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Abstract

In this paper we consider germs of one-parameter generic families of resonant analytic diffeo-
morphims and we give a complete modulus of analytic classification by means of the unfolding
of the Ecalle modulus. We describe the parametric resurgence phenomenon. We apply this to
give a complete modulus of orbital analytic classification for the unfolding of a generic resonant
saddle of a two-dimensional vector field by means of the unfolding of its holonomy map. Here
again the modulus is an unfolding of the Martinet-Ramis modulus of the resonant saddle. When
the saddle passes through the resonance we observe a “transcritical bifurcation”: the dynamics
in the neighborhood of the saddle is governed by different parts of the unfolding of the modulus
on each side of the bifurcation. We then include the time dependence and give a complete
modulus of analytic conjugacy for the unfolding of a generic resonant saddle.

Résumé

Dans cet article nous considérons des germes de familles gén ériques à un paramètre de dif-
féomorphismes analytiques résonants et nous montrons que le déploiement du module d’Écalle
donne un module complet de classification analytique pour une famille. On décrit le phénomène
de résurgence paramétrique. On applique ceci pour donner un module complet de classification
analytique orbitale pour le déploiement d’un col rśonant générique d’un champ de vecteurs en
dimension 2, via le déploiement d’un de ses difféomorphismes d’holonomie. Dans ce cas encore le
module est donné par le déploiement du module de Martinet-Ramis pour un point de selle réso-
nant. Quand le point de selle passe par la résonance on observe une “bifurcation transcritique” :
de chaque côté de la bifurcation la dynamique au voisinage du point de selle est gouvernée par
une partie différente du déploiement du module . On inclut ensuite la dépendance du temps et
on donne un module complet de conjugaison analytique pour le déploiement d’un point de selle
générique.





1 Introduction

This paper is part of a general program to study the dynamics of a germ of analytic diffeomorphism with
a fixed point at the origin:

f(z) = λ0z + o(z), λ0 6= 0. (1.1)

The behaviour is known for the different values of λ0 and we want to “glue” these different behaviours in
a global picture with λ0 as a parameter. Indeed it is known that:

1. For |λ0| 6= 1 then f is linearizable in the neighborhood of the origin, i.e. there exists a change of
coordinate Z = z + o(z) = h(z) such that

h ◦ f ◦ h−1(Z) = λ0Z. (1.2)

2. For λ0 = exp(2πiα) with α ∈ R \Q then the diffeomorphism is formally linearizable, i.e. there exists
a formal change of coordinate

Z = h(z) = z +
∑
n≥2

anz
n (1.3)

such that (1.2) is satisfied at the formal level. We distinguish the two cases:

• If α is diophantian (badly approximated by rational numbers) then the change of coordinate
(1.3) is indeed analytic.

• If α is Liouvillian (well approximated by rational numbers) then the change of coordinate (1.3)
is generically divergent [11] (in the measure theoretic sense).

3. If λ0 = exp(2πipq ) and the diffeomorphism is formally linearizable then it is analytically linearizable
[2].

4. In the general case of λ0 = exp(2πipq ) there are obstructions to linearizability at the level of the finite
jet of f(z). The geometric meaning of these obstructions correspond to the birth of periodic orbits
of period q as λ0 bifurcates from exp(2πipq ). These orbits are called “materializations of resonances”
by Arnold [1], Ilyashenko and Pyartli [12]. It was conjectured that their presence would be the ob-
struction to linearization when perturbing λ0 to λ of the form exp(2πiα) with α Liouvillian irrational
number. The works of Yoccoz [27] and Pérez-Marco [19] have shown that, although this happens
quite often and in particular for the quadratic map, there are other types of nonlinearities which
obstruct linearizability. In this paper we focus on the case λ0 = exp(2πipq ) and f non linearizable
with nonzero first resonant monomial.

As two non linearizable resonant diffeomorphisms of the form (1.1) are conjugate if and only if their
q-th iterates are conjugate [10], we limit ourselves to the study of their q-th iterates which have, in suitable
coordinates, the form

g(z) = f q(z) = z + zkq+1 + o(zkq+1). (1.4)

The integer k is a first formal invariant. In this paper we limit ourselves to the generic case k = 1. As the
diffeomorphism g is not linearizable we look for a nonlinear (more complex) “normal form”. There exists
a formal change of coordinates (1.3) which conjugates g with the time-one map of the flow of the vector
field

zq+1

1 + azq

∂

∂z
, (1.5)

where a ∈ C is an analytic invariant.

• If the series (1.3) is convergent and h is analytic then we say that the diffeomorphism (1.1) is
normalizable. If (1.1) with fixed λ0 depends on a finite number of analytic parameters then, for
each fixed k, this is satisfied for an analytic subset of the parameter space [7]. Again it is a very
exceptional phenomenon.
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• In the generic case the normalizing series (1.3) is divergent and the modulus of analytic classification
is a functional one. Why? Let us limit ourselves to the case k = 1. Then, when we perturb λ0 from
its initial value, the diffeomorphism has a fixed point and a periodic orbit of period q. If we perturb
λ0 to λ in the Poincaré domain (i.e. |λ| 6= 1) then both the fixed point and the periodic orbit are
linearizable. In the neighborhoods of the fixed and periodic points it is possible to find changes of
coordinates transforming the family gε to the “model family” unfolding (1.5) namely the time-one
map of the flow of the vector field

z(zq − ε)
1 + a(ε)zq

∂

∂z
(1.6)

but the changes of coordinates to the model family in the neighborhood of the origin and in the
neighborhood of the periodic points are not compatible. This was conjectured by Arnold and proved
by Martinet [15] and Glutsyuk [8] in the case λ0 = 1 and we extend it here to the case λ0 = exp(2πipq ).
What happens if we perturb λ0 to λ in the Siegel direction (|λ| = 1)? The case λ0 = 1 is treated
in [14]. There it was shown that the dynamics near the two fixed points can be obtained from
the unfolding of the Ecalle-Voronin functional modulus (ψ0, ψ∞), where ψ0 and ψ∞ are germs of
analytic diffeomorphisms at the origin and at ∞. The non normalizability of (1.1) is expressed
by the nonlinearity of at least one of ψ0 and ψ∞. Moreover the paper shows the existence of the
parametric resurgence phenomenon: the nonlinearities of ψ0 or ψ∞ control the nonlinearizability of
one of the fixed points for sequences of resonant parameter values converging to λ0 = 1.

In this paper we extend to the case λ0 = exp(2πipq ) the results of [14] for λ0 = 1. The modulus of (1.1) is

described in the literature by Écalle [7], Martinet-Ramis [17] and Ilyashenko [10] in slightly different ways.
We work here with the description given by Ilyashenko [10] and we make the link with the presentation of
Martinet-Ramis in Section 4.5. The modulus is given by a 2-tuple

(ψ0
1, ψ

∞
1 ) (1.7)

of germs of analytic functions at the origin and at infinity respectively, which we extend to a 2q-tuple of
germs of analytic functions

(ψ0
1, . . . , ψ

0
q , ψ

∞
1 , . . . , ψ

∞
q ), (1.8)

where σ is the permutation of {1, . . . , q} generated by j 7→ j + p (mod q) and

ψ0,∞
σ(j)(w) = exp

(
2πi
q

)
ψ0,∞

j

(
exp

(
−2πi

q

)
w

)
. (1.9)

We show that a complete modulus of analytic classification for a generic 1-parameter unfolding of (1.1) is
given by an unfolding of (1.7), which we can identify with an unfolding of (1.8) which still satisfies (1.9).
This unfolding can be taken continuous in the parameter over appropriate sectors of parameter space. From
this unfolding one can study the dynamics near the bifurcating fixed and periodic points. In particular the
parametric resurgence phenomenon again occurs.

We then apply these results to the generic 1-parameter unfolding of a vector field in the neighborhood
of a generic resonant hyperbolic saddle. (A hyperbolic saddle is generic if the first resonant monomial of the
orbital normal form is nonzero and a 1-parameter unfolding is generic if the derivative with respect to the
parameter of the quotient of eigenvalues is nonzero.) We consider both orbital equivalence and conjugacy.
We first show that a complete modulus for orbital analytic classification is given by the modulus of analytic
classification of the unfolding of any of its holonomy maps (there is one for each separatrix). A complete
modulus of classification of vector fields with a resonant hyperbolic saddle has been given by Voronin and
Grintchy [26]. This modulus is composed of two parts: the first part is the Ecalle-Voronin modulus of
the holonomy and the second part, the time-part, is composed by a pair of germs of analytic functions at
the origin and at infinity respectively. We show that a complete modulus of analytic classification under
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conjugacy between two germs of generic families of vector fields unfolding germs of vector fields with a
generic resonant saddle is given by the unfolding of the Voronin-Grintchy modulus.

The point of view taken throughout the paper is to compare the family of diffeomorphisms (vector
fields) with the model family which would be the family expected if we had convergence of the normalizing
changes of coordinates.

The paper is organized in the following way. In Section 2 we “prepare the family” of diffeomorphisms so
as to change the initial parameter to the “canonical parameter”which is in particular an analytic invariant.
In Section 3 we construct Fatou coordinates bringing the family of diffeomorphisms to the model family. In
Section 4 we describe the modulus of analytic classification for a generic family of analytic diffeomorphisms.
In Section 5 we describe the parametric resurgence phenomenon. In Section 6 we describe the modulus
of orbital analytic classification of a generic family unfolding a generic resonant saddle. In Section 7 we
describe the “transcritical bifurcation” phenomenon which is natural in this context. Finally in Section 8
we give the modulus of analytic conjugacy of a generic family unfolding a generic resonant saddle. We end
up with questions for future research.

2 Preparation of the family

We consider a germ of resonant generic diffeomorphism of the form

f0(z) = e
2iπp

q z +
e

2iπp
q

q
zq+1 + o(zq+1). (2.1)

Then f q
0 has a fixed point at the origin of multiplicity q + 1, which corresponds for f0 to the coalescence

of a fixed point with a periodic orbit of period q: the fixed point and periodic orbit bifurcate in a generic
unfolding. Because we can always localize the fixed point at the origin, bring the family in normal form
up to order q + 1 and rescale, then a germ of generic unfolding can be taken of the form

fε(z) = (e
2iπp

q − α)z +
e

2iπp
q

q
zq+1 + o(zq+1) (2.2)

with α a small parameter. In the particular case q = 1 this means that we study the transcritical bifurcation
since the generic unfolding of a double fixed point has been studied in [14] (the transcritical bifurcation
means that we limit ourselves to unfoldings preserving the origin). We can limit ourselves to consider the
conjugacy problem for the q-th iterate gε = f q

ε of fε. This will be proved in Lemma 4.13 below.

It is easier to work with the q-th iterate g0 = f q
0 (resp. gε = f q

ε ) of f0 (resp. fε) because g0 has
multiplier equal to 1 at the origin. If we replace α by ε given by

(1− ε) = (e
2πip

q − α)q, (2.3)

which yields ε = qe
2πip

q α+ o(α) we can write gε as

gε(z) = z(1− ε) + (1 +O(ε))zq+1 + o(zq+1). (2.4)

Proposition 2.1 There exists an analytic change of variable (z, ε) 7→ (z̃, ε̃) tangent to the identity and
fibered over the parameter space bringing the family (2.4) to the prepared form

g̃ε̃(z̃) = z̃ + z̃(z̃q − ε̃)[1 +B(ε̃) +A(ε̃)z̃q + z̃(z̃q − ε̃)(1 + h(ε̃, z̃))], (2.5)
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with fixed points z̃0 = 0 and z̃j, j = 1, . . . , q with z̃q
j = 1, in which the multiplier λ0 = 1 − ε̃(1 + B(ε̃)) of

the fixed point z̃0 = 0 satisfies
λ0 = exp(−ε̃). (2.6)

In particular the parameter ε̃ is an analytic invariant for g̃ε̃. We call it the canonical parameter. Let
λ1, . . . λq be the multipliers of the fixed points z̃j where z̃q

j = ε̃. The formal parameter

a(ε̃) =
1

lnλ0
+

q∑
j=1

1
lnλj

(2.7)

depends analytically on ε̃ and hence on ε. It is an analytic invariant of gε. (As λ0, . . . λq are all close to 1
there is no problem in choosing the lnλj close to zero in a continuous way.)

Proof. The equation of fixed points for gε yields z = 0 and (1 + O(ε))zq − ε + o(zq) = 0. We make the
change of coordinate ẑ = z(1 + O(ε)) + o(z) so that the fixed points become ẑq = ε. In the ẑ-coordinate
this yields for gε:

ĝε(ẑ) = ẑ + ẑ(ẑq − ε)h(ẑ, ε) (2.8)

with h(ẑ, ε) = 1 + c0(ε) + O(ẑ). Using a rescaling in (ẑ, ε) 7→ (1 + c0(ε))−1/q ẑ, (1 + c0(ε)−1)ε) we can of
course suppose that h(ẑ, ε) = 1 +O(ẑ). Using the Weierstrass division theorem we write

h(ẑ, ε)− 1 =
q∑

j=1

cj(ε)ẑj + ẑ(ẑq − ε)k(ẑ, ε) (2.9)

We will show in Lemma 2.2 below that c1(ε) = · · · = cq−1(ε) ≡ 0, which yields that the multipliers of the
fixed points ẑq = ε are exactly 1 + qε(1 + cq(ε)ε).

Unfortunately in general ε is not an analytic invariant in (2.8). To achieve this we need to make a
scaling (z̃, ε̃) = (ẑ(1 + b(ε))1/q, ε(1 + b(ε)) in (2.8) transforming ĝε into g̃ε̃ so that

g̃′ε̃(0) = 1− ε̃

1 + b(ε)
= exp(−ε̃) (2.10)

The condition (2.10) (and (2.6)) will be satisfied for b(ε) satisfying b(0) = 0 by the implicit theorem.
The formal parameter a(ε̃) defined in (2.7) is analytic for ε 6= 0. As it is bounded at ε = 0 it is analytic.

2

Lemma 2.2 In (2.9) we have
c1(ε) = · · · = cq−1(ε) ≡ 0. (2.11)

Proof. The proof uses that ĝε(ẑ) is the q-th iterate of f̂ε (where f̂ε is fε in ẑ-coordinate) so the multipliers
λj of the fixed points ẑj = e2πij/qε1/q are all the same. This yields the system of equations

∑q−1
k=1 ε

k/qck =∑q−1
k=1 ε

k/qcke
2πijk

q . Hence the εk/qck are solutions of a homogeneous system of linear equations with matrix

M =


e

2πi
q − 1 e

4πi
q − 1 . . . e

2(q−1)πi
q − 1

e
4πi
q − 1 e

8πi
q − 1 . . . e

4(q−1)πi
q − 1

...
... . . .

...

e
2(q−1)πi

q − 1 e
4(q−1)πi

q − 1 . . . e
2(q−1)2πi

q − 1

 . (2.12)

We divide each column by its first coefficient. Then, starting from the last row, we subtract from each row
the row immediately above. This yields a Vandermonde determinant which is nonzero. 2
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As in [14] we want to compare the prepared family g̃ε̃ in (2.5) with the “model family” which is the
time-one map of the vector field

z̃(z̃q − ε̃)
1 + a(ε̃)z̃q

∂

∂z̃
, (2.13)

where a(ε̃) is defined as in (2.7). The vector field (2.13) has singular points z̃0 = 0, z̃1, . . . z̃q with respective
eigenvalues

µ0 = −ε̃, µj =
qε̃

1 + a(ε̃)ε̃
, j = 1, . . . , q. (2.14)

As µ0 and µ−1
0 +

∑q
j=1 µ

−1
j = a(ε̃) are analytic invariants of (2.13) which also depend analytically on ε̃ it

follows that ε̃ and a(ε̃) are analytic invariants of (2.13). The multipliers of the time-one map of (2.13) are
λj = eµj , i.e. there are precisely the multipliers of the fixed points of g̃ε̃.

