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Abstract

A Raviart–Thomas mixed finite element is used to develop new a posteriori local error indicators for
convection-dominated semiconductor transport equations. Lower and upper bounds of the estimators are
established. These bounds differ by a negative power, h−1/2, of the mesh size. Existence and uniqueness
of the solution in the continuous and discrete cases are proven. The anisotropy of the H(div) norm and
the poor regularity of H(div) functions prevent a direct application of frequently used arguments. An
optimal estimator is obtained using a rigorous nonstandard analysis. Numerical results in the case of a
realistic device show that an unstructured grid adaptation based on these estimators leads to an efficient
and robust algorithm.

Keywords. A posteriori error estimators, Raviart–Thomas element, adaptive grid generation, semicon-
ductor equations, discretization of nonsymmetric operators
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Résumé

On développe de nouveaux estimateurs a posteriori de l’erreur locale au moyen d’un élément fini mixe
de Raviart–Thomas pour les équations de transport à convection dominante pour semiconducteurs. On
obtient des bornes inférieures et supérieures des estimateurs. Ces bornes diffèrent par une puissance
négative, h−1/2, du pas du maillage. On démontre l’existence et l’unicité de la solution dans les cas
continu et discret. L’anisotropie de la norme H(div) et la piètre régularité des fonctions de H(div) barrent
l’application des arguments usuels. Une analyse rigoureuse produit un estimateur optimal. Les résultats
numériques dans une situation réaliste montre qu’un maillage adapté basé sur ces estimateurs donne lieu
à un algorithme efficace et robuste.





1 Introduction

The numerical solution of microelectronic devices is an integrated part of the Computer Aided Design of integrated
microsystems. In this paper the emphasis is on the development of an advanced automatic grid (mesh) adaptation
technique that can be used to optimize the cost-effective design of electronic devices by simulating the fabrication
processes, the electric behavior of the devices, and the global network of electric circuits.

We consider the linearized convection-dominated transport equations for electron and hole flows coupled with
Poisson’s equation as a model of fluid drift-diffusion (El Boukili [8]) where current densities and quasi-Fermi levels
are used as variables.

Error estimations in computational processes have been a subject of interest for more than two decades since
the pioneering work of Babuška and Rheinboldt [2]. An extended account of this subject is found in Ainsworth and
Oden [1], Rappaz [15], Verfürth [20], Fortin [9, 10], and Nithiarasu and Zienkiewicz [14].

The originality of this paper consists, firstly, in the proof of the existence and uniqueness of the solution to the
linearized convection-dominated transport equations of the drift-diffusion model for semiconductor devices, in the
continuous case, using mixed variational formulation in H(div)×L2; secondly, in the development of new a posteriori
error estimators, which depends on a negative power, h−1/2, of the mesh size, for the adaptive grid generation within
the Raviart–Thomas finite element approach. The authors do not know how to remove this negative power with
method they use. Some work has been done on symmetric equations (standard diffusion equation) as Poisson’s
equation in Verfürth [4, 20] and Hoppe et al. [11, 12]. But, to our knowledge, no work has been done on local mesh
refinement within the Raviart–Thomas discretization for second-order nonsymmetric operators as the linearized
semiconductor transport equations (or drift-diffusion model equations) with the indicated variables. Our analysis in
deriving the error indicators could be seen as an extension to a nonsymmetric problem of the work by Braess and
Verfürth [4].

The mesh adaptation technique is a mechanism that enriches the grid or the interpolation space under the
guidance of an error indicator in view of improving the computed solution. Adaptive strategies can be classified
into five categories: node-moving schemes (r-method), mesh refinement/coarsening schemes (h-method), subspace
enrichment schemes (p-method), remeshing methods, and combined methods. These strategies cannot be applied
blindly but need the guidance of local error estimators. One can distinguish between residual-based estimators and
interpolation-based estimators, see Verfürth [20] for a complete literature. Here we focus attention on residual-based
a posteriori error estimators which, recently, benefitted from a strong mathematical foundation.

In section 2, we present the mixed formulation in the continuous case and we establish existence and uniqueness
results. In section 3, we introduce the discretization method, existence results for the discrete problem and a priori
error estimates. In section 4, which is the main part of this paper, we develop a posteriori error estimators and
establish two theoretical results that guarantee the efficiency and reliability of these estimators. Finally, in section
5, we demonstrate the benefit of the grid adaptation approaches based on these estimators by means of numerical
results for a realistic Heterojunction Bipolar Transistor (HBT) working as a high frequency amplifier (used in mobile
phones), see El Boukili [8]. The mesh adaptive technique is based on a remeshing at each step using the Delaunay
algorithm.

2 Continuous problem

The semiconductor transport equation for the electron flow using the quasi-Fermi level variable p, with Dirichlet and
Neumann boundary conditions, is

−div(α(x, p)∇p) + c(x, p) = 0 in Ω,

p = g1 on ∂ΩD,

(α(x, p)∇p) · n = 0 on ∂ΩN ,

(1)

where Ω ⊂ IR2 is a regular domain with boundary ∂Ω = ∂ΩD∪∂ΩN , such that ∂ΩD∩∂ΩN = ∅ and meas (∂ΩD) 6= 0,
and n is the outward normal vector to ∂Ω.

2.1 Mixed formulation

Substituting the vector-valued function
u = α(x, p)∇p

into equation (1), one can derive the following mixed problem:
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Find two real-valued functions, p and u, such that
a(x, p)u = ∇p in Ω,

−div u + c(x, p) = 0 in Ω,

p = g1 on ∂ΩD,

u · n = 0 on ∂ΩN ,

(2)

with a(x, p) = 1/α(x, p).

