√

23
108

)1/3

+
(

1
2
−

√
23
108

)1/3

. Although the mapping is generically nonintegrable it does

possess integrable subcases. Requiring for example that d4 = 1 we obtain the constraint ε = η = 1 and
the mapping becomes periodic with period 5. If we require d5 = 1, we obtain ε = −ηn+1(ηn − 1) and
ηn+1ηnηn−1 − ηn+1ηn + ηn+1 − 1 = 0, leading again to a periodic mapping with period 8. In these cases,
the degree of the iterates exhibits, of course, a periodic behaviour. A more interesting result is obtained if we require
d9 < 7. We find that the condition η = 1 and ε an arbitrary constant leads to a nonexponential degree growth
dn = 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 22, 25, 27, 30, 33, 36, 39, 42, 46, 49, . . .. Although
the detailed behaviour of dn is pretty complicated one can see that the growth is quadratic: we have, for example,
d4m+1 = m(m + 1) for m > 0. Thus this mapping is expected to be integrable and indeed, it is a member of the
QRT family. Its constant of motion is given by

K = yn+1 + yn − ε

(
yn+1

yn

+
yn

yn+1

)
+ ε(ε + 1)

(
1

yn

+
1

yn+1

)
− ε2

ynyn+1

where yk = xk + 1. The second nongeneric case is:

γxnxn−1 + δxn+1xn−1 + εxn + ζxn+1 = 0. (8)

A study of the degree-growth leads always to exponential growth with asymptotic ratio 1+
√

5
2

, except when γ = 0 in
which case the degrees obey the recurrence dn+1 = dn−1 + dn−2. No integrable subcases are expected for mapping
(8). The last nongeneric case we shall examine is

γxnxn−1 + xn+1xn−1 + εxn + ηxn−1 = 0. (9)

Again the degree sequence is a Fibonacci one except when γ = 0 or η = 0, in which case we have the recursion
dn+1 = dn−1 + dn−2, or when εn = γnηn−2. In the latter case the degree-growth follows the pattern dn =
0, 1, 1, 2, 2, 3, 3, . . . i.e. a linear growth. Thus we expect this case to be integrable. This is precisely what we found
in [13]. Assuming η 6= 0 we can scale it to η = 1, and thus ε = γ. The mapping can then be integrated to the
homography (xn−1 + 1)(xn + 1) = kaxn−1 where k is an integration constant and a is related to γ through
γn = −an+1/an. Thus in this case mapping (9) is a discrete derivative of a homographic mapping.

This leads us naturally to the consideration of the generic three-point mapping that can be considered as the
discrete derivative of a (discrete) Riccati equation. Let us start from the general homographic mapping which we
can write as

Axnxn+1 + Bxn + Cxn+1 + D = 0. (10)

where A,B, C, D are linear in some constant quantity κ. In order to take the discrete derivative we extract the
constant κ and rewrite (10) as:

κ =
αxnxn+1 + βxn + γxn+1 + δ

εxnxn+1 + ζxn + ηxnup + θ
. (11)
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Using the fact that κ is a constant, it is now easy to obtain the discrete derivative by downshifting (11) and subtracting
it form (11) above. Instead of examining this most general case we concentrate on the forms proposed in [14]. They
correspond to the reduction of (11) to the two cases:

κ = xn+1 + a +
b

xn

(12)

κ =
xn+1(xn + a)

xn + b
(13)

Next we compute the discrete derivatives of (12) and (13). We find:

xn+1 = xn + an−1 − an −
bn

xn

+
bn−1

xn−1

(14)

and

xn+1 = xn
xn−1 + an−1

xn + an

xn + bn

xn−1 + bn−1

(15)

The study of the degree of growth of (14) and (15) can be performed in a straightforward way. For both mappings
we find the sequence dn = 0, 1, 2, 3, 4, 5, 6, . . . i.e. a linear growth just as in the cases of mappings (2), (3) and
the integrable subcases of (9). If we substitute bn−1 by cn−1 in the last term of the rhs of (14) or the denominator
of (15) we find dn = 0, 1, 2, 4, 8, 16, . . . i.e. dn = 2n for n > 0 unless c = b. Investigating all the possible ways
to curb the growth we find for both (14) and (15) that c = 0 is also a possibility to bring d3 down to 3. However
a detailed analysis of this case shows that for c = 0 we have dn = 0, 1, 2, 3, 5, 8, 13, 21, . . . i.e. a Fibonacci

sequence with slower, but still exponential, growth (i.e. ratio 1+
√

5
2

instead of 2).
One more family of linearisable discrete systems has been studied in detail in [15] and [16]. They are what

we called the Gambier mappings which constitute the discretisation of the continuous Gambier equation [17]. The
latter is a system of two Riccati’s in cascade. In the discrete case the Gambier system is written as two homographic
mappings which we write in canonical form as:

yn+1 =
anyn + bn

yn + 1
(16a)

xn+1 =
xnyn/dn + c2

n

xn + dnyn

(16b)

Eliminating y we can also write the discrete Gambier system as a single three-point mapping for x. The study of the
degree growth of (16) is straightforward. We start from x0 = r, y0 = p/q and compute the homogeneous in p, q
degree of (16a) and (16b). Since (16a) is a Riccati its degree does not grow i.e. we have dyn = 1. Given the structure
of (16b) we have dxn+1 = dxn + dyn and thus dxn = n. What is interesting here is that the Gambier mapping
exhibits a linear degree-growth independently of the precise values of a, b, c, d. The fact that it can be reduced to
Riccati’s in cascade is enough to guarantee its integrability. On the other hand, if we had asked, (as we have done in
[15]) for the possibility to express the solution as an infinite product of matrices,even across singularities, this would
have led to constraints on the parameters (which were given in detail in [16]).

In this work we have examined a class of integrable discrete systems (mainly three-point mappings) from the
point of view of the degree-growth of the iterates of some initial data. Our study was motivated from the recent
works connecting slow-growth and integrability. Our present analysis confirms our previous findings based on the
singularity confinement necessary discrete integrability criterion. But what is more important is that a relation
between the details of integrability and the degree-growth seems to emerge. In this work we have found two main
types of degree-growth: zero and linear growth. Zero growth is associated to systems which are linearisable through
a reduction to a projective system. Linear growth is characteristic of systems which can be reduced to linear ones
although at the price of some more complicated transformations, usually through the existence of some constant of
motion or, as in the case of the Gambier mapping, through the solutions of linear equations in cascade. On the
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other hand, in our study on discrete Painlevé equations and the QRT mapping we found that quadratic growth was
the rule. These results are, of course, characteristic of three-point (second-order) mappings and we do not expect
the details concerning the precise exponents to carry over to higher-order mappings. Still, we expect the pattern
detected here, namely that linearisable mappings lead to slower growth than the nonlinearisable integrable ones, to
persist. It could be used for the classification of integrable discrete systems and be a valuable indication as to the
precise method of their integration. We intend to return to this point in some future work.
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