Definition 2.3 A family (2.2) to which we have applied the change of coordinate and parameter of Propo-
sition 2.1 is called prepared. We use the same term for the corresponding gε = f q

ε .

Remark 2.4 This gives the geometric interpretation of the formal invariant a(0): indeed a(ε) measures a
shift between the fixed points and the periodic points through (2.7) and a(0) is the limit shift.

3 The construction of Fatou coordinates

>From now on we will limit ourselves to a prepared family fε(z) such that

gε(z) = f q
ε (z) = z + z(zq − ε)[1 +B(ε) +A(ε)zq + z(zq − ε)(1 + h(ε, z))]

= z + z(zq − ε)(1 + kε(z)),
(3.1)

with kε(z) = O(|ε, z|) and B(ε) = (1−exp(−ε))
ε − 1.

Fatou coordinates are changes of coordinates which transform the family (3.1) to the associated “model
family” which is the time-one map of the vector field

z(zq − ε)
1 + a(ε)zq

∂

∂z
, (3.2)

where a(ε) is chosen so that the multipliers of the periodic points z1, . . . , zq of gε are given by λj = exp(µj) =
exp( qε

1+εa(ε)).
We give the construction with little details as it is quite standard and very similar to [14].

3.1 The two charts

We want to study the dynamics of the germ of family gε(z). So we will study its dynamics on any sufficiently
small neighborhood of the origin in z-coordinate which we can choose of the form U = {z, |z| < r} with
r ∈ (0, 1) for all sufficiently small values of the parameter ε in a small ball V = {ε; |ε| < ρ}. We limit
ourselves to values of ε sufficiently small so that the fixed points of gε remain inside U . For this it suffices
to take

ρ <
rq

2
, (3.3)

a condition which will be assumed throughout the paper.
We will not be able to give a uniform treatment for all ε ∈ V and we will need to cover V with two

sectors, each of opening 2π − 2δ with δ ∈ (0, π
2 ), but we are essentially interested to δ arbitrarily small.

The parameter δ ∈ (0, π
2 ) is chosen at the beginning and kept fixed for all the treatment. The size of the

neighborhoods U and V defined above (for V we will need a stronger condition than (3.3)) depends on δ.
We will be able to give a uniform treatment of gε over the two following two sectors of V :

Vδ,+ = {ε ∈ V | arg ε ∈ (−π
2 + δ, 3π

2 − δ)}
Vδ,− = {ε ∈ V | arg ε ∈ (π

2 + δ, 5π
2 − δ)}. (3.4)

5



3.2 The lifted diffeomorphism

We first introduce a change of coordinate which nearly rectifies the family gε to the translation by 1 and
sends the fixed points to infinity. Let

Tβ(Z) = Z + β. (3.5)

We will in particular consider Tα(ε)(Z) with

α(ε) =

{
2πi
qε ε 6= 0

0 ε = 0.
(3.6)

We introduce the change of coordinate pε : Sε → CP1 \ {0, z1, . . . , zq} given by

z = pε(Z) =


(

ε
1−eqεZ

)1/q
ε 6= 0(

− 1
qZ

)1/q
ε = 0,

(3.7)

where Sε is the Riemann surface of the function
(

eqεZ−1
ε

)1/q
ε 6= 0

Z1/q ε = 0.
(3.8)

Figure 1: The domain of Z in the case q = 2

It is the composition of the map

ζ = p̃ε(Z) =

{
ε

1−eqεZ ε 6= 0
− 1

qZ ε = 0,
(3.9)

which is periodic of period α(ε) and which we may consider as defined over Sε with the map z = ζ1/q. On
a strip of width α(ε) if ε 6= 0 the image of each sheet of Sε by p̃ε covers CP \ {0, ε} once. Hence pε covers
CP \ {0, ε} once. Its (multivalued) inverse is given by:

Z = p−1
ε (z) =

{
1
qε ln zq−ε

zq ε 6= 0

− 1
qzq ε = 0,

(3.10)

which is the composition of z 7→ ζ = zq with the multivalued map

Z = p̃−1
ε (ζ) =

{
1
qε ln ζ−ε

ζ ε 6= 0

− 1
qζ ε = 0.

(3.11)

For ε 6= 0 it is univalued when the image is restricted to a strip of width α(ε). We can lift the map Tα(ε)

to Sε.
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The image of U \ {0, z1, . . . , zq} under p−1
ε is

Ûε = Sε \ ∪j∈ZBj (3.12)

where B0 is the component of p−1
ε (C \ U) which contains the origin and Bi = T i

α(ε)(B0) = Tiα(ε)(B0). B0

is called the fundamental hole. It is a q-covering of a neighborhood of the origin.
We lift the function gε(z) to a function Gε(Z) commuting with Tqα(ε).

Proposition 3.1 The function Gε is a small perturbation of the translation Z 7→ Z+1 in the C1-topology.
More precisely, there exists K > 0 such that, for r > 0 sufficiently small and condition (3.3),

|Gε(Z)− Z − 1| < Kr. (3.13)

|G′ε(Z)− 1| < Krq+1. (3.14)

Proof. The function Gε(Z) can be written

Gε(Z) = 1
qε ln

(
g(z)q−ε
g(z)q

)
= 1

qε ln
(

(zq−ε)[1+
Pq

j=1 (q
j)zq(zq−ε)j−1(1+kε)j ]

zq [1+(zq−ε)(1+kε)]q

)
= Z + 1

qε ln
(

1+
Pq

j=1 (q
j)zq(zq−ε)j−1(1+kε)j

1+
Pq

j=1 (q
j)(zq−ε)j(1+kε)j

)
= Z + 1

qε ln
(

1 + ε

Pq
j=1 (q

j)(zq−ε)j−1(1+kε)j

[1+(zq−ε)(1+kε)]q

)
= Z + 1 +O(z, ε),

(3.15)

since kε(z) = O(z, ε).

Let Rε(Z) =
Pq

j=1 (q
j)(zq−ε)j−1(1+kε)j

(1+(zq−ε)(1+kε))q . Then

dGε

dZ
= 1 +

1
q(1 + εRε)

dRε

dz
(z)

dz

dZ
. (3.16)

The result follows as dRε
dz is bounded for small (z, ε) and

dz

dZ
=

1
dZ
dz

= z(zq − ε) = O(|z|q+1 + |εz|). (3.17)

2

>From now on we suppose

• Condition (3.3);

• r is sufficiently small so that if we define

M(r) := Kr, (3.18)

then

M(r) <
δ

4
; (3.19)

• r is sufficiently small so that the estimates of Proposition 3.1 are satisfied.
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3.3 Translation domains

The Fatou coordinates are defined on maximal domains in Z-space called translation domains.

Definition 3.2 A line ` ⊂ Ûε is called an admissible line if ` and Gε(`) are disjoint and the strip Ĉε(`)
between ` and G(`) is included in Ûε. The strip Ĉε(`) is called an admissible strip.

Lemma 3.3 There exists θ0(r) defined by

tan θ0(r) = 2M(r) ≤ δ

2
(3.20)

such that if the angle θ(`) of the line with the horizontal axis satisfies

θ0(r) ≤ θ(`) ≤ π − θ0(r) (3.21)

then Gε(`) is located to the right of `.

Proof. Let θ1 be the angle of the horizontal line through Z with the line through Z and tangent to the
circle centered in Z + 1 of radius M(r) = Kr. Then | sin θ1| = M(r) < | tan θ1|. We need sin θ0 > | sin θ1|.
We let tan θ0 = 2M(r) ≤ δ

2 . As δ < π
2 < 2 then tan θ0 < 1 yielding that θ0 < π

4 . Hence cos θ0 > 1√
2

yielding that sin θ0 = 2M(r) cos θ0 >
√

2M(r) >
√

2| sin θ1|.
The condition tan θ0 = δ

2 is easier to manipulate than a condition on sin θ0. 2

The translation domains are the saturation of admissible strips under iterations of Gε.

Definition 3.4 Let ` be an admissible line for Gε. The translation domain associated with ` is the set

Qε(`) = {Z ∈ Ûε|∃n ∈ Z Gn
ε (Z) ∈ Ĉε(`) and ∀j ∈ [0, n] ⊂ Z, Gj

ε(Z) ∈ Ûε} (3.22)

(For n < 0, [0, n] = {j ∈ Z|n ≤ j ≤ 0.)

Proposition 3.5 1. The domain Qε(`) is a simply connected open subset of Ûε.

2. Ĉε(`) \ ` is a fundamental domain for Gε restricted to Qε(`) : each Gε-orbit in Qε(`) has one and
only one point in this subset.

3. If `′ is another admissible line, then `′ ⊂ Qε(`) if and only if ` ⊂ Qε(`′). This defines an equiva-
lence relation among the admissible lines for Gε, each equivalence class corresponding to a different
translation domain.

Definition 3.6 A Lavaurs translation domain (Figure 2) is a domain associated with an admissible line
passing between the fundamental hole and one of its two adjacent holes (notation QL

ε ).

Figure 2: A fundamental domain Ĉε(`) associated to an admissible line ` and the Lavaurs translation
domain it generates (the figure is drawn for q = 2)
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Remark 3.7 It is also possible to define Glutsyuk translation domains associated with admissible lines
parallel to the line of holes. The projection of the corresponding admissible strips are fundamental domains
having the shape of annuli (tori once quotiented by gε). But Glutsyuk translations domains do not exist
for all values of ε and this is why we have prefered the other approach.

Proposition 3.8 Let us suppose that r, ρ, δ and θ0 satisfy the following conditions

ρ < r2q, tan θ0(r, ρ) = 2M(r) <
δ

2
, (3.23)

and r < 1
2 is sufficiently small so that

rq <
δπ
√

2
16

. (3.24)

Then for Vδ,+ (resp. Vδ,−) to each admissible line for some ε0 with arg ε0 = π/2 (resp. arg ε0 = −π/2)
is associated a unique family of Lavaurs translation domains associated with admissible lines depending
continuously on ε (see Figure 3 for the case of Vδ,+).

Figure 3: A continuous family of admissible lines and strips for ε ∈ Vδ,+ (for the sake of simplicity we have
not drawn the ramification of Sε at the holes)

Proof. Let us take the case of Vδ,+. The worst cases are the extreme cases when arg(ε) = −π
2 + δ and

arg(ε) = 3π
2 − δ. Let us discuss the second case. The slope of the line joining the holes is tan δ. The radius

of the holes is bounded by

− 1
qε

ln
(
1− ε

rq

)
<

1
qε

ε/rq

1− ε/rq
<

2
qrq

(3.25)

since − ln(1 − k) < k
1−k and ρ < rq

2 . Hence the vertical distance between the top of one ball and the
bottom of the next one is greater than |α| sin δ − 4

qrq . We want to pass a strip admissible line with slope

9



| tan θ0(r)| = 2M(r) < δ
2 . Its maximum vertical size is less than (1 +M(r)) tan θ0(r) < 1

2(1 +M(r))δ < δ

since M(r) < δ
4 < 1. The horizontal distance between the center of two balls is |α| cos δ, and the largest

horizontal distance between two points of the different balls is less than |α| cos δ+ 4
qrq . Hence it suffices to

have
δ

2
<
|α| sin δ − 4

qrq − δ

|α| cos δ + 4
qrq

. (3.26)

As sin δ − δ
2 cos δ > δ

2
√

2
(see comment below) it suffices to have

|α| δ

2
√

2
>

4
qrq

+ δ

(
1 +

2
qrq

)
, (3.27)

which is satisfied if we have
|α| δ

4
√

2
>

4
qrq

|α| δ

4
√

2
>

4δ
qrq

> δ

(
1 +

2
qrq

)
.

(3.28)

As |α| = 2π
qρ , the first inequality is satisfied under condition (3.24). The second is satisfied for r2q < π

2

which is automatically satisfied for r < 1
2 .

Let m(δ) = sin δ − δ
2 cos δ − δ

2
√

2
. Then m(0) = 0, m′(0) > 0 and m′′(δ) > 0 yielding that m′(δ) > 0 for

all δ ∈ [0, π/2]. Hence m(δ) > 0 for δ ∈ (0, π/2]. 2

3.4 Existence of Fatou coordinates

Theorem 3.9 Let Qε = Qε(`) be any translation domain and Z0(ε) ∈ Qε.

1. There exists a holomorphic diffeomorphism Φε : Qε → C, such that

Φε(Gε(Z)) = Φε(Z) + 1, (3.29)

for Z ∈ Qε ∩G−1
ε (Qε). Moreover

lim
Im(Z)→±∞

Im(Φε(Z)) = ±∞ (3.30)

2. If Φ1,ε and Φ2,ε are two solutions of (3.29), then there exists A ∈ C such that Φ2,ε(Z) = A+Φ1,ε(Z).
In particular if Z0(ε) ∈ Qε(`) there exists a unique holomorphic diffeomorphism Φε satisfying (3.29)
together with Φε(Z0(ε)) = 0.

Proof. The proof is exactly the same as in [14] as it relies only on (3.13), (3.14) and (3.19). We put it
here for the sake of completeness. The technique we use is identical to that of Shishikura [23], as adapted
in [14]. It consists in constructing a quasi-conformal conjugacy of Gε to the translation by 1 and then using
Ahlfors-Bers theorem to transform it into a conformal conjugacy.

All along the proof we do not mention the ε-dependence. Let ` be an admissible line in the translation
domain Q, Ĉ(`) the corresponding strip and let Z1 be any point of `. Points of ` can be written as Z1+Y eiθ,
Y ∈ R, where θ = θ(`) ∈ (θ0, π − θ0) is the angle of ` with R. We recall that θ0(r) ≤ θ(`) ≤ π − θ0(r). We
define h1 : C0 = {(X,Y ) ∈ R2 | 0 ≤ X ≤ 1} → Ĉ(`) by:

h1(X,Y ) = (1−X)(Z1 + Y eiθ) +XGε(Z1 + Y eiθ). (3.31)

Then
∂h1
∂X = Gε(Z1 + Y eiθ)− (Z1 + Y eiθ)
∂h1
∂Y = XeiθG′ε(Z1 + Y eiθ) + eiθ(1−X).

(3.32)
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Using the estimates (3.13) and (3.14), these formulas imply that

∂h1

∂X
= 1 + u(X,Y ),

∂h1

∂Y
= eiθ + v(X,Y ), with |u| , |v| ≤M(r) ≤ δ

4
. (3.33)

Let µh1 = ∂h1

∂Z̄
/∂h1

∂Z be the dilatation coefficient field of h1. One has

∂h1

∂Z̄
=

1
2
[1 + u+ i(eiθ + v)] and

∂h1

∂Z
=

1
2
[1 + u− i(eiθ + v)]. (3.34)

When u, v ≡ 0, i.e. when Gε ≡ T1, µh1 reduces to µ0 = 1+ieiθ

1−ieiθ = i cos θ
1+sin θ and

∣∣µ0
∣∣ =

1√
1 + tan2 θ + | tan θ|

≤ 1
1 + 4M(r)

(3.35)

as | tan θ| > tan θ0 = 2M(r). From (3.34) one can write

µh1 = µ0

(
1 +

u− iv

1− ieiθ

)−1

+
u+ iv

1− ieiθ + u− iv
. (3.36)

Let us remark that
∣∣1− ieiθ

∣∣ ≥ √2. Then, from (3.36) one deduces (M = M(r))

||µh1 ||∞ = Sup{|µh1(z)| | z ∈ C0}
≤ (1 + 4M)−1(1−M)−1 +M(1−M)−1

= 1− 2M−8M2

(1+4M)(1−M) < 1,
(3.37)

for 1−4M > 0 which is satisfied for δ < 1. So h1 is a quasi-conformal mapping on the strip C0 and satisfies
h−1

1 (Gε(Z)) = h−1
1 (Z) + 1 for Z ∈ ` when M(r, ρ) is small enough. Moreover, µ = µh1 is a Beltrami field

on C0. (This just means that µ is defined by a L∞-function with a norm strictly less than 1). One can also
write that µ = h∗1µ0, where µ0 is the standard Beltrami field on C (defined by the function 0).