2.2 Linearization of the continuous model

Problem (2) is linearized in a neighborhood of a point (u0, p0) as follows:
a(x)u−∇p− b(x)p = f(x) in Ω,

−div u + c(x)p = g(x) in Ω,

p = g1 on ∂ΩD,

u · n = 0 on ∂ΩN ,

(3)

where
a(x) = a(x, p0(x)),
b(x) = −a′p(x, p0(x))u0(x),
f(x) = a′p(x, p0(x))u0(x)p0(x),
c(x) = c′p(x, p0(x)),
g(x) = c′p(x, p0(x))p0(x)− c(x, p0(x)).

2.3 Mixed variational formulation and preprocessing

We shall use the following notation to denote three three spaces,

X = H(div,Ω), X0 = H0,N (div,Ω), Y = L2(Ω),

where

H(div,Ω) = {v ∈ (L2(Ω))2 : div v ∈ L2(Ω)},
H1

0,D(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0 over ∂ΩD},
H0,N (div,Ω) = {v ∈ H(div,Ω) : 〈v · n, w〉∂ΩN

= 0 ∀w ∈ H1
0,D(Ω)}.

In this analysis, < ·, · > and (·, ·) represent the duality and inner products, respectively. The natural norm of v in
H(div,Ω) is defined by

‖v‖2
H(div,Ω) = ‖v‖2

L2(Ω) + ‖div v‖2
L2(Ω). (4)

We note that the restriction of the normal trace of H(div,Ω) functions is not defined. This explains why we
defined H0,N (div,Ω) as the polar space of H0,D(Ω).

The following mixed variational problem is considered:
Find (u, p) ∈ X0 × Y such that :

∫
Ω

a(x)u · v dx +
∫

Ω

div v p dx

−
∫

Ω

b(x) · vp dx = 〈f, v〉+ 〈v · n, g1〉 ∀v ∈ X0,

∫
Ω

div u q dx−
∫

Ω

c(x)pq dx = −
∫

Ω

gq dx ∀ q ∈ Y.

(5)

The following notation will be used:

Z = X × Y, Z0 = X0 × Y, U = (u, p), V = (v, q).
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We define the bilinear form A on Z0 × Z0 as the sum of the two left-hand sides of equation (5):

A(U, V ) =
∫

Ω

a(x)u · v dx +
∫

Ω

div v p dx−
∫

Ω

b(x) · v p dx

+
∫

Ω

div u q dx−
∫

Ω

c(x)pq dx,

The same process is applied in defining the continuous linear form

F(V ) =
∫

Ω

f · v dx + 〈v · n, g1〉 −
∫

Ω

gq dx.

Therefore, problem (5) is equivalent to the following problem:
Find U ∈ Z0 such that

A(U, V ) = F(V ) ∀V ∈ Z0. (6)

The existence and uniqueness of the solution to this problem and the final result will be collected in Theorem 2.1
at the end of this section. Towards this goal, we consider an arbitrary F = (f, g) ∈ Z ′

0, with f ∈ X ′
0 and g ∈ Y . The

second equation of (5) is equivalent to ∫
Ω

c(x)pq dx =
∫

Ω

div u q dx + 〈g, q〉. (7)

We define the mapping C:L2(Ω) −→ L2(Ω) as∫
Ω

C(p)q dx =
∫

Ω

c(x)pq dx,

that is, 〈C(p), q〉 = (c(x)p, q), and assume that the following hypothesis holds: there exists γ > 0 such that c(x) ≥ γ
for all x ∈ Ω. In that case, C is invertible and

‖C−1‖ ≤ 1
γ

.

We note that the definition of C is valid when c is bounded.
We define the mapping B:H(div,Ω) −→ L2(Ω) as∫

Ω

B(u)q dx =
∫

Ω

div u q dx,

that is, 〈B(u), q〉 = (div u, q). Thus, equation (7) can be written as

C(p) = B(u) + g ⇐⇒ p = C−1(B(u) + g). (8)

Let us consider the following hypothesis on a(x): there exists α > 0 such that for all x ∈ Ω, a(x) ≥ α, and define
A:
(
L2(Ω)

)2 −→ (
L2(Ω)

)2 as ∫
Ω

A(u) · v dx =
∫

Ω

a(x)u · v dx, (9)

that is, 〈A(u), v〉 = (a(x)u, v). With this notation, the first equation of the mixed formulation (5) can be written as:

〈A(u), v〉+ 〈B(v), p〉 − 〈p, b · v〉 = 〈f, v〉. (10)

Since p = C−1(B(u) + g), then

〈A(u), v〉+ 〈B(v)− b · v, C−1(B(u) + g)〉 = 〈f, v〉, ∀ v ∈ X0, (11)

and this expression is equivalent to

〈A(u), v〉+ 〈C−1B(u), B(v)〉 − 〈C−1B(u),b · v〉
= 〈f, v〉 − 〈C−1g,B(v)〉+ 〈C−1g,b · v〉, ∀ v ∈ X0.

