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Abstract

In this paper, complex singular Wishart matrices and their applications are investigated. In particular, a
volume element on the space of positive semidefinite m×m complex matrices of rank n < m is introduced
and some transformation properties are established. The Jacobian for the change of variables in the
singular value decomposition of general m × n complex matrices is derived. Then the density functions
are formulated for all rank n complex singular Wishart distributions. From this, the joint eigenvalue
density of low rank complex Wishart matrices are derived. Finally, application of these densities in
information theory is given.

Keywords and Phrases. Complex singular matrix distribution, complex Wishart distribution, singular
value decomposition, channel capacity, Rayleigh distributed MIMO channel.
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Résumé

On étudie les matrices de Wishart complexes singulières. On introduit un élément volumétrique sur
l’espace des matrices m×m complexes semi-définies de rang n < m et l’on en établit certaines propriétés,
telles la décomposition selon les valeurs singulières et leurs fonctions de densité, d’où l’on obtient la
densité conjointe des valeurs propres de ces matrices de bas rang. On appliques ces densités à la théorie
de l’information.





1 Introduction

The present communictions revolution is due, in part, by advances in wireless communications, such as wireless
internet and multimedia communications. As the wireless industry becomes ubiquitous and polular, the need for a
high-data rate and large user capacity on a wireless platform is the key driver in developing robust communications
techniques, which offer a substantially increased information capacity. Recently, the theory of complex random
matrices has attracted a lot of attention as a powerful mathematical tool that enables the computation of MIMO
capacities for correlated channels. Multiple input, multiple output (MIMO) wireless communication systems, where
the number of inputs (or transmitters) nt is greater than the number of outputs (or receivers) nr (nt > nr) and the
channel is correlated at the transmitter end.

The capacity of a communication channel expresses the maximum rate at which information can be reliably
conveyed by the channel [1]. A MIMO channel can be represented by an nr × nt complex random matrix H ∼
CN(0,Σr⊗Σt), where Σt and Σr represent the channel correlation at the transmitter and receiver ends, respectively.
If Σr = σ2Inr

(or Inr
) and Σt = Int

(or σ2Int
) then the channel is said to be an uncorrelated Rayleigh distributed

channel, and the complex nonsingular Wishart matrix theory can be used to compute the capacities for both cases
nr ≥ nt and nt > nr, see [2]. However, if Σr = Inr and Σt = Σ then the complex nonsingular and singular Wishart
matrix theories are needed to compute the capacities for the cases nr ≥ nt and nt > nr, respectively. See [3] for the
case nr ≥ nt. In this paper we assume that Σr = Inr

, Σt = Σ and nt > nr, which leads us to represent the channel
capacity in the form of a complex singular Wishart matrix. This is the motivation behind this study.

Let an n×m complex Gaussian (or normal) random matrix A be distributed as A ∼ CN(M, In ⊗Σ) with mean
E{A} = M and covariance cov{A} = In ⊗ Σ. Here we read the symbol “∼” as “is distributed as”, CN denotes the
complex normal distribution and ⊗ denotes the Kronecker product. Then the matrix W = AHA is called a complex
noncentral Wishart matrix. If M = 0, then W is called a complex central Wishart matrix. The complex central and
noncentral Wishart distributions are denoted by CWm(n, Σ) and CWm(n, Σ,Ω), respectively, where Ω = Σ−1MHM .
The complex Wishart matrices are well studied in the literature only for n ≥ m, for example, see [4], [5] and [6].

In this paper, we extend the study of complex central Wishart distributions to the singular case, where 0 < n < m
and n, m ∈ Z. Thus the rank of W ∈ Cm×m is n provided the rank of A ∈ Cn×m is n. A volume element on the
space of positive semidefinite m×m Hermitian matrices of rank n < m is introduced (see Theorem 1). The Jacobian
of the change of variables in the singular value decomposition of general m × n complex matrices is derived (see
Theorem 2). The density is derived for rank-n complex central Wishart distributions for all integers n, 0 < n < m
(see Theorem 3). The joint eigenvalue density of low rank complex Wishart matrices are derived (see Theorem 4).
It should be noted that singular Wishart and beta distributions are studied in [7] for real random matrices. The
singular value distribution of Gaussian random matrices is given in [8].

This paper is organized as follows. Section 2 provides the necessary tools for deriving the complex singular
Wishart distribution theory. Complex singular Wishart matrices are studied in Section 3. The capacity of a MIMO
channel and the computational method are given in Section 4.