We extend µ to all of C by means of the translation T1: the extended µ is periodic of period 1, is in L∞(C)
and has a L∞-norm: ||µ||∞ = ||µh1 ||∞ < 1 (µ may have discontinuities along the lines {Re Z = c | c ∈ Z}).
Then this extended µ is a Beltrami field on C.

The universal covering
w = E(W ) = exp(−2πiW ) (3.38)

from C to C∗ induces a holomorphic diffeomorphism from C/T1 to C∗. As µ is invariant by T1 the map E
induces a Beltrami field µ̃ on C∗ with the same norm : µ = E∗(µ̃). Considering the Riemann sphere S2 as
C∗ ∪ {0,∞}, one can extend µ̃ on S2 by, for instance, µ̃(0) = µ̃(∞) = 0. Then µ̃ defines a Beltrami field
on the Riemann sphere.

By Ahlfors-Bers measurable mapping theorem there exists a unique quasi-conformal mapping h̃2 : S2 →
S2 such that h̃∗2µ0 = µ̃, and h̃2(0) = 0, h̃2(∞) = ∞, h̃2(1) = 1. As 0, 1 ∈ E−1(1), this map lifts to a quasi-
conformal map h2 : C → C sending 0 to 0 and 1 to 1. Indeed, one can lift h̃2 into a map h2 such that
h2(0) = 0. The circle in S2 which turns one time around 0 or ∞ lifts into the line segment [0, 1] in C. This
means that h2(1) = 1. We have also that Im(h2(X + iY )) → ±∞ when Y → ±∞.

The most important property of h2 is that it commutes with T1. To see this, consider the homeomor-
phism H2 = h2◦T1◦h−1

2 . It induces the identity on S2 and must then be a power of the deck transformation
T1 of the universal covering map E : i.e. H2 = Tn

1 for some n ∈ Z. Now H2(0) = h2 ◦ T1(0) = h2(1) = 1.
This forces n = 1 and then H2 = T1, i.e h2 ◦ T1 = T1 ◦ h2.

We define φ : Ĉ(`) → C by φ = h2 ◦ h−1
1 and extend it by T1 to a mapping φ : C → C which is

quasi-conformal and preserves the standard conformal structure. Hence it is conformal. For Z ∈ ` one has
T1 ◦ φ(Z) = φ ◦Gε(Z). Then φ extends to a map Φ of Q into C by Φ(Z) = φ ◦Gn

ε (Z)− n where n ∈ Z is
such that Gn

ε (Z) ∈ Ĉ(`). This map Φ is a holomorphic diffeomorphism which verifies: Φ ◦Gε = T1 ◦ Φ.
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The property (3.30) follows from the definition of h1 and the fact that Im(h2(X + iY )) → ±∞ when
Y → ±∞.

If Φi,ε, i = 1, 2, satisfy (3.29), let χ1,ε = Φ2,ε ◦ (Φ1,ε)−1 and χ2,ε = Φ1,ε ◦ (Φ2,ε)−1. Both χj,ε satisfy
χj,ε(W + 1) = χj,ε(W ) + 1 and this relation allows to extend them to global functions on C. Moreover
χ2,ε ◦ χ1,ε is the identity over a strip of width 1, hence everywhere on C. It follows that Φ2,ε ◦ Φ−1

1,ε is a
translation. 2

Definition 3.10 A function Φε constructed in Theorem 3.9 is called a Fatou coordinate associated with
the translation domain Qε. The base point of a Fatou coordinate is the point Z0(ε) = Φ−1

ε (0).

3.5 Dependence on the parameters of Fatou coordinates

Theorem 3.11 Let gε be a prepared family (3.1) and Gε the lifted unfolding. Let δ > 0 and r0, ρ0 be given
sufficiently small and let r, ρ be chosen so that the conclusions of Proposition 3.1 hold. Let Qε be a family
of translation domains for ε in one of the sectors Vδ,± constructed by means of an admissible line depending
continuously on ε.

1. The family (Qε)ε∈Vδ,± is continuous in the following sense. Let us consider

Q± = ∪ε∈Vδ,± ({ε} ×Qε) ⊂ C2 (3.39)

Then Q± is an open subset of Vδ,± × C. Moreover ∩ε∈Vδ,±Qε 6= ∅.

2. Let Z0(ε) ∈ Qε depend holomorphically on ε (including at ε = 0) and let Φε be the Fatou coordinate
defined on Qε for ε ∈ Vδ,± and normalized by Φε(Z0(ε)) = 0.

Let Φ± : Q± → C defined by Φ±(ε, Z) = Φε(Z). The function Φ± is holomorphic in Int(Q) (i.e. for
ε 6= 0), and continuous in Q.

Proof. The proof is as in [14]. 2

Definition 3.12 The function Φ± : Q± → C of Theorem 3.11 is called a global Fatou coordinate associated
to the sector Vδ,±.

4 The modulus of analytic classification

Before defining the modulus it is necessary to understand better the geometry of the domain of definition of
(3.7) and (3.10). When ε = 0, S0 is the standard Riemann surface of the function Z1/q obtained by glueing
together q sheets along cuts from 0 to ∞. Fatou coordinates are defined on translation domains which
belong to the complement of a q-sheeted neighborhood of 0. If we consider an admissible line located in a
sheet on one side of the hole and the translation domain it generates, then for q ≥ 2 this domain intersects
exactly two translation domains associated to admissible lines located on the other side of the hole B0 (see
Figure 4). Moreover each of the two intersections is simply connected yielding that a comparison of the
two Fatou coordinates is possible only in a domain containing a half-plane. When ε 6= 0 we have a similar
picture but repeated at each of the holes. Remember that the whole surface looks like Figure 1.

So, for the sector Vδ,+ (resp. Vδ,−), we consider 2q global Fatou coordinates Φ±j,+ (resp. Φ±j,−) generated
by admissible lines `±j,+(ε) (resp. `±j,−(ε)), j = 1, . . . q, located respectively between B0 and either B1 or B−1

on the different sheets and generating admissible strips Ĉ±j,ε,+ (resp. Ĉ±j,ε,−). The lines are chosen so that
no positive iterates of points of a fundamental domain generated by a line `−j,± ever enters a fundamental
domain generated by a line `+j,±. So lines `−j,− and `+j,+ (resp. `−j,+ and `+j,−) pass through B0 and B−1 (resp.
B0 and B1). (For the index j we work (mod q).) They generate translation domains Q±j,ε,±. Their indices
are chosen so that the translation domains of `+j,±(ε) and `−j,±(ε) (resp. `+j+1,±(ε) and `−j,±(ε)) intersect and

12
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Figure 4: Four admissible lines and one translation domain (here q = 3)

contain an “upper domain” (resp. “lower domain”), i.e. a domain whose intersection with Ĉ±j,ε,± contains
an upper end (resp. lower end) of the cylinder Ĉ±j,ε,±/Gε. We give ourselves 2q base points Z±j,±(ε) located
in the different translation domains and depending analytically on ε. This gives us, for each sector Vδ,±, 2q
global Fatou coordinates Φ±j,ε,± associated to each of the 2q admissible lines `±j,±(ε) and base points Z±j,±(ε),
j = 1, . . . , q.

We define {
Ψ∞

j,ε,± = Φ−j,ε,± ◦ (Φ+
j,ε,±)−1

Ψ0
j,ε,± = Φ−j,ε,± ◦ (Φ+

j+1,ε,±)−1,
(4.1)

j = 1, . . . , q, where we identify Φ+
q+1,ε,± = Φ+

1,ε,±.
Whenever possible we will drop the lower indices ± referring to the sectors.

Proposition 4.1 Here we drop the lower indices ± in the Ψ0,∞
j,ε,±.

1. Each map Ψ0,∞
j,ε commutes with the translation by 1: Ψ0,∞

j,ε ◦ T1 = T1 ◦Ψ0,∞
j,ε . Hence Ψ∞

j,ε (resp. Ψ0
j,ε)

induces a mapping Ψ̂∞
j,ε (resp. Ψ̂0

j,ε) defined on an open set of Φ+
j,ε(Q

+
j,ε ∩Q

−
j,ε)/Z (resp. Φ+

j+1,ε(Q
−
j,ε ∩

Q+
j+1,ε)/Z) of the cylinder C/Z with values in C/Z.

2. Using the exponential function W 7→ w = E(W ) = exp(−2iπW ), we can identify C/Z with the sphere
minus two points : CP1 \ {0,∞}. The upper end of the cylinder C/Z, corresponds to ∞ ∈ CP1 and
the lower end to 0. Conjugating Ψ0

j,ε (resp. Ψ∞
j,ε) with this map yields an analytic map ψ0

j,ε (resp.
ψ∞j,ε) defined in the neighborhood of 0 (resp. ∞) on CP1:

ψ0,∞
j,ε (w) = exp

(
−2iπΨ0,∞

j,ε

(
− 1

2iπ
log(w)

))
, (4.2)

where
ψ0

j,ε(0) = 0, ψ∞j,ε(∞) = ∞. (4.3)

3. The functions ψ0,∞
j,ε,± depend analytically on ε 6= 0 in Vδ,± and are continuous in ε at ε = 0.

Proof. The proof is identical to that made in [14]. 2

We now need to exploit that gε = fn
ε . This will yield that only Ψ0,∞

1,ε are independent and the other
Ψ0,∞

j,ε , j > 1 are conjugate to them by translations.
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Figure 5: The maps ψj,ε for different values of ε

Normalized set of Fatou coordinates. Fatou coordinates are uniquely determined by the base points.
By Proposition 4.1 (1) the maps Ψ0,∞

j,ε,±(W ) −W can be expanded as Fourier series with constant terms
A0,∞

j,ε,±. It is possible to choose the base points of the Fatou coordinates in Theorem 3.9 (2) so that all
A0,∞

j,ε,± = A0,∞
ε for some constants A0,∞

ε independent of j and of the sector Vδ,+ or Vδ,− and such that
A0

ε = −A∞ε (see for instance details in [10] for the case ε = 0 and also Lemma 4.2 below). A set of Fatou
coordinates Φ±j,ε, j = 1, . . . q, such that the corresponding transition maps Ψ0,∞

j,ε , j = 1, . . . , q, have this
property, is called a normalized set of Fatou coordinates.

Lemma 4.2 We consider a normalized set of Fatou coordinates. Then A0
ε = −A∞ε = πia/q and the

derivatives of ψ0,∞
j,ε satisfy {

(ψ0
j,ε)

′(0) = exp(2π2a/q)
(ψ∞j,ε)

′(∞) = exp(2π2a/q).
(4.4)

Proof. The proof of the lemma will follow from the proof of (2) in Proposition 5.2. 2

Proposition 4.3 We consider a map gε as in (3.1), being the q-th iterate of a map fε as in (2.2), the
corresponding lifted diffeomorphism Gε and a normalized set of Fatou coordinates on either Vδ,+ or Vδ,−.

1. Let σ defined by σ(j) = j + p (mod q) be the shift which represents the iterates of exp(2πi/q) under
multiplication by exp(2πip/q). Then

Ψ0,∞
σ(j),ε(W ) = Ψ0,∞

j,ε (W − 1/q) + 1/q. (4.5)

2.

ψ0,∞
σ(j),ε(w) = exp

(
−2πi

q

)
ψ0,∞

j,ε

(
exp

(
2πi
q

)
w

)
. (4.6)

3. Once Φ±1,ε is chosen the other Fatou coordinates can be taken such that

Φ±σ(j),ε ◦ Fε = T 1
q
◦ Φ±j,ε. (4.7)

Proof. The map fε commutes with gε = f q
ε . Hence Fε = p−1

ε ◦ fε ◦ pε commutes with Gε. We deduce
that:

Φ±σ(j),ε(Gε(Fε(Z))) = Φ±σ(j),ε(Fε(Z)) + 1 = (Φ±σ(j),ε ◦ Fε)(Gε(Z)). (4.8)
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Figure 6: The crescents and maps ψ0,∞
j,ε,+ for ε ∈ Vδ,+

Then Φ±σ(j),ε ◦ Fε is a Fatou coordinate on a translation domain containing `±j (ε). Hence there exists C±ε,j
such that

Φ±σ(j),ε ◦ Fε = TC±
ε,j
◦ Φ±j,ε. (4.9)

Using (4.1) we get {
Ψ∞

σ(j),ε(W ) = Ψ∞
j,ε(W − C+

ε,j) + C−ε,j

Ψ0
σ(j),ε(W ) = Ψ0

j,ε(W − C+
ε,j+1) + C−ε,j .

(4.10)

As the set of Fatou coordinates are normalized we get C±j,ε = Cε.
Moreover, using F q

ε = Gε we get Φ±σq(j),ε ◦Gε(W ) = Φ±j,ε(W ) + qCε = Φ±σq(j),ε(W ) + 1. As σq(j) = j we
get Cε = 1/q. 2

Definition 4.4 Let Diff0 (resp. Diff∞) be the set of germs of diffeomorphisms of CP1 defined in the
neighborhood of 0 (resp. ∞) and fixing 0 (resp. ∞).

1. We consider the set of 2-tuples of diffeomorphisms (ψ∞1 , ψ
0
1) ∈ (Diff∞ × Diff0) having equal first

derivatives at their distinguished point:

(ψ0
1)
′(0) = (ψ∞1 )′(∞).

We define an equivalence relation on it by

(ψ∞1 , ψ
0
1) ∼ (ψ∞1 , ψ

0
1) ⇐⇒ ∃c ∈ C∗ ψ

0,∞
1 (w) = c−1ψ0,∞

1 (cw). (4.11)

Let M be the quotient space.
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Figure 7: The crescents and maps ψ0,∞
j,ε,− for ε ∈ Vδ,−

2. We identify M with the set of 2q-tuples of diffeomorphims ψ = (ψ∞1 , ψ
0
1, ψ

∞
2 , ψ

0
2, . . . ψ

∞
q , ψ

0
q ) where

the ψ∞,0
j satisfy

ψ∞,0
σ(j)(w) = exp

(
−2πi

q

)
ψ∞,0

j

(
exp

(
2πi
q

)
w

)
. (4.12)

In particular all ψ∞,0
j have the same derivative at their respective distinguished point.

Corollary 4.5 For a prepared family G = {gε}ε∈V with V = Vδ,+ ∪ Vδ,− of the form (3.1) we have two
applications

mG,± : Vδ,± →M, ε 7→ mG,±(ε), (4.13)

where mG,±(ε) is the equivalence class of (ψ∞1,ε,±, ψ
0
1,ε,±) (which is the same as that of ψε,± = (ψ∞1,ε,±, ψ

0
1,ε,±, . . . , ψ

∞
q,ε,±, ψ

0
q,ε,±)).

This equivalence class depends only on G and not of the choice of the base points.