In the sequel, usual norms, unless explicitly denoted otherwise, will be as follows: ‖ · ‖p,S will denote the norms
‖ · ‖Lp(S) or ‖ · ‖(Lp(S))2 .
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We define the application
v 7→ 〈f, v〉 − 〈C−1g,B(v)〉+ 〈C−1g,b · v〉 =: l(v) (12)

for which the following inequality holds:

|l(v)| ≤ ‖f‖X′
0
‖v‖X0 + ‖C−1g‖2,Ω‖B(v)‖2,Ω + ‖C−1g‖2,Ω‖b · v‖2,Ω

≤ C

[
‖f‖X′

0
+

1
γ
‖g‖2,Ω +

1
γ
‖g‖2,Ω‖b‖∞,Ω

]
‖v‖X0 ,

that is, l ∈ X ′
0. Let us study the properties of the bilinear form a(·, ·) defined as

a(u, v) = 〈A(u), v〉+ 〈C−1B(u), B(v)〉 − 〈C−1B(u),b · v〉.

Firstly,

|a(u, v)| ≤ ‖A(u)‖2,Ω‖v‖2,Ω + ‖C−1B(u)‖2,Ω‖B(v)‖2,Ω

+ ‖C−1B(u)‖2,Ω‖b · v‖2,Ω

≤ ‖a‖∞,Ω‖u‖2,Ω‖v‖2,Ω + ‖C−1‖ ‖div u‖2,Ω‖div v‖2,Ω

+ ‖C−1‖ ‖div u‖2,Ω‖b‖∞,Ω‖v‖2,Ω

≤
[
‖a‖∞,Ω + ‖C−1‖(1 + ‖b‖∞,Ω)

]
‖u‖H(div,Ω)‖v‖H(div,Ω).

To prove the ellipticity of a(·, ·) note that the two inequalities:

〈C−1B(v), B(v)〉 = 〈C−1B(v), C C−1B(v)〉 ≥ γ|C−1B(v)‖2
2,Ω

and

−〈C−1B(v),b · v〉 ≥ −1
2

(
ε‖C−1B(v)‖2

2,Ω +
1
ε
‖b · v‖2

2,Ω

)
, ε > 0,

imply

a(v, v) ≥ α‖v‖2
2,Ω + γ‖C−1B(v)‖2

2,Ω −
1
2

(
ε‖C−1B(v)‖2

2,Ω +
1
ε
‖b · v‖2

2,Ω

)
.

Setting ε = γ, we obtain
1
ε
‖b · v‖2

2,Ω =
1
γ
‖b · v‖2

2,Ω ≤ 1
γ
‖b‖2

∞,Ω‖v‖2
2,Ω,

Finally, the following inequality

a(v, v) ≥

(
α−

‖b‖2
∞,Ω

2γ

)
‖v‖2

2,Ω +
γ

2
‖C−1B(v)‖2

2,Ω, (13)

can be derived, and if we suppose that ‖b‖∞,Ω is sufficiently small to verify

α−
‖b‖2

∞,Ω

2γ
≥ δ ≥ 0, (14)

then,

a(v, v) ≥ δ‖v‖2
2,Ω +

γ

2
‖C−1B(v)‖2

2,Ω

≥ δ‖v‖2
2,Ω +

γ

2‖c‖2
∞,Ω

‖div v‖2
2,Ω.

Collecting the above result we have the following existence and uniqueness theorem.

Theorem 2.1 Under the following hypotheses:

(i) a ∈ L∞, a(x) ≥ α > 0, ∀x ∈ Ω,

(ii) c ∈ L∞, c(x) ≥ γ > 0, ∀x ∈ Ω,

(iii) b ∈ (L∞)2, with ‖b‖∞,Ω verifying equation (14),
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the mixed problem (6) has a unique solution (u, p), for all f ∈ X ′
0 and g ∈ Y .

Since the mixed problem is well posed, the bilinear form A(U, V ) verifies the inf-sup condition, that is, there
exists a constant β > 0 such that:

inf
U 6=0

sup
V 6=0

A(U, V )
‖U‖Z‖V ‖Z

≥ β > 0. (15)

Remark 2.1 Conditions (i), (ii), and (iii) of Theorem 2.1 are realistic, and the data, which come from the devices
studied here, fit the theoretical framework.

3 Raviart–Thomas discretization

The mixed variational problem (5) is discretized by means of the Raviart–Thomas finite element of minimal order.
A family of triangulations Th of Ω, 0 < h ≤ 1, is regular if there exists a constant σ independent of h such that
hK/ρK < σ for all triangles K ∈ Th, where hK is the diameter of the triangle K and ρK is the diameter of the
circumscribed circle to K. Geometrically speaking, regularity is equivalent to the fact that the minimal angles of all
triangles are bounded from below. For regular Th, consider

RT0(K) = (P0(K))2 + xP0(K), x ∈ IR2,

R0(∂K) = {q : q ∈ L2(∂K), q|Fi
∈ P0(Fi), i = 1, 2, 3},

where P0(K) is the set of polynomials of degree zero, that is, constants, Fi, i = 1, 2, 3, are the three edges of K and
dim RT0(K) = 3. The degrees of freedom of a triangle K are

ΣK = {(li)i=1,2,3 : RT0(K) → IR}; (16)

here li is the linear form defined by

li(v) =
∫

Fi

v · n ds, ∀ v ∈ RT0(K). (17)

Definition 3.1 The triple (K, ΣK , RT0(K)) is a Raviart–Thomas finite element.

Remark 3.1 Using the degrees of freedom (16), it is possible to define a local interpolation operator πK(vK) for all
vK ∈ H(div,K) provided vK is slightly smoother than merely belonging to H(div,K) [5]. In general, it is not possible
to compute expressions like

∫
∂K

vK ·nw ds, where w ∈ R0(∂K), since vK ·n is only defined in H−1/2(∂K). However,
it is easy to check that if vK belongs to the space

W (K) = {vK ∈ (Ls(K))2 : div vK ∈ L2(K)} (18)

for fixed s > 2, then such a construction is possible, see [5].

