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Abstract

A variant of Brockett’s necessary condition for feedback stabilization is derived, in the state constrained
case.
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1 Introduction

Consider a control system
&(t) = f(z(t),u(t), t=0, (1)
where f : R™ x R™ — R"™ is locally Lipschitz. We shall say that a locally Lipschitz feedback law k£ : R® — R™
stabilizes (1) provided that 0 is both Lyapunov stable and an attractor with respect to the ordinary differential
equation
i(t) = g(z(t)), t=0, (2)
where we have denoted
9(z) := f(z, k(). (3)
Tt is a classical fact that in the linear case, f(xz,u) = Az + Bu, a necessary and sufficient condition for stabilization
(by a linear feedback law k(z) = Cz) is that rank [B, AB, ..., A" 1 B] = n, which in turn is equivalent to complete

controllability (in the open loop sense). The situation is quite different in the nonlinear case. The control system
with dynamics f(z,u) specified next, is easily seen to completely controllable:

f($1,35273€37U1,U2) = (Ul COsS T3, UL Sinxs,UQ) (4)

However, the system cannot be stabilized to 0 by a locally Lipschitz feedback, because of the following result, which
we refer to as Brockett’s theorem. (We denote by Bs the open ball of radius d, centered at 0.)

Theorem 1.1. Let f(-,-) be locally Lipschitz, and suppose that (1) is stabilizable by a locally Lipschitz feedback law
k(). Then the maping g : R™ — R defined in (??) is open at the origin; that is

Vo>0, 3y=~() > B, Cg(Bs). (5)

To see that the above example does not satisfy Brockett’s necessary condition (??), note that points (0, a, b) with
a # 0 are not contained in the image of f for x3 near 0.

Actually, Brockett’s original result in [3] pertains to smooth f(-,-) and k(-), and is not localized as above,
but Theorem ?7? is well known; see Sontag [15]. (It is also explained in that reference that the above example
is equivalent, under a transformation, to one provided by Brockett.) Zabczyk [18] derived certain variants of the
result under relaxations of the definition of stabilization, and Ryan [14] proved that Brockett’s necessary condition
for stabilizability persists when a certain class of multivalued feedback laws is considered. The general problem
of constructing discontinuous feedback laws k(z) which achieve stabilization of asymptotically controllable systems
has been stimulated by Brockett’s theorem as well as by early results of Sontag and Sussman [17]. References on
the stabilizing feedback design problem include Hermes [10], Clarke, Ledyaev, Sontag and Subottin [5], Ancona
and Bressan [1], Rifford [12], [13], Clarke, Ledyaev, Rifford and Stern [1], Sontag [16], and in problems with state
constraints, Clarke and Stern [?]. On the other hand, Coron [3] (see also Coron and Rosier [9]) showed that in the
case of controllable systems affine in the control, there exist continuous, but time-dependent feedbacks k(¢, 2) which
achieve stabilization.

Our purpose in the present work is to provide a variant of Theorem ??, when trajectories of (1) are required to
satisfy a state constraint x(t) € S for all ¢ > 0. We will restrict our attention to a class of constraint sets S which
includes the compact convex ones.

2 Necessary condition for state constrained stabilization

Throughout, S C R™ will denote a compact set containing 0, and it will be assumed that S is proximally smooth.
This means that there exists rg > 0 such that dg(-), the euclidean distance function to S, is C'* on the tube

U(rs) ={z eR": 0 <dg(x) <rg}.

Our reference regarding this property is Clarke, Stern and Wolenski [7], where alternate characterizations were derived
(in an infinite dimensional setting). Of particular use to us is the fact that S is proximally smooth if and only if
for every x € S + By, there exists a unique closest point p(z) € S. It was shown it [7] that when this is the case,
the function p(-) is Lipschitz on the tube U(r) for every r € (0,7g); it readily follows that then p(-) is Lipschitz
on S + B,,. Note that convexity implies proximal smoothness, and that in the convex case, rg can be taken to be
arbitrarily large.