Remark 4.6 The two maps mG,± do not coincide on the intersection Vδ,+ ∩ Vδ,−. Indeed for ε ∈ Vδ,+

(resp. ε ∈ Vδ,+) the point 0 and ∞ of the spheres correspond respectively to the fixed point z0 = 0 of gε

and the fixed points z1, . . . , zq of gε (resp. the fixed points z1, . . . , zq of gε and the fixed point z0 = 0 of
gε). A neighborhood of them on the spheres corresponds to a sectorial neighborhood of the corresponding
fixed points of gε.

Definition 4.7 Two germs of analytic families fε and f ε of diffeomorphisms with a fixed point at the
origin are conjugate if there exists a germ of analytic diffeomorphism H(ε, z) = (k(ε), h(ε, z)) fibered over
the parameter space such that

hε ◦ fε = fk(ε) ◦ hε (4.14)
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where hε(z) = h(ε, z).

Theorem 4.8 We consider two prepared families F = {fε} and F = {f ε} of the form (2.2) and the
families of their q-th iterates G = {gε} and G = {gε} of the form (3.1). We choose common sectors Vδ,±
on which the previous analysis applies. Then the two families are conjugate if and only if mG,± = mG,±.

Proof. It is clear that two anlytically conjugate families gε and gε have the same invariant. Indeed in
Proposition 2.1 we showed that the canonical parameter is an analytic invariant, so the conjugacy is over
the identity and it suffices to compare the two families for a given ε̂ ∈ V ± corresponding to some ε ∈ V .
>From a conjugacy between gε and gε we construct an equivalence between the Fatou coordinates, etc.,
which will yield equality of the moduli. We postpone the proof of the converse since it uses the notion of
Lavaurs phase which will be discussed in the next section.

Theorem 4.8 can be generalized to families not in prepared form.

Definition 4.9 The 2-tuple mG = (mG,+,mG,−) of Corollary 4.5 is called the modulus of the prepared
family F (and of the prepared family G).

Theorem 4.10 To any 1-parameter analytic family H = {hη} which is a generic unfolding of a generic
resonant fixed point (i.e. ∂2hη

∂z∂η 6= 0) we associate a prepared analytic family F = {fε} and its q-th iterate
G = {gε}. We call mH the modulus mG of G. Then

1. mH is well defined.

2. Two families H and H are analytically conjugate if and only if they have the same formal invariant
a(0) for ε = 0 and mH = mH. Hence a(0) together with mH is a complete invariant of analytic
classification under conjugacy.

Proof. The passage from a family to its prepared form is analytic in the parameter. Moreover the
parameter of the prepared family is uniquely defined and canonical as it is an analytic invariant. The
conjugacy between two prepared families is constructed as in Theorem 4.8. Composing it with the changes
of coordinate and parameter bringing the families to their prepared forms yields a conjugacy between the
initial families. 2

4.1 The Lavaurs phase

Definition 4.11 1. For Vδ,+, the q Lavaurs translations are the maps

Lj,ε,+ = Φ+
j,ε,+ ◦ T−qα(ε) ◦ (Φ−j,ε,+)−1 : Q−j,+ → Q+

j,+. (4.15)

2. For Vδ,−, the q Lavaurs translations are the maps

Lj,ε,− = Φ+
j+1,ε,− ◦ T−qα(ε) ◦ (Φ−j,ε,−)−1 : Q−j,− → Q+

j+1,−. (4.16)

Proposition 4.12 The maps Lj,ε,± commute with W 7→ W + 1. Hence they induce automorphisms of
C/Z. By conjugating with W 7→ w = E(W ) = exp(−2iπW ) they yield diffeomorphisms of CP1 preserving
0 and ∞, hence linear maps lj,ε,± defined by

lj,ε,±(w) = νj,±(ε)w. (4.17)

So the map Lj,ε,± is a translation W 7→W + τj,±(ε) where

νj,±(ε) = exp(−2iπ τj,±(ε)). (4.18)

The νj,± depend only of a and ε when we have a normalized set of Fatou coordinates and are calculated
below in (5.6).

Proof. The proof is completely straightforward. See for instance [14]. 2
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4.2 Proof of Theorems 4.8 and 4.10

End of proof of Theorem 4.8. Here we prove the converse, i.e. two prepared families with same
modulus are analytically conjugate. The proof is in three steps. Considering two prepared families G =
{gε = f q

ε } and G = {gε = f
q
ε} which have the same modulus (and hence the same canonical parameter ε)

we first construct for each ε a conjugacy between gε and gε. Using our global Fatou coordinates this will
in fact yield conjugacies hε,± for ε ∈ Vδ,±, each depending analytically on ε 6= 0 and continuously on ε near
ε = 0. We have shown that it yields a conjugacy between fε and f ε. We finally show that it is possible to
construct a conjugacy which depends analytically of ε. This will be shown in Theorem 4.15 below.

Because the families have the same modulus we can consider that on each sector Vδ,± they have a
common set of translations domains Q±j,ε,± and the same transition functions Ψ0,∞

j,± = Ψ0,∞
j,± defined on the

corresponding intersections. We first consider a conjugacy Hε,± defined on the union of the translation
domains Q± = ∪q

j=1(Q
+
j,ε,± ∪ Q

−
j,ε,±). Then we check that the composition hε,± = pε ◦Hε,± ◦ p−1

ε yields a
conjugacy over U . The map Hε,± is defined as

Hε,±(Z) =

{
(Φ+

j,ε,±)−1 ◦ Φ+
j,ε,± Z ∈ Q+

j,ε,±
(Φ−j,ε,±)−1 ◦ Φ−j,ε,± Z ∈ Q−j,ε,±.

(4.19)

The map Hε,± is well defined because the two families have the same modulus. We need to show that
hε,± = pε ◦ Hε,± ◦ p−1

ε is well defined over U . For this we need to show that Hε,± commutes with the
translation Tqα(ε), where α is given in (3.6). For the rest of the proof we do not write the dependence in ε.
We write the proof for Vδ,+ and do not write the index referring to it in the functions Φ±j , Φ±j and Ψ0,∞

j .{
Ψ∞

j ◦ Lj,+ = Φ−j ◦ T−qα ◦ (Φ−j )−1

Ψ∞
j ◦ Lj,+ = Φ−j ◦ T−qα ◦ (Φ−j )−1.

(4.20)

We will show in Proposition 5.2 below that Lj,ε,± depends only on the modulus, and hence that Lj,ε,± =
Lj,ε,±. So

(Φ−j )−1 ◦ Φ−j ◦ T−qα = (Φ−j )−1 ◦Ψ∞
j ◦ Lj,+ ◦ Φ−j

= (Φ−j )−1 ◦Ψ∞
j ◦ Lj,+ ◦ Φ−j

= (Φ−j )−1 ◦ Φ−j ◦ T−qα ◦ (Φ−j )−1 ◦ Φ−j
= Tq−α ◦ (Φ−j )−1 ◦ Φ−j .

(4.21)

Similarly, using that
Lj,+ ◦Ψ0

j = Φ+
j ◦ T−qα ◦ (Φ+

j+1)
−1, (4.22)

we get
(Φ+

j )−1 ◦ Φ+
j ◦ T−qα = (Φ+

j )−1 ◦ Lj,+ ◦Ψ0
j ◦ Φ+

j+1

= (Φ+
j )−1 ◦ Lj,+ ◦Ψ0

j ◦ Φ+
j+1

= T−qα ◦ (Φ+
j+1)

−1 ◦ Φ+
j+1

= T−qα ◦ (Φ+
j )−1 ◦ Φ+

j .

(4.23)

The last line follows as Hε,± is well defined. The diffeomorphism Hε,± induces an analytic equivalence hε

between the two diffeomorphims gε and gε except at the fixed points. Since the equivalence is bounded it
can be extended at the fixed points. The domain of hε contains a ball of radius r independent of ε.

The proof on Vδ,− is analogous.
The last step of the proof is to show that it is possible to choose hε depending analytically on ε. This

will be done in Theorem 4.15 below. 2

Lemma 4.13 Let gε = f q
ε and gε = f

q
ε . If gε and gε are conjugate then fε and f ε are conjugate.
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Proof. Here again we drop the lower indices referring to the sectors Vδ,±. Let Fε and F ε be the lifts of fε

and f ε. >From (4.7) we get
Fε = (Φ±σ(j))

−1 ◦ T1/q ◦ Φ±j
F ε = (Φ±σ(j))

−1 ◦ T1/q ◦ Φ±j .
(4.24)

The map Hε defined in (4.19) which is a conjugacy between Gε and Gε clearly induces a conjugacy between
Fε and F ε. Hε induces a map hε which conjugates fε and f ε. 2

Remark 4.14 Because of the analytic character of the maps ψ∞,0
j,ε,±, in order to show that two families are

analytically equivalent it suffices to show that they have the same mG,+(ε) or the same mG,−(ε), or even
the same mG,±(ε) for ε in an open subsector of Vδ,± with vertex at the origin.

4.3 Symmetries of families unfolding a resonant fixed point

In this section we discuss briefly the symmetries of prepared families gε of the form (3.1) as a tool to prove:

Theorem 4.15 If there exist conjugacies hε,± for ε ∈ Vδ,± between two prepared families gε and gε as in
(3.1), depending analytically on ε 6= 0 and continuously on ε near ε = 0, then the two families gε and gε

are analytically conjugate.

Definition 4.16 1. The group of symmetries of g0 is the commutator of g0 inside the group of germs
of analytic diffeomorphisms tangent to the identity at the origin.

2. Similarly, given gε defined on a neighborhood containing its fixed points, we will call symmetry of gε

any analytic diffeomorphism on the same neighborhood which commutes with it.

The continuous symmetries of gε unfold the symmetries of g0. So we first recall these.

Proposition 4.17 [10] Depending on the modulus (ψ0
1,0, ψ

∞
1,0) we get the following cases:

(1) If g0 is generic, i.e. ψ0
1,0 or ψ∞1,0 does not commute with any linear map, then the symmetry group of

g0 is the group of iterates {gn
0 |n ∈ Z}.

(2) If g0 is not embedable and m ∈ N is maximum so that there exists k0 satisfying g0 = km
0 with k0 tangent

to the identity (i.e. ψ0
1,0(w) = wξ01,0(w

m) and ψ∞1,0(w) = wξ∞1,0(w
m) and one of them is nonlinear),

then the symmetry group of g0 is the group of iterates {kn
0 |n ∈ Z}.

(3) If g0 is embedable, i.e. ψ0
1,0 and ψ∞1,0 are linear and g0 is conjugate by m0 to the time-one map v1

of the flow of the vector field v given in (1.5) then all symmetries of g0 are conjugate by m0 to the
time-t maps vt of the flow of v for t ∈ C.

Proposition 4.18 We consider a prepared family gε unfolding g0.

(1) If g0 is generic i.e. ψ0
1,0 or ψ∞1,0 does not commute with any linear map, then, for sufficiently small ε,

any symmetry of gε is of the form gn
ε for n ∈ Z. In particular if γε is a symmetry of gε depending

continuously on ε in a sector, and such that γ0 = id, then γε = id.

(2) If g0 is not embedable and m ∈ N is maximum so that there exists k0 satisfying g0 = km
0 with k0 tangent

to the identity (i.e. ψ0
1,0(w) = wξ01,0(w

m) and ψ∞1,0(w) = wξ∞1,0(w
m) and one of them is nonlinear)

and if γε is a symmetry of gε depending continuously on ε in a sector such that γ0 = id, then γε = id.

(3) If g0 is embedable, then one of the following cases occurs:

(a) If γε is a symmetry of gε depending continuously on ε in a sector, and such that γ0 = id, then
γε = id.
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(b) For all ε the map gε is embedable, i.e. conjugate to the time-one map of the flow v1
ε of the vector

field (1.6) under mε and its continuous symmetries are conjugate by mε to the time-t(ε) maps
vt(ε) of the flow of v for a continuous function t(ε) with values in C. The map t(ε) is unique as
soon as it unfolds the identity, in which case it makes sense to call the corresponding symmetry
the t(ε)-th iterate gt(ε)

ε of gε.

Proof. A symmetry sends orbits to orbits. For ε 6= 0 the orbit structure is completely determined by the
quotient of a sphere (CP1) by the return maps in the neighborhood of 0 and ∞. So a symmetry is given
by a diffeomorphism of the sphere preserving 0 and ∞ (i.e. a linear map) which commutes with the return
maps.

(1) This case occurs as soon as one of ψ0
1,0 and ψ∞1,0 is nonlinear and both are not of the form ψ0

1,0(w) =
wξ01,0(w

m) and ψ∞1,0(w) = wξ∞1,0(w
m) for some m > 1. This can be seen on a finite jet. (Indeed if

ψ0
1,0(w) =

∑∞
i=1 aiw

i and ψ∞1,0(w) =
∑∞

i=1 biw
i this occurs as soon as there exists m,n > 1 with

(m,n) = 1 such that an 6= 0 or bn 6= 0 and simultaneously am 6= 0 or bm 6= 0.) Then the same
property is true for ψ0

1,ε and ψ∞1,ε for ε sufficiently small. So all symmetries γε of gε are of the form
gn
ε with n ∈ Z. If a family γε depends continuously on ε then n needs to be constant and n = 0 is

the only possibility if we add the condition that limε→0 hε = id.

(2) is similar. Note that the discrete symmetries may or may not be preserved in the unfolded family.
Continuous families of symmetries will be given by some κn

ε for a fixed n ∈ Z where κd
ε = gε, d|m

and κε is continuous in ε.

(3)

(a) The first case occurs as soon as one of ψ0
1,ε or ψ∞1,ε is nonlinear. Indeed suppose that ψ0

1,ε(w) =
a1(ε)w + as(ε)ws + o(ws) with as 6≡ 0. As as(ε) depends analytically on ε 6= 0 it is nonzero on
an open dense subset on which we can apply the same argument as in (1) or (2) since the only
possible symmetries are discrete.

(b) Let us look at an individual symmetry Hε of vε, given by the time-t(ε) map of its flow. Then
H ′

ε(0) = exp(−εt(ε)) and H ′
ε(zi) = exp

(
qεt(ε)
1+aε

)
. Different times t(ε) and τ(ε) yield the same

symmetry Hε if and only if there exists k, k′ ∈ Z such that T (ε) = t(ε) − τ(ε) = −2kπi
ε =

2k′πi(1+aε)
qε . The only continuous solution T (ε) satisfying T (0) = 0 is T ≡ 0.

2

Proof of Theorem 4.15. The idea of the proof is the following: on each of the sectors Vδ,± we have
constructed diffeomorphisms hε,± between gε and gε which depend analytically on ε 6= 0 and continuously
on ε near ε = 0. To get the conclusion it suffices to prove that it is possible to choose the hε,± so that they
coincide on the intersections of Vδ,±. Indeed γε = (hε,−)−1 ◦hε,+ is a symmetry of gε. Moreover γε depends
analytically on ε 6= 0 and has a continuous limit at ε = 0. It is of course possible to adjust the hε,± so that
h0,+ = h0,−. Then γ0 = id. In cases (1), (2) and (3)(a) of Proposition 4.18 it follows that γε = id.