It is clear that the spaces defined previously can be used to define an internal approximation of H(div,Ω). At
this point, let us consider the two sets Xh and Yh:

Xh = {v ∈ X : v|K ∈ RT0(K) ∀K ∈ Th},
Yh = {q ∈ Y : q|K ∈ P0(K) ∀K ∈ Th}.

A global interpolation operator from
W (Ω) = H(div,Ω) ∩ (Ls(Ω))2 (19)

(for fixed s > 2) into Xh can be defined simply by setting

(Πhv)|K = πK(v|K). (20)

Clearly div Xh = Yh.
Next, to handle the boundary conditions, the following three spaces are considered:

X0h = X0 ∩Xh, Zh = Xh × Yh, Z0h = Z0 ∩ Zh.
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The discretization of the mixed variational problem (5) is as follows: Find Uh = (uh, ph) ∈ Z0h such that :

A(Uh, Vh) = F(Vh) ∀Vh ∈ Z0h.
(21)

To establish the existence and uniqueness of the solution to problem (21) in Theorem 3.1 below we shall use the
following duality lemma.

Lemma 3.1 (Duality Lemma, [7]) Let 2 ≤ θ < +∞, ω ∈ X, and q ∈ [L2(Ω)]2. If τ ∈ Yh satisfies

(aω, v)− (div v, τ) + (bτ, v) = (q, v), v ∈ X0h, (22)
(div ω, w)− (cτ, w) = (r, w), w ∈ Yh, (23)

then, for h sufficiently small, there exists a constant C = C(θ, a, b, c, Ω) > 0 such that

‖τ‖θ,Ω ≤ C
[
h2/θ‖ω‖θ,Ω + h‖div ω‖2,Ω + ‖q‖2,Ω + ‖r‖2,Ω

]
. (24)

Theorem 3.1 For h sufficiently small, the nonstandard mixed discrete problem (21) has a unique solution in X0h×
Yh.

Proof. The proof employs arguments similar to those used by Douglas and Roberts [7] in the case of Dirichlet
boundary conditions. Here, we are working with mixed boundary conditions which require an additional effort. Let
(uh1, ph1) and (uh2, ph2) be two solutions and write uh0 = uh1 − uh2 and ph0 = ph1 − ph2. Then (uh0, ph0) satisfies
the following homogeneous system:

(auh0, v)− (div v, ph0) + (bph0, v) = 0, v ∈ X0h, (25)
(div uh0, w)− (cph0, w) = 0, w ∈ Yh. (26)

Using inequality (24) with θ = 2, we obtain

‖ph0‖2,Ω ≤ Ch [‖uh0‖2,Ω + ‖div uh0‖2,Ω] .

For w = div uh0, we have
(div uh0,div uh0) = (cph0,div uh0)

and, by applying the Cauchy–Schwartz inequality, we get

‖div uh0‖2,Ω ≤ ‖ph0‖2,Ω,

which implies the inequality
‖ph0‖2,Ω ≤ Ch‖uh0‖2,Ω.

Therefore, by (25) with v = uh0, we obtain

(auh0,uh0) = (div uh0, ph0)− (bph0,uh0).

The Cauchy–Schwartz inequality and the duality lemma imply that

‖uh0‖2,Ω ≤ Ch [‖div uh0‖2,Ω + ‖ph0‖2,Ω] .

Thus, for h sufficiently small, we have
‖uh0‖2,Ω ≤ C ′‖ph0‖2,Ω,

where C ′ is a constant. Finally, we obtain

‖uh0‖2,Ω ≤ C ′‖ph0‖2,Ω ≤ Ch‖uh0‖2,Ω.

We conclude that for h sufficiently small
‖uh0‖2,Ω = ‖ph0‖2,Ω = 0;

hence, uh0 = ph0 = 0. This assures the solvability of the discrete problem. �
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Remark 3.2 No coercivity is required to prove the existence and uniqueness of the discrete mixed problem. In some
way, this condition is replaced by the assumption on the mesh size h. In our case the coercivity is not satisfied. On
the other hand, the duality lemma 3.1 can be viewed as a generalization of the inf-sup condition (or LBB condition)
used in the analysis (see [5] among others).

The optimal rate of convergence of the discrete solution with respect to the mesh is guaranteed by the following
result, which was established in the doctoral thesis [8].

Theorem 3.2 Let (uh, ph) be the solution of the mixed discrete problem (21). Then, the approximation error can be
estimated by the inequalities:

(i) ‖p− ph‖2,Ω ≤ Ch‖p‖H2(Ω),

(ii) ‖u− uh‖2,Ω ≤ Ch‖p‖H2(Ω),

(iii) ‖div(u− uh)‖2,Ω ≤ Chs‖p‖Hs+2(Ω), 0 ≤ s ≤ 1,

where C is a strictly positive constant independent of h.

Remark 3.3 We observe that the former theorem proves convergence in X0×Y at an optimal rate and with minimal
smoothness requirements on the solution.