2 Necessary tools

In this section, we derive necessary tools for studying the singular Wishart distribution theory and MIMO channel
capacity. If 0 < n < m, then the density does not exist for W ∼ CWm(n, Σ) on the space of Hermitian m × m
matrices, because W is singular and of rank n almost surely. It can be shown that the density does exist on the
(2mn − n2)-dimensional manifold, CSm,n, of rank n of positive semidefinite m × m Hermitian matrices W with n
distinct positive eigenvalues. Moreover, the set of all m × n matrices E1 with orthonormal columns is called the
Stiefel manifold, denoted by CV n,m. Thus,

CV n,m = {E1(m× n);EH
1 E1 = In}. (1)

The elements of E1 can be regarded as the coordinates of a point on a (2mn − n2)-dimensional surface in the
2mn-dimensional Euclidean space.

Theorems 1 and 2 below are derived by means of the exterior product approach. See [9], p. 57, for the definition of
the exterior product for real matrices, such as symmetric, skew-symmetric, upper-triangular and arbitrary matrices.
On the other hand, if X = Xr + iXc is a complex matrix, then the exterior product is (dX) = (dXr) ∧ (dXc).
Jacobian formulas for some important complex matrix factorizations are given in [10].

The volume element (dW ) in the reduced spectral decomposition W = E1ΛEH
1 is given by the following theorem.

Theorem 1 Let m and n be two positive integers such that 0 < n < m and consider an m×m positive semidefinite
Hermitian matrix W ∈ CSm,n of rank n with decomposition W = E1ΛEH

1 , where the diagonal elements of Λ =
diag(λ1, . . . , λn) are positive real eigenvalues in decreasing order, λ1 > · · · > λn > 0, and E1 ∈ CV n,m. Then the
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volume element is

(dW ) = (2π)−n

(
n∏

k=1

λ2m−2n
k

)
n∏

k<l

(λk − λl)2 (dΛ) ∧ (EH
1 dE1), (2)

where

(dΛ) =
n∧

k=l

dλk, (EH
1 dE1) =

n∧
k=1

m∧
l=k

eH
l dek,

and the matrix E1 is appended with an m × (m − n) matrix E2 such that the compound m ×m matrix, E = [E1 :
E2] = [e1, . . . , en : en+1, . . . , em] is unitary.

Proof. First, we note that
dW = dE1ΛEH

1 + E1 dΛEH
1 + E1Λ dEH

1 ,

and
EH

1 E1 = In, EH
2 E1 = 0.

Therefore, we have

EH dWE =
[

EH
1 dE1Λ + dΛ + Λ dEH

1 E1 Λ dEH
1 E2

EH
2 dE1Λ 0

]
. (3)

The exterior product on the left side of equation (3) is equal to

(EHdWE) = (det E)2m(dW ) = (dW ).

The lth row of EH
2 dE1Λ is [

eH
l de1 · · · eH

l den

]
Λ, n + 1 ≤ l ≤ m,

and the exterior product of its elements is equal to

(detΛ)2
n∧

k=1

eH
l dek =

(
n∏

k=1

λ2
k

)
n∧

k=1

eH
l dek.

Therefore, the exterior product of all the elements of EH
2 dE1Λ is

m∧
l=n+1

[(
n∏

k=1

λ2
k

)
n∧

k=1

eH
l dek

]
=

(
n∏

k=1

λ2m−2n
k

)
n∧

k=1

m∧
l=n+1

eH
l dek. (4)

Second, we consider EH
1 dE1Λ + dΛ + ΛdEH

1 E1. Since the columns of E1 are orthonormal, we have

EH
1 E1 = In =⇒ EH

1 dE1 = −dEH
1 E1 = −(EH

1 dE1)H .

This implies that the real and the imaginary parts of EH
1 dE1 are skew-symmetric and symmetric, respectively.

Moreover, we have
EH

1 dE1Λ + dΛ + ΛdEH
1 E1 = EH

1 dE1Λ− ΛEH
1 dE1 + dΛ. (5)

The exterior product of the diagonal elements of the right side of equation (5) is given by

(dΛ) =
n∧

k=1

dλk. (6)

Note that the diagonal elements of EH
1 dE1Λ− ΛEH

1 dE1 are zeros.
Now, we consider the upper diagonal elements of EH

1 dE1Λ− ΛEH
1 dE1. Since the matrix Re

(
EH

1 dE1

)
is skew-

symmetric, it can be written as

Re
(
EH

1 dE1

)
=


0 −Re

(
eH
2 de1

)
· · · · · · −Re

(
eH
n de1

)
Re
(
eH
2 de1

)
0 · · · · · · −Re

(
eH
n de2

)
Re
(
eH
3 de1

)
Re
(
eH
3 de2

)
0 · · · −Re

(
eH
n de3

)
...

...
...

...
...

Re
(
eH
n de1

)
Re
(
eH
n de2

)
. . . . . . 0

 .