Definition 2.1. The locally Lipschitz feedback law k& : R® — R™ is said to S-stabilize the control system (1)
provided that solutions z(-) of (??) satisfy the following two properties:

(a) S-constrained Lyapunov stability of 0: Given r1 > 0, there exists ro > 0 such that

z(0) e SNB,, = z(t) e SNB,, Vt>0.
(b) S-constrained attractivity: One has
z(0)e S==z(t)eS Vt>0, lim z(t)=0.

t—oo

Property (b) above implies in particular that S is (forward time) invariant with respect to the dynamics &(t) =
g(x(t)). Note also that since f(-,-) and k(-) are locally Lipschitz, so is g(-), and therefore one is assured of uniqueness
of the solution z(-) for any initial point x(0) € S.

Our main result is the following:

Theorem 2.2. Let S be a compact, proximally smooth set containing 0. Let f(-,-) be locally Lipschitz, and assume
that a locally Lipschitz feedback law k(-) achieves S-stabilization of the control system (1). Define h: S+ B, — R"
by
h(z) := f(p(2), k(p(x))) + p(z) — .
Then h(-) is open at 0; that is
V>0, 3y=~(5) > B, C h(Bs). (6)

Remark 2.3.
(a) Note that h(-) is Lipschitz on S + rgB and that h = g on S, because p(z) =z if z € S.

(b) Also, observe that if 0 is an interior point of S, then the necessary condition (?7?) reduces to that of Brockett,
(??), because then h(x) = g(x) for all z near 0.

(¢) The statement and proof of Theorem ?? remain unchanged if the original dynamics f(x,u) are specified only
for x € S, which is realistic in certain state constrained models.

We require three lemmas—the hypotheses of the theorem remain in effect throughout. Solutions of the ordinary
differential equation

y(t) = h(y(t)), t=0, y(0)=a, (7)
will be denoted by y(¢; o). Note that if a € S, then y(¢; «) is in fact a solution of (?7?).
Lemma 2.4. Given R > 0, there exists T1(R) > 0 such that

aceS=y(t;a) e SNBr Vt>Ti(R). (8)

Proof: By the S-stabilization property, there exists R’ > 0 such that solutions of (??) emanating from initial
points in S N Bgrs remain in S N Bg for all ¢ > 0. Furthermore, for each a € S, there exists 7, > 0 such that
Y(Ta; @) € SN Br, and continuity of solutions in the initial state implies that there exists r,, > 0 such that

o eSn{a+ B, } = y(ra;a') € SN B

The family of sets

{SNn{a+B,, :acS}

is an open (relative to S) cover of the compact set S and as such, possesses a finite subcover

k
U Sﬂ {Cki +BTai}'

i=1
Then
T1(R) :=max{ry, : 1 <i <k}
has the required property. [J



Lemma 2.5. Let o € R™ be such that ||a|| < rs. Then the solution y(t;«) of (3) is defined on [0,00) and satisfies

ds(y(t;a)) < e 'llaf vt >o0. 9)

Proof: For any o € S + rgB, one has

(@ = p(), g(p())) <0, (10)

due to the fact that S is invariant with respect to the dynamics (??). (Here, upon noting that a — p(«) is a prozimal
normal direction to S at p(a), we have applied Theorem 4.2.10 in Clarke, Ledyaev, Stern and Wolenski [6].) Then

(@ —p(a), h(a)) < ~[la = p(a)|* = ~d§(a). (11)

Exercise 4.2.2(b) in [6] (in conjunction with Corollary 4.3.7) on the “proximal aiming” method then yields the
differential inequality

L ds(y(tsa) < ~ds(y(0) ae, 120 (12)

on any interval such that y(t;a) ¢ S. Also, by invariance, if the trajectory y(t; a) enters S, then it remains in S
thereafter. Then (?7?) follows readily. Clearly the solution y(¢; &) is defined on [0, o) since (??) precludes finite time
blow-up. O