4 A posteriori error estimators

To derive the a posteriori error estimations for the Raviart–Thomas element (that is, in H(div,Ω)× L2(Ω)), many
mathematical difficulties arise, and there is no direct application of the well established methods for other mixed
methods as Stokes’ or Navier-Stokes’ problems [17], [20], [3]. These difficulties are not caused by the fact that this
element refers to a mixed method, but are due to the fact that the traces of H(div,Ω) functions are only in H−1/2(∂Ω)
and, hence, are not in L2(∂Ω). Moreover, the traces of the functions in the Raviart–Thomas spaces are not contained
in H1/2(∂Ω), because they are only piecewise polynomials. Likewise, we loose a factor h in the a posteriori estimator
for the Raviart–Thomas element in comparison with other elements. This is due to the fact that the H(div,Ω) norm
is anisotropic, that is, it refers to differential operators of different orders. On the other hand, we do not have an
interpolation operator for H(div,Ω) functions as the Clément operator for H1(Ω) functions (see [3]).

There are two ways to overcome the difficulties related to the regularity of the traces of H(div,Ω) functions. One
way is to use Helmholtz’ decomposition as in [6] or [13]. But, the estimator obtained in this case does not involve
the jump of ph which one wants to control in practice. The second way is to use a saturation assumption as in [4].
In this case, one argues on the discrete level where the traces are meaningful in the L2(∂Ω) sense. In our analysis,
we shall consider the latter way.

We note that the a priori error estimates given in Theorem 3.2 imply that, in general, a refinement of the grid and
a reduction of h will lead to a reduction of the global error in the finite element solutions. However, these estimates
provide no information on the reduction of the local errors. Therefore, we shall assume that we can exclude the
exceptional cases in which the improvement is very small.

Assumption 4.1 (Saturation Assumption) There exists a number γ < 1 such that

‖u− uh/2‖Xh
+ ‖p− ph/2‖Yh

≤ γ
[
‖u− uh‖Xh

+ ‖p− ph‖Yh

]
. (27)

The following inequality follows from the saturation assumption:

‖u− uh‖Xh
+ ‖p− ph‖Yh

≤ 1
1− γ

[
‖uh/2 − uh‖Xh

+ ‖ph/2 − ph‖Yh

]
. (28)

Therefore, it suffices to establish an upper bound for

‖uh/2 − uh‖Xh
+ ‖ph/2 − ph‖Yh

. (29)

This is the content of Theorem 4.1 below. Define

A1(Uh/2 − Uh,Vh/2) := (a(x)(uh/2 − uh), vh/2) + (ph/2 − ph,div vh/2) (30)
−(b(ph/2 − ph), vh/2)
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and
A2(Uh/2 − Uh,Vh/2) := (div(uh/2 − uh), wh/2)− (c(ph/2 − ph), wh/2). (31)

Then, the solvability and the stability of the discrete problem (21) with respect to the natural H(div,Ω) norm (4)
implies that there exists a constant C, independent of h, such that

‖uh/2 − uh‖Xh
+ ‖ph/2 − ph‖Yh

≤ C sup
Vh/2∈Zh/2

‖Vh/2‖Z=1

[
A1(Uh/2 − Uh,Vh/2) + A2(Uh/2 − Uh,Vh/2)

]
.

We have

A1(Uh/2 − Uh,Vh/2) =
∫

Ω

a(x)(uh/2 − uh) · vh/2 dx +
∫

Ω

div vh/2(ph/2 − ph)dx

−
∫

Ω

b(x) · vh/2(ph/2 − ph) dx

=
∑
K

[∫
K

a(x)(uh/2 − uh) · vh/2 dx +
∫

K

div vh/2(ph/2 − ph) dx

−
∫

K

b(x) · vh/2(ph/2 − ph) dx

]
.

Applying Green’s formula to the integral ∫
K

div vh/2(ph/2 − ph) dx

and using the boundary conditions, we obtain

A1(Uh/2 − Uh,Vh/2) (32)

=
∑
K

[∫
K

a(x)(uh/2 − uh) · vh/2 dx−
∫

K

vh/2 · ∇(ph/2 − ph) dx

+ 〈vh/2 · n, ph/2 − ph〉∂K −
∫

K

b(x) · vh/2(ph/2 − ph) dx

]
.

Let S(K) = {F1, F2, F3} denote the set of edges of K, where Fi 6⊂ ∂Ω. Then, (32) becomes

A1(Uh/2 − Uh, Vh/2) + A2(Uh/2 − Uh, Vh/2) (33)

=
∑
K

[∫
K

(fmh − amh(x)uh +∇ph + bmh(x)ph) · vh/2 dx

+
∫

K

(−gmh − div uh + c(x)ph)qh/2 dx

+
∑

F∈S(K)

〈−ph, vh/2 · n〉F +
∑

F⊂∂K∩∂ΩD

〈ih(g1)− ph, vh/2 · n〉F
]
,

where fmh, amh, bmh, and gmh are polynomial approximations of order m (m > 0) to f, a, b, and g, respectively,
and ih is an interpolation operator.

Remark 4.1 The standard derivation of a local a posteriori error estimator in other functional spaces such as H1(Ω)
suggests to estimate ‖u−uh‖X+‖p−ph‖Y directly and to replace (uh/2, ph/2) by (u, p) and vh/2 by an arbitrary function
v ∈ H(div). This would avoid the saturation assumption. But unfortunately, the passage from 〈−ph, vh/2 · n〉∂K in
equation (32) to

∑
F∈S(K)〈−ph, vh/2 · n〉F does not make sense when vh/2 is replaced by v ∈ H(div), because the

traces of H(div,K) functions are not in L2(∂K).