So we only need to discuss case (3)(b). Let λ±(ε) = h′ε,±(0). We define on Vδ,± the symmetries γε,± of
gε which have the property that γ′ε,±(0) = (λ±(ε))−1. Indeed gε is conjugate by kε,± to the time one map
of the flow of vε given in (1.6). Each symmetry γε,± of gε is conjugate by kε,± to the time t map vt

ε of the
flow of vε. As vt

ε(0) = exp(−εt) we must choose t±(ε) = ln λ±(ε)
ε in γε,±, i.e. γε,± = g

t±(ε)
ε . We replace the

maps hε,± by hε,± = γε,± ◦ hε,±. As h′ε,+(0) = h
′
ε,−(0) = 1 and the two maps hε,+ and hε,− both conjugate

gε with gε then they coincide on Vδ,+ ∩ Vδ,−. 2
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4.4 The Glutsyuk point of view

Instead of taking admissible lines as in Proposition 3.8 it is also possible to take admissible lines parallel
to the lines of holes as in Figure 8 but only for values of ε such that | arg ε− k π

2 | > δ with k ∈ Z, which we
call the Glutsyuk domain. Then the fundamental domains are tori as Gε commutes with Tqα (details as in
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Figure 8: Continuous families of admissible lines and strips for ε in the Glutsyuk domain (for the sake of
simplicity we have not drawn the ramification of Sε at the holes)

[14]). The Fatou coordinates on the associated translation domains yield analytic changes of coordinates
to the model family in the neighborhood of each of the fixed points of gε: these are named ΦG

j,ε,± for those
covering a neighborhood of zj and ΦG,j

0,ε,± for those covering a neighborhood of z0 (there are q of these, one
in each sheet of the covering). The lower index is + (resp. −) if Re ε > 0 (resp. Re ε < 0). As in the proof
of Proposition 4.3 we can show that they can be chosen so as to satisfy

ΦG
σ(j),ε,±(Fε(Z)) = ΦG

j,ε,±(Z) + 1
q

ΦG,σ(j)
0,ε,± (Fε(Z)) = ΦG,j

0,ε,±(Z) + 1
q .

(4.25)

>From the shape of the Riemann surface as in Figure 1 it is clear that the domain of any ΦG
j,ε,± intersects

the domain of any ΦG,m
0,ε,±.

The transitions between the Fatou coordinates are given by

ΨG
j,ε,+ = ΦG,j

0,ε,+ ◦ (ΦG
j,ε,+)−1

ΨG
j,ε,− = ΦG

j,ε,− ◦ (ΦG,j
0,ε,−)−1.

(4.26)

(There also exists other functions Ψ corresponding to the other intersections but they can be deduced from
these ones by means of (4.25).) They depend continuously on ε as ε→ 0. At the limit the domain becomes
disconnected and the ΨG

j,ε,± tend to Ψ0
j on one half of the domain and Ψ∞

j on the other half. If one of
the Ψ0,∞

j is not a translation then so does the corresponding ΨG
j,ε,±. So the changes of coordinates to the

model in the unfolding in the Poincaré domain are not compatible. We write very few details as things are
completely similar to [8] and [14] and as this is not needed for what follows.
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Remark 4.19 The projection of a Glutsyuk translation domain on which we can bring the family to the
model yields a neighborhood of one fixed point on which we can linearize the diffeomorphism.

4.5 The Martinet-Ramis point of view

In [17] Martinet-Ramis present the orbit space of f0 as the union of two spheres identified in the neigh-
borhoods of 0 and ∞ by two germs of diffeomorphisms (instead of our descriptions with 2q-spheres and 2q
germs of diffeomorphisms). Their description carries over to the unfolding. Indeed

Proposition 4.20 Over each sector Vδ,± the orbit space of fε is described by the union of the two spheres
S+

1,ε ∪ S
−
1,ε identified in the neighborhood of ∞ (resp. 0) by ψ∞1,ε (resp. ψ̃0

1,ε) where

ψ̃0
1,ε = ψ0

1,ε ◦ Lm (4.27)

with

Lm(w) = exp
(

2πim
q

)
w, where mp ≡ −1 (mod q). (4.28)

Proof. The map fε induces a global diffeomorphim between S±j,ε and S±σ(j),ε fixing 0 and ∞, hence
a linear map. From (4.7) it is easily seen that w ∈ S±j,ε and w ∈ S±σ(j),ε belong to the same orbit if

w = exp
(
−2πi

q

)
w. Let m be such that mp ≡ −1 (mod q). Then w ∈ S+

2,ε belongs to the same orbit as

w = exp
(
−2πim

q

)
w = L−1

m (w) ∈ S+
1,ε. Then identifying points with same orbits in S+

2,ε and S−1,ε through

ψ0
1,ε is the same as identifying points with same orbits in S+

1,ε and S−1,εthrough ψ̃0
1,ε = ψ0

1,ε ◦ Lm. 2

We do not discuss this point of view any longer as this is not needed in the rest of the paper.

5 The parametric resurgence phenomenon

For ε 6= 0 the construction of Fatou coordinates allows to define renormalized return maps. These maps
allow to study the dynamics of the fixed points of gε.

5.1 The renormalized maps as an alternative description to the modulus

We consider a normalized set of Fatou coordinates generated by admissible lines l±j (ε). These lines together
with their images Gε(l±j (ε)) determine strips Ĉ±j,ε. Their images by pε are crescents C±j,ε. Their quotient
under gε are conformally equivalent to CP1 \ {0,∞} by Proposition 4.1. We call these quotient spaces S±j,ε.

Proposition 5.1 1. For ε ∈ Vδ,+ \ {0} there exist for the map gε:

i) a renormalized return map: kj,ε,+ : S+
j,ε → S+

j,ε, j = 1, . . . , q, defined by

kj,ε,+ = lj,ε,+ ◦ ψ∞j,ε,+, (5.1)

where the map kj,ε,+ is conjugate to Φ+
j,ε,+ ◦ T−qα ◦ (Φ+

j,ε,+)−1 by means of E given in (3.38);

ii) a renormalized return map: k0,ε,+ : S+
1,ε → S+

1,ε defined by

k0,ε,+ = l1,ε,+ ◦ ψ0
1,ε,+ ◦ · · · ◦ l+q,ε,+ ◦ ψ0

q,ε,+, (5.2)

where the map k0,ε,+ is conjugate to Φ+
1,ε,+ ◦ T−q2α ◦ (Φ+

1,ε,+)−1 by means of E.

2. For ε ∈ Vδ,− \ {0} there exist for the map gε:
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i) a renormalized return map: kj,ε,− : S−j,ε → S−j,ε, k = 1, . . . , q, defined by

kj,ε,− = ψ0
j,ε,− ◦ l−j,ε,−, (5.3)

where the map kj,ε,− is conjugate to Φ−j,ε,− ◦ T−qα ◦ (Φ−j,ε,−)−1 by means of E;

ii) a renormalized return map: k0,ε,− : S+
1,ε → S+

1,ε defined by

k0,ε,− = lq,ε,− ◦ ψ∞q,ε,− ◦ · · · ◦ l1,ε,− ◦ ψ∞1,ε,−, (5.4)

where the map k0,ε,− is conjugate to Φ+
1,ε,− ◦ T−q2α ◦ (Φ+

1,ε,−)−1 by means of E.

Proof. The proof is completely straightforward. 2

Proposition 5.2 1. The first derivatives k′0,ε,+(0), k′j,ε,−(0), j = 1, . . . , q, k′0,ε,−(∞), k′j,ε,+(∞), j =
1, . . . , q, are analytic invariants. Their values are:

k′0,ε,+(0) = e4π2/µ0(ε) = e−4π2/ε

k′j,ε,−(0) = e4π2/µj(ε) = e4π2(1+aε)/(qε) j = 1, . . . , q
k′0,ε,−(∞) = e4π2/µ0(ε) = e−4π2/ε

k′j,ε,+(∞) = e4π2/µj(ε) = e4π2(1+aε)/(qε) j = 1, . . . , q

(5.5)

as µ0(ε) and µj(ε) are given in (2.14).

2. The maps lj,ε,± are independent of j when we deal with a normalized set of Fatou coordinates. They
are given by lj,ε,±(w) = ν±(ε) with

ν±(ε) = exp
(
∓

(
4π2

qε
+

2π2a

q

))
. (5.6)

They depend on ε, a(ε) and q.

3. The (q + 1)-tuples (k0,ε,±, . . . , kq,ε,±) defined in Proposition 5.1 are representatives of the modulus.

4. The maps Lj,ε,± depend only of the formal part of the modulus and of the parameter ε.

Proof.

1. It is classical that, if a diffeomorphism with a fixed point at the origin has a multiplier of the form
exp(2πiβ), then the renormalized return map has a multiplier exp(−2πi

β ). A proof in the case β ∈ R
appears in [27]. A geometric proof for β non real appears in [14].

2. We have the two systems, each in two unknowns:{
k′0,ε,+(0) =

∏q
j=1(ψ

0
j,ε,+)′(0)(ν+(ε))q = e−4π2/ε

k′j,ε,+(∞) = (ψ∞j,ε,+)′(∞)(ν+(ε))−1 = e4π2(1+aε)/(qε) j = 1, . . . , q
(5.7)

and {
k′j,ε,−(0) = (ψ0

j,ε,−)′(0)ν−(ε) = e4π2(1+aε)/(qε) j = 1, . . . , q
k′0,ε,−(∞) =

∏q
j=1(ψ

∞
j,ε,−)′(∞)(ν−(ε))−q = e−4π2/ε

(5.8)

from which we find (5.6) and also (4.4), hence proving Lemma 4.2.

3. It is clear that the ψ0,∞
j,ε,± can be recovered from the (q + 1)-tuples (k0,ε,±, . . . , kq,ε,±).

4. The formula (5.6) shows that the maps lj,ε,±(w) = ν±(ε)w depend only of the formal part of the
modulus. Then so do the translations Lj,ε,±. 2
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5.2 The parametric resurgence

We call parametric resurgence the phenomenon in which the non triviality of the modulus for ε = 0 allows
to conclude to the non-linearizability of gε (or fε) on some sequences of parameter values converging to the
origin.

Proposition 5.3 We suppose that for all j = 1, . . . q, (ψ0,∞
j,ε,±)′(0) = exp(2π2a/q). In the sequel we will

speak of normal form of resonant maps at ∞. By this we mean the normal form at the origin of the
conjugate under w̃ = 1/w of the corresponding map.

(1) Let us suppose that the coefficients of ψ0
1,0 are such that ξ1 = exp(2πip/m − 2π2a/q)ψ0

1,0 is not
linearizable at the origin because the s-th coefficient of the normal form does not vanish, then the
periodic (resp. fixed) points z1, . . . zq, of fε (resp. gε) will be nonlinearizable as soon as ε has the form
ε = − 2πim

q(p+nm)+2πiam with n sufficiently large. More precisely the s-th coefficient of the renormalized
return map of f q

ε is nonzero.

(2) Let us suppose that the coefficients of ψ∞1,0 are such that ξ2 = exp(2πip/m + 2π2a/q)ψ∞1,0 is not
linearizable at ∞ because the s-th coefficient of the normal form does not vanish, then the periodic
(resp. fixed) points z1, . . . zq, of fε (resp. gε) will be nonlinearizable as soon as ε has the form
ε = 2πim

q(p+nm)−2πiam with n sufficiently large. Indeed the s-th coefficient of the renormalized return
map of f q

ε is nonzero.

(3) Let us suppose that all ψ0
1,0, . . . , ψ

0
q,0 are such that the map

ξ3 = ψ0
1,0 ◦ l ◦ ψ0

2,0 ◦ l ◦ · · · ◦ ψ0
q,0 ◦ l, (5.9)

where l is a linear map such that ξ′3(0) = exp(2πip/m), is not linearizable at the origin because the
s-th coefficient of the normal form does not vanish, then the fixed point z0 = 0 of fε (and gε) will
be nonlinearizable as soon as ε has the form ε = 2πim

p+nm with n sufficiently large. Indeed the s-th
coefficient of the renormalized return map of f q

ε is nonzero.

(4) Let us suppose that all ψ∞1,0, . . . , ψ
∞
q,0 are such that

ξ4 = ψ∞q,0 ◦ l ◦ · · · ◦ ψ∞2,0 ◦ l ◦ ψ∞1,0 ◦ l, (5.10)

where l is a linear map such that ξ′4(∞) = exp(−2πip/m), is not linearizable at ∞ because the s-
th coefficient of the normal form does not vanish, then the fixed point z0 = 0 of fε (and gε) will
be nonlinearizable as soon as ε has the form ε = − 2πim

p+nm with n sufficiently large. Indeed the s-th
coefficient of the renormalized return map of f q

ε is nonzero.

Proof. If a map has the form g(z) = exp(2πiβ)z + o(z), then its renormalized return map has the form
h(z) = exp(−2πi/β)z + o(z) (see Proposition 5.2).

(1) and (2) The renormalized return map around z1 has the form k1,ε,− = ψ0
1,ε,− ◦ l1,ε,−, where ψ0

1,ε,−
depends continuously on ε. A priori l1,ε,− is a wild map, but we limit ourselves to values of ε such
that k′1,ε,−(0) = exp(2πi p

m), i.e. l1,ε,−(w) = exp(2πip/m − 2π2a/q)w. The map k1,ε,− is hence
resonant. It is nonlinearizable as soon as one of the coefficients of its normal form is nonzero. As
ψ0

1,ε,− depends continuously on ε the non vanishing of the s-th coefficient of the normal form of ξ1
implies the non vanishing of the s-th coefficient of the normal form of k1,ε,−. The situation is similar
at the other singular points because of (4.6).

(3) and (4) This case is very similar to the previous one. Indeed we limit ourselves to values of ε for which
the renormalized return map k0,ε,+ (resp. k0,ε,−) has same derivative at the origin(resp. at ∞) as ξ3
(resp. ξ4) and is very close to it. So if the s-th coefficient of the normal form of ξ3 (resp. ξ4) is non
vanishing then the same is true for the s-th coefficient of k0,ε,+ (resp. k0,ε,−) for ε sufficiently small
as described.

2
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6 The modulus of orbital analytic classification of a family unfolding a
resonant saddle

In [22] it is shown that the modulus of orbital analytic classification of a generic family unfolding a generic
saddle-node under weak equivalence is given by the modulus of the unfolded holomomy map of its strong
separatrix. We show that the same holds for a generic family unfolding a generic resonant saddle.

6.1 Orbital preparation of the family

We consider a vector field with a generic resonant saddle at the origin, i.e. such that the first coefficient of
its normal form is nonzero and a generic family unfolding it.

Proposition 6.1 With a change of coordinates and scaling of time we can bring the family to the form
Θη given by

Θη =

{
ẋ = x

ẏ = y[−p
q (1 + η) +Au+ h(x, y)],

(6.1)

with A 6= 0, u = xpyq and h(x, y) = o(u).

Proof. As it is very standard we only give the main idea. A change of coordinates brings the analytic
separatrices to the axis and scaling allows to transform the system to

ẋ = x
ẏ = y[−p

q (1 + η) +O(|x, y|)]. (6.2)

The final form is achieved through a change of coordinates of the form

y = Y (1 +
p−1∑
j=0

aj(Y )xj +
q−1∑
k=0

bk(x)Y k). (6.3)

2

The holonomy map of its x-separatrix has the form

fη(y) = exp
(
−2πi

p

q
(1 + η)

)
y +

(
2πiA exp(−2πi

p

q
) +O(η)

)
yq+1 + o(yq+1). (6.4)

If we choose to scale x and y so that A = 1
2πiq , then the map is almost of the form (2.2): only p is changed

to −p and the parameter is different.
An orbital preparation of the family must of course bring the holonomy map and its q-th iterate to

a prepared form. It is possible to apply a scaling (x, y) 7→ (αx, βy) with αpβq = 1 so that the family is
defined in the region |x| < 2 and the holonomy is defined as a map from {x = 1} to itself. When we make
further changes of coordinates we apply if necessary other scalings of this type so that the holonomy is
always defined as a map from {x = 1} to itself.