Lemma 2.6. Let R > 0 be such that 3R < rg. Then there exists To(R) > 0 such that

llall < 3R = ||y(t; )| < 2R Vit > To(R). (13)

Proof: Let ||| < 3R. In view of the previous lemma, one has ds(y(T;a)) < e~ 7|l for any T > 0. Denote
by K a Lipschitz constant for h(-) on S + rgB. For T > 0 (to be determined), we want to compare the trajectory
of (3) emanating from o' := y(T; @) with the one emanating from o” := p(y(T;«)). A standard estimate based on
Gronwall’s inequality yields

ly(t; o) =yt )| < X — ||
< 3Refte T

for all ¢ > 0. It follows that for 7' > In(3), one has
T —In(3)
K

0<t< = |ly(t; ") —y(t;a))[| < R.

In view of Lemma 2.4, we deduce that large enough T,

T —1In(3)

Tl(R)<t< K

= |ly(t;0)|| < 2R.

Then for the trajectory emanating from the original start point «, one has

T —In(3)

te <T+T1(R),T+ I

) = vt < 2 (14)

Let v > 0 be given, and choose T so large that
T —In(3)
K

for example, we can take T'= KT1(R) + In(3) + 1 + K~. Then (??) implies that for any start point « such that
||| < 3R, omne has ||y(t; )| < 2R for all ¢ in the interval

>Ti(R) +;

(K+1)Th(R)+In(3)+ 1+ Kv,(K+1)T1(R) +In(3) + 1 + (K + 1)) (15)

We claim that T5(R) = (K +1)T1(R) +1n(3)+ has the required property. To see this, note that for any ¢ > To(R),
one can choose 7 (depending on t) so that t is contained in the interval (??). O



We are now in position to complete the proof of the theorem. Like the proof of Theorem ?? provided in [15] and
the method in Ryan [14], the argument rests upon properties of the topological (or Brouwer) degree of a mapping;
see also Krasnoselskii and Zabreiko [11]. A useful reference on the Brouwer degree is Berger and Berger [2].

Proof of Theorem ??: Let R be as in Lemma 2.6. Consider the function H : [0, 1] x cl(Bag) — R™ given by

H(t,a) = { T W(Ta(R)ia) —a]  if0<t<1

In view of Lemma 2.6, bdry(Bsg) cannot contain rest points or periodic points of (3). It follows that
H(t,a) £0 Y(t,a) € [0,1] x bdry(Bag). (16)

We claim that H (-, -) is continuous on [0, 1] X cl(Bag). Continuity on (0, 1] x cl(Bag) follows readily from continuity
of solutions of (3) as a function of initial data. It remains to verify that continuity holds at points of the form (0, c),
where |la|| < 2R. For such a point and given any ¢ > 0, it suffices to show that there exists 6 > 0 such that

0<t<d, || —al| <6, ||[d]| <2R= ||H(t,d') — H(0,a)| <e. (17)

Denote by M a norm bound for h(-) on the set S + rgB, and let K be a Lipschitz constant as in the preceding
lemma. Then, since for ¢ > 0 one has

1

tT>(R)
[mﬂxmxw—aq—mw>=ﬁgﬁié [h(y(s; 0')) = h(a)lds,

tTo(R)
it follows that

[H (t, ') = H(0,a)| [H (¢, o) = H(0,a)|| + H(0,0') = H(0,a)]|

<
< KMtTZ(R)+ K|’ — «f|,

which shows that the required ¢ exists. Bearing (?? in mind, it follows that H(-,) is a homotopy between the
functions h(-) and w(-), where

1

= Ty (R); ) — «l.