Thus, for all Vh/2 ∈ Z0h/2 with ‖Vh/2‖Z = 1, the following estimate is derived:

A(Uh/2 − Uh, Vh/2) ≤ C
∑
K

[
‖f − a(x)uh +∇ph + b(x)ph‖2,K

+ ‖ − g − div uh + c(x)ph‖2,K

+
1
2

∑
F∈S(K)

h
−1/2
K ‖[ph]‖2,F +

∑
F⊂∂K∩∂ΩD

h
−1/2
K ‖g1 − ph‖2,F

]
.
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In this estimate, C is a positive constant independent of h, and the jump [ph] on each interior edge F is defined in the
direction of the positive normal to the edge F . The negative power of h comes from the use of the inverse estimate
given by inequality (40). If F = Ki ∩Kj and the positive normal to F is oriented from Ki to Kj , the jump [ph] is
defined as [ph] = ph

∣∣
Ki
− ph

∣∣
Kj

.
We set

ηR(K) := ‖fmh − amh(x)uh +∇ph + bmh(x)ph‖2,K (34)
+ ‖ − gmh − div uh + cmh(x)ph‖2,K

+
1
2

∑
F∈S(K)

h
−1/2
K ‖[ph]‖2,F +

∑
F⊂∂K∩∂ΩD

h
−1/2
K ‖ih(g1)− ph‖2,F .

By combining the above estimations and using the saturation assumption, we obtain the following a posteriori
error estimation.

Theorem 4.1 The following a posteriori error estimation holds:

‖u− uh‖X + ‖p− ph‖Y (35)

≤ C

[ ∑
K∈Th

ηR(K)2 + ‖g − gmh‖2
2,K + ‖f − fmh‖2

2,K

+ ‖a− amh‖2
2,K‖b− bmh‖2

2,K +
∑

F∈∂K∩∂ΩD

h−1
K ‖g1 − ih(g1)‖2

2,F

]1/2

,

where C is a positive constant.

This theorem establishes the reliability of the estimator (34).

Remark 4.2 The number ηR(K) is called a residual a posteriori error estimator. It is a powerful and fundamental
tool in an isotropic mesh adaptation procedure. This fact will be confirmed by the numerical results presented in
Section 5.

Remark 4.3 We are mainly interested in deriving an a posteriori error estimator for the initial nonlinear problem.
Thus, the error indicator ηR(K) in (34) can be considered as a first-order approximation to the following estimator:

ηR(K) = ‖ − amh(x, ph)uh +∇ph‖2,K + ‖ − div uh + cmh(x, ph)‖2,K (36)

+
1
2

∑
F∈S(K)

h
−1/2
K ‖[ph]‖2,F +

∑
F∈∂K∩∂ΩD

h
−1/2
K ‖ih(g1)− ph‖2,F .

A theoretical proof of this estimator will be considered in future work.

Interpretation: The first two terms on the right-hand side of estimator (34) correspond to the residuals of the
two equations of the discretized mixed variational problem. Thus, if these equations are assumed to be numerically
well solved, then these two quantities will be small. The third term controls the discontinuity (or the variation) of
the primal variable p across the mesh edges. So, this term can localize the internal layer problems related to large
gradients (or shocks). These problems are present, in particular, at the heterojunction interfaces of the device in
hand and at its Ohmic contacts. Finally, the last term controls the imposition of the boundary condition over the
device Ohmic contacts. Thus, this term can localize the boundary layer problems.

To guarantee the efficiency of the estimator (34), we need the following theorem which is a reciprocal result to
Theorem 4.1.

Theorem 4.2 There exits a constant C, depending only on the minimal angle in the triangulation such that

ηR(K) ≤ C
[
‖u− uh‖H(div,ωK) + (1 + h−1

K )‖p− ph‖2,ωK
(37)

+ ‖g − gmh‖2,K + ‖f − fmh‖2,K + ‖a− amh‖2,K

+ ‖b− bmh‖2,K + h
−1/2
K ‖ih(g1)− g1‖2,F

]
.

where ωK = {K0 ∈ Th : K0 ∩K = Fi edges of K, i = 1, 2, 3} (see Fig. 1).
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Figure 1: Definition of ωK .

Proof. We introduce the following notation:

I := ‖fmh − amh(x)uh +∇ph + bmh(x)ph‖2,K ,

II := ‖ − gmh − div uh + cmh(x)ph‖2,K ,

III :=
1
2

h
−1/2
K

∑
F∈S(K)

‖[ph]‖2,F ,

IV := h
−1/2
K

∑
F∈∂K∩∂ΩD

‖ih(g1)− ph‖2,F .

For each triangle K ∈ Th, define the function ϕK by

ϕK(x) :=

{
ϕ̂K̂ ◦ F−1

K (x) if x ∈ K̂,

0 otherwise,

where K̂ is the reference element and ϕ̂K̂ is a real function verifying:

• 0 ≤ ϕ̂K̂(x̂) ≤ 1, for all x̂ ∈ K̂, with ϕ̂K̂(x̂) = 0, for all x̂ ∈ ∂K̂, and

• ϕ̂K̂ ∈ C1(K̂) and ∇ϕ̂K̂ ∈ L∞(K̂)2.

Clearly, for all K ∈ Th and all elements vK of a finite dimensional subspace of L2(K), using the fact that norms are
equivalent in finite dimensional spaces and passing through the reference element K̂, we obtain the norm-equivalent
inequalities

C0‖vK‖2,K ≤ ‖vKϕK(x)1/2‖2,K ≤ C1‖vK‖2,K , (38)

where C0 and C1 are independent of K and vk. We can also obtain the inequality

‖vKϕK(x)‖2,K ≤ ‖vK‖2,K . (39)

Estimation of I. Let us introduce the following function:

vK := [fmh(x)− amh(x)uh +∇ph + bmh(x)ph]ϕK(x).