Theorem 6.2 There exists an analytic change of coordinate (x, y) 7→ (x̃, ỹ) = (x, βy(1 + O(u)) and of
parameter η 7→ ε bringing the family (6.1) to an orbitally prepared form with parameter

ε = 2πipη, (6.5)

i.e. a form in which the holonomy of the x-separatrix on the section {x = 1} is in prepared form and in
which the invariant manifold has an equation ũ = ε, where ũ = x̃pỹq.
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Proof. The fact that the vector field is non integrable of order 1 leads to the “materialization” of the
resonance [12], i.e. to the birth of an analytic invariant manifold of a special form which in the limit η → 0
goes to u = 0. For η = 0 there exists a formal change of coordinate (X,Y ) = (x, y + o(u)) bringing the
system to the normal form

Ẋ = X

Ẏ = Y [−p
q (1 + η) +AU + h(U)],

(6.6)

where h(U) = o(U) is a power series in U . In these coordinates the invariant manifold has the form

η = k(U) =
∞∑

j=1

aj(η)U j , (6.7)

with a1(0) 6= 0 and the ai(η) depending analytically on η [12]. Even if the change of coordinates is
generically divergent, the invariant manifold is analytic. Coming back to the original variables x and y
it has an equation of the form η = ki(x, y) = a1(η)u + o(u) = u(a1(η) + m(x, y)) with m(x, y) = O(u).
We take a change of coordinates: (x̃, ỹ) = (x, y(a1(η)

2πip + m(x,y)
2πip )1/q) in which the invariant manifold has the

equation ε = ũ with ũ = x̃pỹq.
This means in particular that the analytic invariant manifold intersects the section {x = 1} at ỹq = ε.

Let f̃η be the holonomy map in the variable ỹ. We know that ỹq − ε = 0 is the equation of the q-periodic
points of the holonomy map coming from the intersection of the invariant manifold with x = 1. Then the
q-th iterate of f̃η has the form

f̃ q
η (y) = ỹ + ỹ(ỹq − ε))(1 +O(η) +O(ỹ)). (6.8)

The map is already prepared as (f̃ q
η )′(0) = exp(−2πipη) = exp(−ε). 2

>From now on we will always limit ourselves to orbitally prepared families of vector fields unfolding
a resonant saddle. We can suppose that the family has the form (6.1). We will consider the family as
depending of the parameter ε where ε is given in (6.5) and we will suppose that the holonomy fε(y) of the
variable y has the form (2.2) in which we replace z by y and p by −p. Then its q-th iterate gε(y) has the
form (3.1).

The variable u plays a special role as the equation of the analytic invariant manifold is given by u = ε.
Note that changes of coordinates of the form

(x̃, ỹ) 7→ (x̃ exp(h(x̃, ỹ)), ỹ exp(−p
q
h(x̃, ỹ))) (6.9)

preserve u as ũ = u.

Remark 6.3 In the particular case p = q = 1 the two separatrices play identical roles although their
holonomy maps are in general not conjugate (in particular they usually do not have the same formal
invariant), but related in a more complicated way. A negative rescaling of time, t 7→ −t, allows to exchange
them. To study the analytic orbital equivalence of two families we will have to distinguish one separatrix
for each family and build the analytic orbital equivalence by extending the conjugacy of the holonomies of
these distinguished separatrices.

6.2 Complete invariant of orbital analytic classification for a generic family of vector
fields unfolding a generic resonant saddle

Definition 6.4 Two germs of analytic families of vector fields, Θε1(x1, y1) (resp. Θε2(x2, y2)) unfolding a
resonant saddle at the origin for ε1 = 0 (resp. ε2 = 0) are orbitally equivalent if there exists a germ of map

K = (h,Φ, ξ) : (ε1, x1, y1) 7→ (h(ε1),Φ(ε1, x1, y1), ξ(ε1, x1, y1)) (6.10)

fibered over the parameter space where
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i) h : ε1 7→ ε2 = h(ε1) is a germ of an analytic diffeomorphism preserving the origin;

ii) there exists a representative Φε1(x1, y1) = Φ(ε1, x1, y1) which is an analytic diffeomorphism in (ε1, x1, y1)
on a small neighborhood of the origin in (ε1, x1, y1)-space;

iii) there exists a representative ξε1(x1, y1) = ξ(ε1, x1, y1) depending analytically on (ε1, x1, y1) in a small
neighborhood of the origin in (ε1, x1, y1)-space with values in C∗;

iv) the change of coordinates Φε1 and the scaling of time ξε1 is an equivalence between Θε1(x1, y1) and
Θh(ε1)(x2, y2) over a ball of small radius r > 0:

Θh(ε1)(Φε1(x1, y1)) = ξ(ε1, x1, y1)(Φε1)∗(Θε1(x1, y1)). (6.11)

Theorem 6.5 We consider a generic family unfolding a generic resonant saddle with hyperbolicity ratio
p/q in prepared form. The modulus of analytic classification of the holonomy map of the unfolded vector
field as described in Theorem 4.8, namely the two families of equivalence classes(

(ψ∞1,ε,±, ψ
0
1,ε,±)/ ∼

)
ε∈Vδ,±

, (6.12)

together with a(0) is a complete modulus of orbital analytic classification under orbital equivalence. In the
case p = q = 1 it is the modulus of the family of resonant saddles with a marked separatrix.

Proof. The proof uses essentially the fact that the holonomy characterizes the differential equation [16]
and [17]. This proof can be carried nearly verbatim over a fixed neighborhood of the origin for values of ε
in a small neighborhood of the origin.

One direction is obvious: If two orbitally prepared families are equivalent then there exists an equiva-
lence transforming one to the other. In these coordinates they have conjugate holonomies for each value
of ε over a fixed neighborhood in y-space, hence the same modulus.

Let us now consider the converse. We consider two orbitally prepared families of vector fields Θ1,η and
Θ2,η, which are generic unfoldings of resonant saddles with hyperbolicity ratio p/q defined on the same
neighborhood of the origin containing |x| < 2. We suppose that the families of holonomies are conjugate.
In particular the parameters η for the vector fields and ε = 2πiη for the holonomies are the same. For each
ε in a neighborhood of the origin we need to construct an orbital equivalence between the two vector fields
over a neighborhood of the origin W = B(0, 2)×U , which is independent of ε: the orbital equivalence will
depend analytically on ε. As the hononomies fj,ε, j = 1, 2, are conjugate there exist an analytic change
of coordinate y2 = ζε(y1) = ζ(y1, ε) conjugating f1,ε with f2,ε, i.e. f1,ε = ζ−1

ε ◦ f2,ε ◦ ζε. ζε is defined from
{x1 = 1} to {x2 = 1}. We want to perform a change of coordinates on Θ1,η on a whole neighborhood of
the origin so that the two holonomies become identical. As ζε(0) = 0 since 0 is a fixed point and since the
q-th roots of ε are periodic points of period q, then ζε(y1) = e

2πik
q y1 + y1(y

q
1 − ε)ζ1,ε(y1). We let the change

of coordinate on W be given by

(x1, y1) = (x1, y1(e
2πik

q + (u1 − ε)ζ1,ε(y1))) = Λε(x1, y1). (6.13)

The change of coordinates Λε transforms the invariant manifold u1 = ε of Θ1,ε into u1 = ε. Moreover
(Λε)∗(Θ1,η) and Θ2,η have the same holonomy on {x1 = 1} and {x2 = 1} respectively.

So we can suppose that Θ1,η and Θ2,η have the same holonomy on xj = 1. The next step consists in
constructing a change of coordinate Kε(x1, y1) = (x2, y2) transforming the first system to the second. This
change of coordinate will of course be the identity (i.e. Kε(1, y1) = (1, y2)) on xj = 1. The first step is to
extend Kε to |xj | = 1. For that we consider the path (eiθ, 0), θ ∈ [0, 2π] which is lifted in the leaf of the
foliation through (1, yj) as (eiθ, αj(θ, yj)). We let

Kε(eiθ, α1(θ, y1)) = (eiθ, α2(θ, y1)). (6.14)
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The next step consists in extending Kε along lifting of radial paths:

rxj : [0,− ln |xj |] →W, rxj (s) = (xje
s, 0), (6.15)

for 0 < |xj | < 1. The lifting in the leaf through (xj , yj) is a path (xje
s, βj,xj (s)) with endpoint δj(xj , yj) =

( xj

|xj | , βj,xj (− ln |xj |)). The map δj is the flow of Θj,η for the time − ln |xj |: δj = Θ− ln |xj |
j,η . So the inverse

map is well defined. We let
δ1(x1, y1) = ( x1

|x1| , γ1(x1, y1))
δ−1
2 ( x2

|x2| , y2) = (x2, γ2(x2, y2))
(6.16)

Then we let
Kε(x1, y1) = (x1, γ2(

x1

|x1|
, γ1(x1, y1))). (6.17)

The map Kε is a holomorphic equivalence between the vector fields outside xi = 0. As it is bounded by
Lemma 6.6 below it can be extended to xi = 0. It clearly depends analytically on ε. 2

Lemma 6.6 We consider a vector field

ẋ = x
ẏ = y(−λ+ a(x, y))

(6.18)

defined on |x| < 2 and y < r, in which λ ∈ C is a parameter in a small neighborhood of λ0 > 0 where
Re λ > 0 and a(x, y) = O(|xy|). We consider a radial path as in (6.15) (we drop the indices). Its lifting
through (x, y) has endpoint δλ(x, y) = ( x

|x| , γλ(x, y)). Then there exists a neighborhood Λ ⊂ C of λ0 and a
neighborhood U of 0 such that for all λ ∈ Λ, for all x0 with 0 < |x0| < 1 and for all y0 ∈ U

|y0||x0|3
λ0
2 ≤ |γλ(x0, y0)| ≤ |y0||x0|

λ0
2 . (6.19)

Proof. The proof is very close to that of [16] and [17]. From (6.15) we get ṡ = 1. This yields to the
differential equation

dy(s)
ds

= y(s)(−λ+ a(x0e
s, y(s))) (6.20)

with initial condition y(0) = y0. So

d|y(s)|
ds

= |y(s)|(−Re λ+ α(x0e
s, y(s))). (6.21)

For |x| < 2 and |y| < r0 with r0 sufficiently small we have |α(x, y)| < λ0
4 . Then

−(
λ0

4
+Re λ)s ≤ ln

∣∣∣∣y(s)y0

∣∣∣∣ ≤ (−Re λ+
λ0

4
)s. (6.22)

Hence
|y0|e−(Re λ+

λ0
4

)s ≤ |y(s)| ≤ |y0|e(−Re λ+
λ0
4

)s (6.23)

We evaluate this at s = − ln |x0| and take |λ− λ0| < λ0
4 from which (6.19) follows for |x0| < 1. 2

7 The transcritical bifurcation

We consider here the case of a resonant hyperbolic saddle of a real system (6.1) in prepared form. Hence
the parameter η is real and also the formal invariant a. Moreover in that case we usually only observe
the singular point and not the invariant manifold. We only need to describe the behaviour for η < 0 and
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η > 0. As ε = 2πipη this corresponds to ε ∈ iR− and ε ∈ iR+. In the first case the renormalized return
map for the q-th power of the holonomy is given by (5.4), namely:

k0,ε,− = l−q,ε,− ◦ ψ∞q,ε,− ◦ · · · ◦ l−1,ε,− ◦ ψ
∞
1,ε,−. (7.1)

We see that the renormalized return map, and hence the normalizability of the origin depends on ψ∞1,ε,−
only. In the second case the renormalized return map is given by (5.2):

k0,ε,+ = l1,ε,+ ◦ ψ0
1,ε,+ ◦ · · · ◦ l+q,ε,+ ◦ ψ0

q,ε,+. (7.2)

The normalizability of the origin depends on ψ0
1,ε,+ only. In particular if we start with a semi-normalizable

saddle point: ψ0
1 linear and ψ∞1 nonlinear (resp. ψ0

1 nonlinear and ψ∞1 linear) we may observe families in
which the origin is non integrable for sequences of negative rational values of η and integrable for η > 0
(resp. the origin is integrable for η < 0 and non integrable for sequences of positive rational values of η).

Such examples of families appear in [3] and [5] and raised the first author’s interest in the subject.
They are families of polynomial vector fields.

8 Modulus of analytic conjugacy for a generic family unfolding a reso-
nant saddle

8.1 Preparation of the family

We consider a generic analytic 1-parameter family of vector fields unfolding a resonant saddle of order 1.
As the separatrices are analytic and depend analytically of the parameter the family can always be brought
by an analytic change of coordinates to the form

Xε =

{
ẋ = λ1(ε)xh1,ε(x, y)
ẏ = λ2(ε)yh2,ε(x, y)

(8.1)

where λ2(0)
λ1(0) = −p

q , d
dε

(
λ2
λ1

)
6= 0 and hi,ε(x, y) = 1 +O(x, y). Modulo some preparation on the orbital form

as in the beginning of Section 6.1 we can suppose that

λ2(ε)
λ1(ε)

= −p
q
(1 + η) with η =

ε

2πip
. (8.2)

We can of course suppose that the family

Θε =
Xε

λ1(ε)h1,ε(x, y)
(8.3)

is in prepared form (6.1) (because the transformations to get (6.1) are in y only and hence preserve the
equation ẋ = x).

Proposition 8.1 There exists a change of coordinate depending analytically on ε and bringing the family
Xε = λ1(ε)h1,ε(x, y)Θε with Θε given in (6.1) to the prepared form

λ1(ε)k1,ε(x, y)Θε, (8.4)

with k1,ε(x, y) = 1 +O(u).
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Proof. A conjugacy given by the flow X
ξε(x,y)
ε of Xε for a time ξε(x, y) transforms the vector field Xε to

vector field λ1(ε)k1,ε(x, y)Θε provided
1

1 +Xε(ξε)
=
k1,ε

h1,ε
, (8.5)

(see for instance [4]). Hence

Xε(ξε) =
h1,ε

k1,ε
− 1. (8.6)

We need to choose ξε in such a way that k1,ε(x, y) = 1 +O(u), with u = xpyq. For that purpose we write

h1,ε(x, y) = 1 +
q−1∑
i=0

yiai,ε(x) +
p−1∑
j=0

xjbj,ε(y) +mε(x, y) (8.7)

with ai,ε(0) = 0 and bj,ε(0) = 0 and mε(x, y) = O(u) and we take

ξε(x, y) =
q−1∑
i=0

yiαi,ε(x) +
p−1∑
j=0

xjβj,ε(y). (8.8)

Let nε(x, y) =
∑q−1

i=0 y
iai,ε(x) +

∑p−1
j=0 x

jbj,ε(y). As

Xε(ξε) = λ1(ε)(1 + nε(x, y) +O(u))

[
q−1∑
i=0

(
xα′i,ε(x) + iαi,ε(x)(−(

p

q
+ η) +O(u))

)
yi

+
p−1∑
j=0

(
jβj,ε(y) + yβ′j,ε(y)(−(

p

q
+ η) +O(u))

)
xi

 (8.9)

and writing

nε(x, y)
λ1(ε)(1 + nε(x, y) +O(u))

=
q−1∑
i=0

yiγi,ε(x) +
p−1∑
j=0

xjδj,ε(y) +O(u) (8.10)

with γi,ε(0) = δj,ε(0) = 0 (this decomposition is not unique), this yields linear differential equations

xα′i,ε(x)− i(p
q + η)αi,ε(x) = γi,ε(x)

jβj,ε(y)− (p
q + η)yβ′j,ε(y) = δj,ε(y)

(8.11)

which all have analytic solutions vanishing at the origin. 2

As in the previous section we can assume that we work in a neighborhood of the origin of the form
{|x| < 2} ×W , where W is a neighborhood of the origin in y-space (a scaling in (x, y) preserving u may
be necessary to achieve this.) We will always limit ourselves to families Xε = λ1(ε)h1,ε(x, y)Θε in prepared
forms, i.e. such that h1,ε(x, y) = 1 +O(u).