w(0) = s (T (R)s) — o

Now consider the mapping H : [0,1] x cl(Bag) — R™ given by
- t
H(t, a):=(1-tw(la) — ——a
(t.0) = (1= wfe) = s
It is easy to see that this mapping is continuous, and what is more,
H(t,a) #0 VY (t,a) € [0,1] x bdry(Bag). (18)

To verify (7), first note that H(0,0) = w(a) # 0 for a € bdry(Bayg), since periodicity is precluded. In addition,
H(1, o) is obviously nonzero. Now consider ¢t € (0,1) and « € bdry(Bgg). If H(t,a) = 0, then one would have

«
Iy @); ) =120 5 5p,

which is in violation of Lemma 2.6.

Hence H (-, ) provides a homotopy between w(-) and the function v(z) = —ﬁx, and therefore h : cl(Bag) — R™
and v : cl(Bar) — R™ are homotopically equivalent as well. It follows that the topological degree of these mappings,
with respect to points near 0, have the same value. Since v(-) is an odd mapping, it has nonzero degree with
respect to such points. Then the equation h(xz) = p is solvable by « € Bag for any p sufficiently near 0; therefore
h(Bzg) contains an open neighborhhod of 0. Since R can be taken as small as desired, the proof of the theorem is

completed. [I.

Let us denote the prozimal normal cone to S at z € S by N& (z). We refer the reader to [6] for background on
this construct of nonsmooth analysis, and make note of the fact that when S is closed and convex, this cone is simply
the classical normal cone of convex analysis. The following consequence of Theorem ?7? follows immediately from the
definition of the proxmal normal cone. It provides a slightly more crude, but more convenient, necessary condition
for S-constrained stabilization.



Corollary 2.7. Let the hypotheses of Theorem 77 be in effect. Then for every § > 0, the set
f(SN Bs(%),R") — N§ (SN Bj) (19)
contains an open neighborhood of 0.

Remark 2.8. It is worth noting that only the stated localized form of the corollary is interesting, since one always
has NZ'(S) = R™. This follows from the fact that for every compact set S, cI[N(S)] = R™ (by Exercise 1.11.4 in
[6]), and the property that NZ'(-) is a closed multifunction on S when S is proximally smooth.

In the following example, simple cases (without control) serve to illustrate the corollary.

Example 2.9. Consider the planar system given by

(a) Consider the compact convex constraint set
S = {(1‘1,1}2) . H.’L’lll < 17.’)32 = 0}

It is clear that in the absence of a state constraint, the system is not stabilizable to the origin (or, since there
is no control, not stable), and it is equally clear that it fails Brockett’s necessary condition in Theorem ??. On
the other hand, the system is obviously S-stabilizable (or just “S-stable” here). That the necessary condition
of Corollary ?? holds is easily verified, upon noting that

Ng(O,()) ={(a, ) : « = 0}.

(b) Now consider
S ={(x1,22): 0 < x| < 1,29 =0}.

The same comments as in part (a) apply, because now one has available the larger cone

NE(0,0) = {(e, 3) 1 a < 0}

In both cases (a) and (b), the necessary condition (??) of Theorem ?? is easy to check as well.

An example related to the one provided in the introduction is given next.

Example 2.10. Consider the control system given by (2), and let
S ={(x1,29,23) : |z1| < 1,0 <o < 1, |a3| < 7}
Then 0 € bdry(S), and for § > 0 sufficiently small, one has
Ng (SN Bs) = {(0,22,0) : 22 < 0}. (20)

It is readily noted that every point in S can be steered (by open loop control) to the origin via an S-constrained
trajectory; in fact, S is completely controllable via S-constrained trajectories. But there there does not exist a
locally Lipschitz S-stabilizing feedback, because the necessary condition of Corollary 77 fails to hold. To see this,
note (again) that points (0, a,b) with a # 0 are not contained in the image of f for x5 near 0. Hence, in view of (77),
the set in (??) cannot contain points (0,b, ¢) with b < 0, for such x3.
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