By definition, vK is an element of H(div,Ω) with continuous normal component vK · nFi
, where Fi are the interior

edges of K. Using the equivalence of the norms given by equation (38), we get

I2 ≤ ‖(fmh − amh(x)uh +∇ph + bmh(x)ph)ϕ1/2
K (x)‖2

2,K

=
∫

K

(
fmh − amh(x)uh +∇ph + bmh(x)ph

)2 · ϕK(x) dx

=
∫

K

(
fmh − amh(x)uh +∇ph + bmh(x)ph

)
· vK dx

=
∫

K

(
f − f + auh − auh + bph − bph

+ fmh − amh(x)uh +∇ph + bmh(x)ph

)
· vK dx

=
∫

K

[−(f − fmh) + (a− amh)uh − (b− bmh)ph] · vK dx

+
∫

K

[a(u− uh)− b(p− ph)] · vK dx−
∫

K

∇(p− ph) · vK dx,

10
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where the first equation, for f, in (3) has been used in the last equality. Using Green’s formula and the definition of
vK , we get

I2 ≤ C1I
[
‖f − fmh‖2,K + ‖a− amh‖2,K + ‖b− bmh‖2,K

]
+ C2I

[
‖u− uh‖2,K + ‖p− ph‖2,K

]
+ ‖p− ph‖2,K‖div(vK)‖2,K .

Using the equivalence of norms in finite dimensional spaces in the reference configuration and an inverse inequality
for the divergence operator, we can prove the inequality (see Lemma 4.1 of [18] for the details):

‖div vK‖2,K ≤
√

2 ‖∇vK‖2,K ≤ C2h
−1
K ‖vK‖2,K , (40)

and obtain the final estimate for I:

I ≤ C0

[
‖u− uh‖H(div,K) + (1 + h−1

K )‖p− ph‖2,K

]
+ C00

[
‖f − fmh‖2,K + ‖a− amh‖2,K + ‖b− bmh‖2,K

]
.

Estimation of II. The estimation of II is straightforward:

II = ‖g − g + cmhp− cmhp− gmh − div(uh) + cmhph‖2,K

≤ ‖g − gmh‖2,K + C2‖c− cmh‖2,K + ‖u− uh‖H(div,K) + C3‖p− ph‖2,K ,

where the second equation, for g, in (3) has been used in the last inequality.

Estimation of III. Let F be an internal edge; thus, there exist two triangles KF
1 and KF

2 such that F = KF
1 ∩KF

2 .
Set ωF = KF

1 ∪KF
2 (see Fig. 2).

Observing that [ph]|F is constant, we can construct a suitable function PF by

PF ([ph])(x) :=


vF
1 (x) if x ∈ KF

1 ,

vF
2 (x) if x ∈ KF

2 ,

0 otherwise,

(41)

where vF
1 and vF

2 are the unique polynomials defined over KF
1 and KF

2 , respectively, in RT0 such that each degree of
freedom is 0 except the one in F which has to be [ph] (that is, vF

1 ·nF
1 = [ph], vF

2 ·nF
2 = −[ph], and vF

1,2 ·ne = 0, where e
is an edge different from F ). By definition, it is clear that PF ([ph]) belongs to H(div, ωK). Similar constructions can
be considered if [ph] is a polynomial over F by means of an appropriate generalized Raviart–Thomas finite element.
It is not very difficult to prove that PF is linear and verifies the following lemma, whose proof is a direct consequence
of Lemma 4 in [18].

Lemma 4.1 The function PF satisfies the inequality

‖PF ([ph])‖H(div,ωF ,h) ≤ Ch
1/2
K ‖[ph]‖2,F ,

where
‖v‖H(div,ωF ,h) = ‖v‖L2(ωF ) + h‖div v‖L2(ωF ), ∀ v ∈ X0h.
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By construction of PF and the fact that [p] = 0, we get

‖[ph]‖2
2,F =

∫
F

[ph]Ph([ph]) · n ds

=
∫

F

[p− ph]Ph([ph]) · n ds

=
∫

ωF

(p− ph) div(Ph([ph])) dx +
∫

ωF

∇(p− ph) · Ph([ph]) dx.

On the other hand, we have∫
ωF

∇(p− ph) · Ph([ph]) dx =
∫

ωF

a(u− uh) · Ph([ph]) dx +
∫

ωF

b(p− ph) · Ph([ph]) dx

and

‖[ph]‖2,F ≤ C4

[
‖u− uh‖2,ωF

+ ‖p− ph‖2,ωF
‖Ph([ph])‖2,ωF

]
+ ‖p− ph‖2,ωF

‖div(Ph([ph]))‖2,ωF
.

Using Lemma 4.1, we obtain

‖[ph]‖2,F ≤ C4

[
‖u− uh‖2,ωF

+ ‖p− ph‖2,ωF

]
h

1/2
K ‖[ph]‖2,F

+ C5h
−1
K ‖p− ph‖2,ωF

h
1/2
K ‖[ph]‖2,F .

Finally, we get the desired estimate:

h
−1/2
K ‖[ph]‖2,F ≤ C

[
‖u− uh‖H(div,ωF ) + (1 + h−1

K )‖p− ph‖2,ωF

]
.