Proposition 8.2 The family Xε has four formal invariants:

i) ε = 2πipη: the multiplier of the q-th iterate of the holonomy map of the x-separatrix is exp(−ε);

ii) a(ε), where the multiplier of the q-th iterate of the holonomy of the x-separatrix at the invariant
manifold is exp( qε

1+a(ε)ε).

iii) t1(ε) = 2πi
λ1(ε) is the time spent along the loop x = x0e

iθ, y = 0 when θ ∈ [0, 2π]. This time is independent
of x0. In particular we can take x0 = 1.
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iv) t2(ε) is the time spent along the loop x = x0e
iθ, u = ε, when θ ∈ [0, 2πq]. We can of course assume

that
t2(ε) =

2πiq
λ1(ε)(1 + εC(ε))

. (8.12)

Again it is independent of x0. In particular we can take x0 = 1. C(ε) is completely determined by
t2(ε) and admits a continuous extension at ε = 0.

The first two invariants depend only of the orbital analytic classification and the last two involve time, so
they are only invariant under conjugacy.

The problem we are interested in is the classification of analytic families under conjugacies (the definition
is similar to Definition 6.4 above except that we do not allow to divide by a nonzero function: see below).
For that purpose we compare our family to an adequate model family. As above the comparison with the
model family will generically be ramified and we will find the modulus from this ramification. The modulus
will have two parts, the first part being the modulus of analytic orbital classification and a second part
dealing with the time.

8.2 Comparing the family to a model family

This step is an intermediate step in deciding if two families are conjugate. Indeed a conjugacy, it is exists
will be found by composing conjugacies of each family to the model family. The conjugacy is first defined
on a section of the separatrix and then extended. Here we limit ourselves to the definition of the conjugacy
on a section.

We compare our family to a model family

Yε =

ẋ = λ1(ε)x(1 + C(ε)u)

ẏ = −λ1(ε)p
qy(1 + η)

(1 +B(ε)u)
(1 +A(ε)u)

(1 + C(ε)u)
(8.13)

where A(ε) and B(ε) are chosen so that u = ε be the invariant manifold. Hence 2iπp(A − B − ηB) = 1,
which determines B(ε) as a function of A(ε):

B(ε) =
A(ε)
1 + η

− 1
2πip(1 + η)

. (8.14)

Then the family can be rewritten

Yε =

ẋ = λ1(ε)x(1 + C(ε)u)

ẏ = −λ1(ε)p
qy

[
1− 1

2πip
u− ε

1 +A(ε)u

]
(1 + C(ε)u).

(8.15)

Taking v = u
1
q yields the equation

dv

dx
=

1
2πiq

v(vq − ε)
x(1 +A(ε)vq)

. (8.16)

To calculate the q-th iterate of the holonomy we take x = exp(2πiqθ) with θ ∈ [0, 1], which yields

dv

dθ
=

v(vq − ε)
1 +A(ε)vq

. (8.17)

The coefficients A(ε), λ1(ε), C(ε) are chosen so that the family has the same four analytic invariants de-
scribed in Proposition 8.2 as (8.1). This goes in the following way:

ii) We simply have A(ε) = a(ε) as the q-th iterate of the holonomy is the time-one map of (8.16);
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iii) We have t1(ε) = 2πi
λ1(ε) ;

iv) t2(ε) = 2πiq
λ1(ε)(1+εC(ε)) .

We look for a conjugacy of a certain type, namely the flow of Xε for a certain time ξε(x, y). This flow
map preserves the leaves over a fixed neighborhood of the origin for sufficiently small ε. It is shown in [4],
[24] and [25] that Xε is mapped to Yε by an analytic diffeomorphism, Hε being the flow map Xξε(x,y)

ε of Xε

for some time ξε(x, y), if
1

1 +Xε(ξε)
=

1 + C(ε)u
h1,ε

. (8.18)

Hence we must construct a solution of (8.18). Let

τ(ε) =
h1,ε

1 + C(ε)u
− 1. (8.19)

Thus we want to construct ξε(x, y) satisfying

Xε(ξε) = τε. (8.20)

The construction goes in two steps. We first construct a solution ξε(1, y) over the section Σ = {x = 1}: this
step will be sufficient to define the modulus of conjugacy. We should then extend it to a full neighborhood
of the origin but we will see that this second step is not necessary to solve the problem of deciding when two
families are conjugate. Let y ∈ Σ such that f q

ε (y) ∈ Σ, where fε is the holonomy map of the x-separatrix
and f q

ε its q-th iterate. Then the function ξε(1, y) = ξ1,ε(y) must satisfy

ξ1,ε(f q
ε (y))− ξ1,ε(y) =

∫
γq(y)

τε dt (8.21)

where fε is the holonomy map, γq(y) is the lifting of the curve γq,0 = {(x = eiθ, y), θ ∈ [0, 2πq]}, to the leaf
through (1, y) joining (1, y) and (1, f q

ε (y)) and dt is the time-form of Xε.
Before discussing the first step, namely the construction of a solution to (8.21) let us give the definition

of a time-form of a vector field.

Definition 8.3 A time form dt of a vector field X is a 1-form such iXdt = 1.

Remark 8.4 (i) Let ω be a form such that iX(ω) = 0. Such a form is called a dual form to X. Then the
time form is uniquely determined up to the addition of a dual form to X.

(ii) It is easily checked that if dtX is a time form for X and Y = φ∗(X) for some change of coordinates
then φ∗(dtX) is a time form for Y .

Lemma 8.5 Let

kε(y) =
∫

γ(y)
τε dt. (8.22)

where γ(y) is the lifting of the curve γ0 = {(x = eiθ, y), θ ∈ [0, 2π]}, to the leaf through (1, y) joining
(1, y) and (1, fε(y)). The function kε(y) of (8.22) is analytic in y. Moreover there exists positive constants
c1(ε), c2(ε) such that {

|kε(y)| ≤ c1(ε)|y| near y = 0
|kε(y)| ≤ c2(ε)|y − ε1/q| near y ≤ ε1/q.

(8.23)
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Proof. This comes from the fact that Yε has the same formal time invariants as Xε. Indeed, if dtXε (resp
dtYε), is the time-form of Xε (resp. Yε) and if γε is a trajectory of Xε (hence of Yε), then∫

γε

dtYε − dtXε =
∫

γε

τε dx (8.24)

and this integral vanishes for y = 0 and yq = ε, yielding the estimate (8.23). 2

We now examine the holonomy on x = 1 with z = y as a coordinate and we lift to the Z-plane by
composition with (3.7): z = pε(Z).

Theorem 8.6 Let
Kε = kε ◦ pε

Fε = p−1
ε ◦ fε ◦ pε.

(8.25)

Let Q+
j,ε,± be a translation domain and Φ±j,ε,± be a Fatou coordinate on it. Let σ be the permutation on

{1, . . . , q} given by j 7→ j + p (mod q) and σi its i-th iterate.

(1) There exists a unique holomorphic function Ξ̃±j,ε,± defined on Φ±j,ε,±(Q±j,ε,±) satisfying:

Ξ̃±j,ε,±(W + 1)− Ξ̃±j,ε,±(W ) =
q−1∑
i=0

K̃±
σi(j),ε,±

(
W +

i

q

)
, (8.26)

where
K̃±

j,ε,±(W ) = Kε ◦ (Φ±j,ε,±)−1(W ), (8.27)

and such that its limit is zero at the lower end of the strip and its limit at the upper end of the strip
exists. The function Ξ̃±j,ε,± depends analytically on ε ∈ Vδ,± for ε 6= 0 and continuously on ε near
ε = 0.

(2) The different Ξ̃±j,ε,± are related by the following recurrence relations:

Ξ̃±σ(j),ε,±(W ) = Ξ̃±j,ε,±

(
W − 1

q

)
+ K̃±

j,ε,±

(
W − 1

q

)
. (8.28)

(3) For ε 6= 0 the Ξ̃+
j,ε,± are related to the Ξ̃−j,ε,± by means of:{

Ξ̃−j,ε,+ = Ξ̃+
j,ε,+ ◦ Lj,ε,+ = Ξ̃+

j,ε,+ ◦ Φ+
j,ε,+ ◦ T−qα ◦ (Φ−j,ε,+)−1

Ξ̃−j,ε,− = Ξ̃+
j+1,ε,− ◦ Lj,ε,− = Ξ̃+

j+1,ε,+ ◦ Φ+
j+1,ε,− ◦ T−qα ◦ (Φ−j,ε,−)−1,

(8.29)

where Lj,ε,± are the Lavaurs translations defined in (4.15) and (4.16).

(4) The different functions Ξ̃±j,ε,− (resp. Ξ̃±j,ε,+) all have the same limit at the upper end of the strip.

Proof. For all the proof we remove the lower indices. For the first part of the proof we also drop the
upper indices ±. Let

R̃j,ε(W ) =
q−1∑
i=0

K̃σi(j),ε

(
W +

i

q

)
. (8.30)

Let Ĉ ⊂ Φj,ε(Qj,ε) be a closed strip of width 1 with boundary `∪T1(`), where ` is a line with same direction
as eiβ, β ∈ (δ, π − δ), and T1(W ) = W + 1. By Lemma 8.5, the definition of pε and the limit behaviour of
the Fatou coordinates in (3.30) we have that R̃j,ε(W ) → 0 as Re(We−iβ) → ±∞.

Let U0 be an open neighborhood of Ĉ. Let s̃ of the form

s̃(W ) = s(Re(W )− cotβ Im(W )) = s(−Im(We−iβ)
sinβ

) (8.31)
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where s : R → R is C∞, monotone increasing and satisfies

s(x) =

{
0 x ≤ x1

1 x ≥ x2

(8.32)

with x1 < x2. The values x1 and x2 are chosen so that s̃ ≡ 0 (resp. s̃ ≡ 1) on a neighborhood V1 (resp.
V2) of ` (resp. T1(`)). Let Ξ̂j,ε(W ) = s̃(W )R̃j,ε(W − 1).) Then Ξ̂j,ε is a C∞-solution of (8.26).

The first derivatives of s̃ are bounded as Re(We−iβ) → ±∞. Hence the function Ξ̂j,ε satisfies

lim
Re(We−iβ)→±∞

Ξ̂j,ε(W ) = 0. (8.33)

We must correct Ξ̂j,ε to an analytic function. As R̃j,ε is analytic in W we have that

∂Ξ̂j,ε(W + 1)− ∂Ξ̂j,ε(W ) = ∂R̃j,ε = 0, (8.34)

where ∂ = ∂
∂W

. Hence ∂Ξ̂j,ε is periodic of period 1. Moreover

lim
Re(We−iβ)→±∞

∂Ξ̂j,ε(W ) = 0, (8.35)

as ∂Ξ̂j,ε(W ) = ∂s̃(W )R̃j,ε(W − 1). We look for a function Hε, periodic of period 1, such that

∂Ξ̂j,ε = ∂Hε. (8.36)

Then an analytic solution to (8.26) will be given by

Ξ̃j,ε = Ξ̂j,ε −Hε. (8.37)

To find Hε we let

mε(z) = Ξ̂j,ε

(
− 1

2πi
ln z

)
. (8.38)

The function ∂mε
∂z = ∂Ξ̂j,ε

∂W
∂W
∂z = 1

2πiz
∂Ξ̂j,ε

∂W
is C∞ on C∗ and bounded in the neighborhood of 0 (resp. O( 1

z2 )
in the neighborhood of ∞) on CP1 because of (8.23). We will show the existence of a function nε defined
on CP1 which will be C∞ on C∗ = CP1 \ {0,∞} and C0 on CP1 and such that on C∗

∂mε

∂z
=
∂nε

∂z
. (8.39)

The function Hε we are looking for is

Hε(W ) = nε(e−2πiW ). (8.40)

Indeed Hε is periodic of period 1 and satisfies (8.36) since

∂Hε

∂W
=
∂nε

∂z

∂z

∂W
+
∂nε

∂z

∂z

∂W
= 2πiz

∂nε

∂z
=
∂Ξ̂j,ε

∂W
. (8.41)

To construct nε we now consider a covering of CP1 by two connected open sets U1 = {z; |z| < ρ1} and
U2 = {z; |z| > ρ2} with 0 < ρ2 < ρ1. Let U∗1 = U1 \ {0} and U∗2 = U2 \ {∞}. Moreover the closure U i of
each Ui can be identified to a compact set of C. On each Ui we will construct in Lemma 8.7 functions ni,ε

with are C0 on Ui and C∞ on U∗i and such that ∂ni,ε = ∂mε on U∗i . The difference n12,ε = n1,ε − n2,ε is
analytic on U1 ∩ U2 = {z; ρ2 < |z| < ρ1}, hence it can be expanded as a Laurent series:

n12,ε =
∑
j∈Z

aj(ε)zj . (8.42)
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The holomorphic functions {
r1,ε(z) =

∑∞
j=0 aj(ε)zj z ∈ U1

r2,ε(z) = −
∑−1

j=−∞ aj(ε)zj z ∈ U2

(8.43)

are analytic on their domain and satisfy n12,ε = r1,ε − r2,ε. The function nε we are looking for is given by

nε(z) = ni,ε(z)− ri,ε(z) for z ∈ Ui. (8.44)

Any other solution differs from this one by a global holomorphic function on CP1, i.e. a constant. In
particular nε(z) is uniquely defined if we ask that nε(0) = 0.

We then extend Ξ̃j,ε by iterating (8.26) on Φj,ε(Qj,ε). The function defined here depends analytically
on ε 6= 0 and continuously on ε near ε = 0: this comes from the explicit construction of nj,ε and rj,ε.

For the proof of (2) we construct Ξ̃1,ε as in (1). The other Ξ̃j,ε are constructed from Ξ̃1,ε by means
of (8.28) and yield solutions of (8.26). By uniqueness of solutions of (8.26) they must be the solutions
constructed in (1).

The proof of (3) follows since Fε and Gε commute with Tqα, Kε is invariant under Tqα and φ+
j,ε ◦ T−qα ◦

(φ−j,ε)
−1 commutes with T1.

To prove (4) we first remark that limRe(We−iβ)→+∞ Ξ̃±j,ε exists since limRe(We−iβ)→±∞ Ξ̂j,ε = 0, from
(3.30) and from limRe(We−iβ)→+∞Hε(W ) = nε(∞) ∈ C. The fact that it is the same for all Ξ̃±j,ε comes
from (8.28) and (8.29). 2

Lemma 8.7 There exist functions ni,ε with are C0 on Ui and C∞ on U∗i , and such that

∂ni,ε

∂z
=
∂mε

∂z
(8.45)

on U∗i .

Proof. We first construct n1,ε. Let δ1 > 0 be small and let U1,δ1 = {z; δ1 < |z| < ρ1}. Let bε,δ1 be C∞ on
U1 such that

bε,δ1 =

{
∂mε
∂z z ∈ U1,δ1

0 |z| < δ1
2 .