Estimation of IV. The estimation of IV is based on the same arguments as those used for III. Let F be a boundary
edge satisfying F ∈ ∂ΩD and let KF

1 be the triangle containing F . For simplicity, suppose that ih(g1) is constant
over F . In this case, the function PF is constructed in the form

PF (ih(g1)− ph)(x) = vF
1 (x), (42)

where vF
1 is the unique polynomial defined over KF

1 in RT0 such that all degrees of freedom are 0 except the one in
F which is taken to be ih(g1)− ph. As in the previous case, PF is linear and verifies the inequality

‖PF (ih(g1)− ph)‖H(div,KF
1 ,h) ≤ Ch

1/2
K ‖ih(g1)− ph‖2,F , (43)

with

‖ih(g1)− ph‖2
2,F =

∫
F

(ih(g1)− ph)Ph(ih(g1)− ph) · n ds

=
∫

F

((p− ph) + ih(g1)− g1)Ph(ih(g1)− ph) · n ds

=
∫

F

Ph(ih(g1)− ph) · n(p− ph) ds +
∫

F

(ih(g1)− g1)2 ds.

Using inequality (43) and the same analysis as for the estimation of III, we get

h
−1/2
K ‖ih(g1)− ph‖2,F ≤ C

[
‖u− uh‖H(div,ωF ) + (1 + h−1

K )‖p− ph‖2,ωF

]
+ h

−1/2
K ‖ih(g1)− ph‖2,F .

This ends the rather technical proof of Theorem 4.2. �

Remark 4.4 All the terms of the estimator are optimally estimated in the natural norm of H(div,Ω) (4) and one
cannot do better using this norm. A comparison with the upper bound (35) shows that the estimate in Theorem 4.2
involves a negative power of h. The reason is the anisotropy of the natural norm of H(div,Ω) (that is, ‖div v‖2,K ≤
Ch−1

K ‖v‖2,K).
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Figure 3: Current lines of solution at optimal mesh when the transistor effect is significant.

Figure 4: Initial coarse grid: 230 vertices (left). Adapted grid after 4 steps: 2911 vertices (right).

5 Numerical results for an HBT

The mesh adaptive algorithm is based on a remeshing at each step using the Delaunay algorithm. The performance
of this adaptive technique is presented using an isotropic metric which is based on the a posteriori error estimators
obtained above.

We consider the drift-diffusion model in the case of an industrial heterojunction bipolar transistor whose structure
is described in El Boukili [8].

Figure 3 shows the current lines (the quantities of interest) when the transistor effect is significant. The applied
voltage at emitter E is −1.4 volts, and it is 0 volt at base B and collector C.

Figure 4 shows the initial coarse grid and the adapted grid at step 4. Figure 5 illustrates the adapted grid at
steps 5 and 9. We should notice that the adapted grid at step 9 is in a sense optimal (see Fig. 6 described below) for
the considered device. The refinement process is stopped when the estimated error is less than a certain tolerance.
We observe a significant adaptive refinement in the neighborhood of the heterojunction interfaces due to the large
variation of the electron densities and the neighborhood of the Ohmic contacts where the boundary layer problems
are present.

Figure 6 illustrates the convergence of the coupled Solver/Adaptation cycle by showing the number of nodes of
the successive meshes as the overall loop proceeds. An indication of convergence is the leveling off of the number
of nodes after a certain number of remeshing steps. Indeed, we observe an initial increase in the number of nodes,
followed by a gradual decrease to the asymptotic value. The first few meshing steps being not well adapted, the
solutions are polluted with spurious oscillations. This explains an over-refinement of the meshes at the beginning,
but, as the solution improves, the mesher gradually reduces the number of nodes to reach an optimal mesh and
optimal accuracy of the solutions.

Figures 7 shows the mesh obtained at convergence of the adaptation cycle (after 4 iterations) when starting from
a fine grid. We observe that this mesh has the same overall aspect and nearly the same number of vertices as the
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Figure 5: Adapted grid after 5 and 9 iterations: 4007 vertices (left), and 8159 vertices (right).
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Figure 6: Total number of vertices versus adaptation cycles for a heterojunction bipolar transistor.

mesh obtained at convergence (after 9 iterations, see Fig. 5) when starting from a coarse mesh, thus supporting the
conjecture that the adapted mesh (or optimal mesh) could be unique [10] and would solve the problem with optimal
accuracy. Similarly, we notice that the solution obtained at convergence of the mesher-solver loop starting from a
coarse or fine mesh is the same as the one shown in Fig. 3. This illustrates the mesh-independent solution. This
may lead to user-independent solutions as the gridding decisions are taken away from the user, who may have no a
priori knowledge about the best grid for a given geometry for various problems. This fact is the fundamental goal
of any mesh adaptation technique. We should note that many numerical experiments for different structures have
been performed and the same behavior of the adaptive procedure was observed.

6 Conclusion

A posteriori error estimators, coupled with a powerful mesh adaptation algorithm, have been proposed, analyzed
mathematically, and successfully implemented within a Raviart–Thomas mixed finite element for drift-diffusion
semiconductor equations. The adaptative iteration proceeds by successive local alterations of the previous grid.
The adaptive process and its coupling with the solver are both shown to converge to an optimal mesh and optimal
solution.

Future work will consider the construction of anisotropic estimators ([16]) for a domain decomposition with
nonmatching grids at the interface of heterojunctions to reduce strong refinement on both sides of the interfaces due
to strong continuity requirements.
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