(8.46)

Let

uε,δ1(z) =
∫∫

C

bε,δ1(ζ)
ζ − z

dζ ∧ dζ. (8.47)

By Theorem 1.2.2 of [9] the function uε,δ1 is C∞ on C and analytic outside U1,δ1 . The function n1,ε we are
looking for will be

n1,ε = lim
δ1→0

uε,δ1 . (8.48)

It will be C∞ on U∗1 and C0 at the origin provided we show that

∫∫
|ζ|<δ1

∂mε

∂ζ
(ζ)

ζ
dζ ∧ dζ = −2i

∫ 2π

0
e−iθ

(∫ δ1

0

∂mε

∂z
(reiθ)dr

)
dθ (8.49)

tends to 0 as δ1 tends to zero. This comes from the fact that ∂mε(z)
∂z is bounded in the neighborhood of the

origin.
The construction of n2,ε is similar. The result follows from the fact that ∂mε(z)

∂z is O( 1
z2 ) in the neigh-

borhood of ∞. 2
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Proposition 8.8 The functions{
M̃0

j,ε,± = Ξ̃−j,ε,± − Ξ̃+
j+1,ε,± ◦ (Ψ0

j,ε,±)−1

M̃∞
j,ε,± = Ξ̃−j,ε,± − Ξ̃+

j,ε,± ◦ (Ψ∞
j,ε,±)−1

(8.50)

are periodic of period 1. They are defined on the same domains as the corresponding Ψ0,∞
j,ε,±, namely

Q−j,ε,± ∩Ψ0
j,ε,±(Q+

j+1,ε,±) (resp. Q−j,ε,± ∩Ψ∞
j,ε,±(Q+

j,ε,±)) for M̃0
j,ε,± (resp. M̃∞

j,ε,±).
Moreover they are all determined by M̃0,∞

1,ε,± since

M̃0
σ(j),ε,±(W ) = M̃0

j,ε,±(W − 1
q ),

M̃∞
σ(j),ε,±(W ) = M̃∞

j,ε,±(W − 1
q ).

(8.51)

Let
ζ0,∞
j,ε,± = M̃0,∞

j,ε,± ◦ E
−1. (8.52)

The functions ζ0
j,ε,± (resp ζ∞j,ε,±) are germs of analytic functions defined respectively in the neighborhood of

0 (resp. ∞) on CP1 and vanishing at 0 (resp. ∞) provided the different Ξ̃±j,ε,± have the same limit in the
direction Re(We−iβ) → −∞ (resp. Re(We−iβ) →∞). This last fact follows from the recurrence relations
(8.28) and (8.29). The functions ζ0,∞

j,ε,± depend analytically on ε ∈ Vδ,± for ε 6= 0 and continuously on ε
near ε = 0.

Definition 8.9 The families of 2-tuples (ζ0
1,ε,±, ζ

∞
1,ε,±)|ε∈Vδ,± is the time-part of the modulus.

8.3 The modulus of analytic conjugacy for families

Definition 8.10 Two germs of analytic families of vector fields, Xε1(x1, y1) (resp. Xε2(x2, y2)) unfolding
a resonant saddle at the origin for ε1 = 0 (resp. ε2 = 0) are analytically conjugate if there exists a germ of
analytic diffeomorphism

K = (h,H) : (ε1, x1, y1) 7→ (h(ε1),H(ε1, x1, y1)) (8.53)

fibered over the parameter space, where

i) h : ε1 7→ ε2 = h(ε1) is a germ of analytic diffeomorphism preserving the origin;

ii) if we let Hε1(x1, y1) = H(x1, y1, ε1), the change of coordinates Hε1 is a conjugacy between Xε1(x1, y1)
and Xh(ε1)(x2, y2) over a ball of small radius r > 0:

Xh(ε1)(Hε1(x1, y1)) = (Hε1)∗(Xε1(x1, y1)). (8.54)

Definition 8.11 1. We consider the set D = Diff0×Diff∞×H0
0×H∞

0 , where Diff0 (resp. Diff∞) is the
set of germs of analytic diffeomorphims in the neighborhood of 0 (resp. ∞) on CP1 fixing 0 (resp.
∞) and H0

0 (resp. H∞
0 ) is the set of germs of holomorphic functions in the neighborhood of 0 (resp.

∞) on CP1 sending 0 (resp. ∞) to 0.

2. We consider the following equivalence relation on D

(ψ0, ψ∞, ζ0, ζ∞) ≡ (ψ0
, ψ

∞
, ζ

0
, ζ
∞) ⇐⇒ ∃C ∈ C∗


ψ0(Cw) = Cψ

0(w)
ψ∞(Cw) = Cψ

∞(w)
ζ0(Cw) = ζ

0(w)
ζ∞(Cw) = ζ

∞(w).

(8.55)

We note by [(ψ0, ψ∞, ζ0, ζ∞)] the equivalence class of an element of D.
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3. We call N the set of equivalence classes of D.

Theorem 8.12 We consider a germ of family of vector fields Xε = λ1(ε)h1,εΘε as in (8.4) in prepared
form. Then the families (Mε,±)|ε∈Vδ,±, with

Mε,± = [(ψ0
1,ε,±, ψ

∞
1,ε,±, ζ

0
1,ε,±, ζ

∞
1,ε,±)] ∈ N (8.56)

together with the formal invariants a(0), t1(ε), t2(ε), is a complete modulus of classification under analytic
conjugacy. Moreover it is possible to choose families of representatives (ψ0

1,ε,±, ψ
∞
1,ε,±, ζ

0
1,ε,±, ζ

∞
1,ε,±)|ε∈Vδ,±

depending analytically of ε for ε 6= 0 and continuously on ε near ε = 0.

Proof. If two germs of families of vector fields are analytically conjugate it is already known that they
have the same orbital part of the modulus. Also they can both be brought through an analytic change of
coordinates to the respective forms Xε = h1,εΘε and Xε = h1,εΘε, with same Θε. We know that there is a
change of coordinates Hε transforming Xε into Xε. This change of coordinates induces a conjugacy between
the holonomies (indeed Hε sends {x = 1} to a section Σ transversal to the flow of Xε and we compose with
a transition map for Xε from Σ to {x = 1}.) We can apply a change of coordinates H1,ε = (x, βy+o(|x, y|))
to Xε as in (6.13) so that the two vector fields X̂ε = (H1,ε)∗(Xε) and Xε have the same holonomies on x = 1.
Then H1,ε ◦Hε preserves the holonomy. Hence it induces a symmetry of the holonomy. The symmetries of
the holonomy have been described in Proposition 4.18. A symmetry of the holonomy can be extended to
a symmetry H2,ε of the foliation described Θε, by the same method as in the proof of Theorem 6.5. Then
H2,ε is a change of coordinates preserving the foliation described by Θε and transforming Xε into X̃ε. Then
X̃ε and X̂ε have the same holonomies and moreover the conjugacy induced by H1,ε ◦Hε ◦ (H2,ε)−1 between
the holonomies is the identity. Then the map H1,ε ◦Hε ◦ (H2,ε)−1 preserves the leaves and is hence given
by the flow X̃ξε

ε of the X̃ε for some time function ξε. It follows that the two families of vector fields have
the same time part of the modulus.

The converse requires more work. We take two germs of analytic families of vector fields which have the
same modulus. We then know that they are orbitally equivalent, so we can always suppose that they have
the same prepared orbital form with same canonical parameter ε: Xε = λ1(ε)h1,εΘε and Xε = λ1(ε)h1,εΘε

over each of the two sectors Vδ,±. For the rest of the proof we drop the lower indices ± referring to the
sectors.

We will look for a conjugacy of a certain type namely the flow of Xε for a certain time χε(x, y). This
flow map preserves the leaves over a fixed neighborhood of the origin for sufficiently small ε. It is shown
in [4], [24] and [25] that Xε is mapped to Xε under the flow of Xε for some time χε(x, y) if

Xε(χε) =
h1,ε

h1,ε
− 1 = τε (8.57)

(see [4]). Hence we must construct a solution of (8.57).
We first choose a function χ1,ε(y) defined on {x = 1} and satisfying

χ1,ε(f(y))− χ1,ε(y) =
∫

γ(y)
τε dtXε , (8.58)

where we integrate over γ(y) which is the lifting of the curve x = exp(2πiθ), θ ∈ [0, 2π] and dtXε is the
time form of Xε. We then extend it to a neighborhood of (x, y) = (0, 0) except on x = 0 by considering
trajectories (x(t), y(t)) of Xε through (1, y0). By passing to the Z-variable, where Z = p−1

ε (y), it suffices
to find a function χ̂1,ε(Z) such that

χ̂1,ε(F (Z))− χ̂1,ε(Z) = Kε(Z)−Kε(Z). (8.59)

To construct explicitly χ1,ε we first define functions

Ξ±j,ε = Ξ̃±j,ε ◦ Φ±j,ε
Ξ±j,ε = Ξ̃

±
j,ε ◦ Φ±j,ε

(8.60)
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on (Φ±j,ε)
−1(Qj,ε) and in U . (Note that Xε and Xε have the same Fatou coordinates Φ±j,ε.)

If q = 1 it is natural to take χ1,ε = ξ1,ε − ξ1,ε which is well defined because the two vector fields have
the same modulus. Then we would have

χ1,ε(f(y))− χ1,ε(y) =
∫

γ(y)

(
h1,ε

1 + C(ε)u)
− 1

)
dtXε −

(
h1,ε

1 + C(ε)u)
− 1

)
dtXε

=
∫

γ(y)

(
h1,ε

1 + C(ε)u)
− 1

)
dx

λ1(ε)xh1,ε
−

(
h1,ε

1 + C(ε)u)
− 1

)
dx

λ1(ε)xh1,ε

=
∫

γ(y)

h1,ε − h1,ε

λ1(ε)x
dx

h1,εh1,ε

=
∫

γ(y)

(
h1,ε

h1,ε

− 1
)
dtXε .

(8.61)

In the case q > 1 we need to be more subtle and adjust to the fact that the functions ξ±j,ε are defined by
integrating over a time corresponding to the q-th iterate of the holonomy map. The details are as follows.
We first show that the function

Nε(Z) = Ξ±j,ε(Z)− Ξ±j,ε(Z), Z ∈ (Φ±j,ε)
−1(Q±j,ε) (8.62)

is well defined. Indeed, let
M0,∞

j,ε = M̃0,∞
j,ε ◦ Φ−j,ε

M
0,∞
j,ε = M̃

0,∞
j,ε ◦ Φ−j,ε.

(8.63)

Then M0,∞
j,ε = M

0,∞
j,ε . Moreover

M0
j,ε = Ξ−j,ε − Ξ+

j+1,ε

M∞
j,ε = Ξ−j,ε − Ξ+

j,ε.
(8.64)

All this together implies that Nε is well defined.
The function χ1,ε is given by:

χ1,ε(y) = χ̂1,ε ◦ p−1
ε (8.65)

with
χ̂1,ε(Z) = Ξ±σ(j),ε(Fε(Z))− Ξ±j,ε(Z)− [Ξ±σ(j),ε(Fε(Z))− Ξ±j,ε(Z)]

= Nε(Fε(Z))−Nε(Z),
(8.66)

for Z ∈ (Φ±j,ε)
−1(Qj,ε). Since Nε is well defined, so is χ̂1,ε, and hence χ1,ε. Moreover (8.59) is satisfied since

Ξ±σ(j),ε(Fε(Z))− Ξ±j,ε(Z) = Ξ̃±σ(j),ε ◦ Φ±σ(j),ε ◦ F (Z)− Ξ̃±j,ε ◦ Φ±j,ε(Z)
= Ξ̃±j,ε ◦ T− 1

q
◦ Φ±σ(j),ε ◦ F (Z)− Ξ̃±j,ε ◦ Φ±j,ε(Z)

+K̃j,ε ◦ T− 1
q
◦ Φ±σ(j) ◦ F (Z)

= Kε(Z),

(8.67)

because of (4.7), and similarly
Ξ±σ(j),ε(Fε(Z))− Ξ±j,ε(Z) = Kε(Z), (8.68)

yielding (8.59).
We must now extend χ1,ε(y) to a function χε(x, y). Indeed we consider a solution curve (x(t), y(t)) of

Tε with (x(0), y(0)) = (1, y0) and we let

χε(x(t), y(t)) =
∫ t

0
τε(x(s), y(s))ds. (8.69)

We must show that χε is well defined outside of x = 0 and bounded in the neighborhood of x = 0, thus
having an analytic extension at x = 0. This is done in Lemma 8.13 below.

The fact that χε is well defined comes from (8.58).
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On each of the sectors Vε,± we have constructed a function χε,± depending analytically of ε 6= 0
and continuously on ε near ε = 0. The last step of the proof is to show that the two functions χε,± glue
together in a uniform function χε, which is therefore holomorphic. It suffices to show that the two functions
coincide on the intersection of the two sectors Vε,±. Indeed on the intersection of the two sectors we have
two functions χε,+ and χε,− such that the flow X

χε,±
ε of the vector field Xε for a time χε,± is a conjugacy

between Xε and Xε. Then the flow X
χε,+−χε,−
ε is a conjugacy between Xε and itself. Hence the function

χε,+ − χε,− is a solution of (8.58) in the particular case τε ≡ 0. Constant functions are obviously solutions
of (8.58) when τε ≡ 0. To conclude that χε,+ − χε,− is constant we need some form of unicity. This is
obtained by applying Theorem 8.6 with the particular function Kε ≡ 0. We know that the solutions Ξ̃j,ε

of the equation (8.26) are unique up to a constant, hence they are precisely the constant functions. As
moreover we have that χε,±(1, 0) = 0 then χε,+(1, y)− χε,−(1, y) ≡ 0 and finally χε,+ = χε,− using (8.69).
2

Lemma 8.13 The function χε(x, y) defined in a neighborhood of the origin minus the axis x = 0 is
uniformly bounded.

Proof. As a natural trajectory from a point (x0, y0) with x0 6= 0 to (1, y(T (x0, y0))) we first take
a trajectory γ1 with time t = t′λ1(ε) with t′ real, t′ ∈ [0, T1(x0, y0)], until we reach a point (x1, y1) with
|x1| = 1, and we follow by a lifting γ2 of (eiθ, 0) with initial condition (x1, y1) until we reach (1, y(T (x0, y0))).
The time from (x1, y1) to (1, y(T (x0, y0))) is uniformly bounded. As the function τε is uniformly bounded
this part of the integral is bounded. We concentrate on the integral on the first path. There we have that
for small η1 > 0 there exists η2 > 0 such that for |u| < η2

|x|(1− η1) ≤
d|x|
dt′

≤ |x|(1 + η1). (8.70)

Hence ∣∣∣∣∫
γ1

τε dt

∣∣∣∣ ≤ |λ1(ε)|
∫

γ1

τε
d|x|
dt′

d|x|. (8.71)

The result follows as τε = O(u). 2

9 Directions for further research

We mention some natural directions for further research:

1. The first is to identify precisely the modulus space for germs of analytic families of diffeomorphisms
unfolding a germ of generic resonant diffeomorphism. This is equivalent to give the set of families ψε

of 2-tuples of (Diff∞×Diff0) which can be realized as the modulus of a generic family unfolding a
resonant diffeormorphism. The difficulty in this problem comes from the unknown behaviour in ε of
the ψ0,∞

ε,j,± at ε = 0. We conjecture that there is probably some form of 1-summability in ε, a stronger
conclusion than only continuity in ε near ε = 0.

2. The second is to generalize the previous results for higher codimensions. The Fatou coordinates for
individual vector fields have already been constructed by Oudkerk ([18] and more recent work).

3. Any resonant germ of diffeomorphism can be realized as the holonomy map of a resonant saddle
of a 2-dimensional vector field [20]. Can any germ of family of diffeomorphisms unfolding a germ
of resonant diffeomorphism be realized as the family of holonomy maps of a germ of family of 2-
dimensional vector fields unfolding a resonant saddle?

4. Finally the last question is to identify the modulus space for germs of generic families of vector fields
unfolding a germ of vector field with a generic resonant saddle.
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