For k < l, the (k, l)th element of Re
(
EH

1 dE1

)
Λ− Λ Re

(
EH

1 dE1

)
is given by Re

(
eH
l dek

)
(λk − λl). Therefore, the

exterior product of the upper diagonal elements of

Re
(
EH

1 dE1

)
Λ− Λ Re

(
EH

1 dE1

)
2



is given by
n∧

k<l

Re(eH
l dek)

n∏
k<l

(λk − λl). (7)

Similarly, since the matrix Im
(
EH

1 dE1

)
is symmetric, it can be written as

Im
(
EH

1 dE1

)
=


Im
(
eH
1 de1

)
− Im

(
eH
2 de1

)
. . . . . . − Im

(
eH
n de1

)
− Im

(
eH
2 de1

)
Im
(
eH
2 de2

)
. . . . . . − Im

(
eH
n de2

)
− Im

(
eH
3 de1

)
− Im

(
eH
3 de2

)
. . . . . . − Im

(
eH
n de3

)
...

...
...

...
...

− Im
(
eH
n de1

)
− Im

(
eH
n de2

)
. . . . . . Im

(
eH
n den

)


and the exterior product of the upper diagonal elements of

Im
(
EH

1 dE1

)
Λ− Λ Im

(
EH

1 dE1

)
is given by

n∧
k<l

Im(eH
l dek)

n∏
k<l

(λk − λl). (8)

Therefore, the exterior product of the elements of the right side of equation (3) is obtained by multiplying equations
(4), (6), (7), and (8), i.e.,

(dW ) = (2π)−n

(
n∏

k=1

λ2m−2n
k

)
n∏

k<l

(λk − λl)2(dΛ) ∧ (EH
1 dE1). (9)

Note that we must divide the volume element by (2π)n to normalize the arbitrary phases of the n elements in the
first row of E1. �

The volume element (dW ) (or Jacobian) in the singular value decomposition is given by the following theorem.

Theorem 2 Let Z be an m × n complex matrix and Z = E1ΥH the nonsingular part of the singular value decom-
position, where E1 ∈ CV n,m, H ∈ U(n) and the diagonal elements of Υ = diag(υ1, . . . , υn) are positive real singular
values with υ1 > · · · > υn > 0. Then we have

(dZ) = (2π)−n

(
n∏

k=1

υ2m−2n+1
k

)

×
n∏

k<l

(υ2
k − υ2

l )2(dΥ) ∧ (EH
1 dE1) ∧ (HHdH) (10)

where

(dΥ) =
n∧

k=l

dυk, (HHdH) =
n∧

k=1

n∧
l=k

hl dhk, (EH
1 dE1) =

n∧
k=1

m∧
l=k

eH
l dek,

and the matrix E1 is appended with an m × (m − n) matrix E2 such that the compound m ×m matrix, E = [E1 :
E2] = [e1, . . . , en : en+1, . . . , em] is unitary.

Proof. First, we note that
dZ = dE1ΥHH + E1 dΥHH + E1Υ dHH

and
EH

1 E1 = In, EH
2 E1 = 0.

Therefore, we have

EH dZH =
[

EH
1 dE1Υ + dΥ + Υ dHHH

EH
2 dE1Υ

]
. (11)

The exterior product of the left side of equation (11) is equal to

(EH dZH) = (dZ).
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As in the proof of Theorem1 (see equation (4)), the exterior product of all the elements of EH
2 dE1Υ is

(EH
2 dE1Υ) =

(
n∏

k=1

υ2m−2n
k

)
n∧

k=1

m∧
l=n+1

eH
l dek. (12)

Second, we consider EH
1 dE1Υ + dΥ + ΥdHHH. Since H is unitary we have

HHH = In =⇒ HHdH = −dHHH = −(HHdH)H .

This implies that the real and imaginary parts of HHdH are skew-symmetric and symmetric, respectively. Similarly,
for EH

1 dE1. Thus the n× n matrix of differential forms is

T = EH
1 dE1Υ + dΥ + ΥdHHH = EH

1 dE1Υ−ΥHHdH + dΥ, (13)

with entries

Tkl =

 dυk + υk(Im(eH
k dek)− Im(hH

k dhk)) k = l,
eH
k delυl − υkhH

k dhl k > l,
eH
l dekυl − υkhH

l dhk k < l.

The exterior product of the elements of T is

(T ) =
n∧

k=1

Tkk

n∧
k<l

Tkl ∧ Tlk,

where

Tkl ∧ Tlk =
(
υ2

k − υ2
l

)
Re
(
eH
l dek ∧ hH

l dhk

)
∧
(
υ2

k − υ2
l

)
Im
(
eH
l dek ∧ hH

l dhk

)
=

(
υ2

k − υ2
l

)2
eH
l dek ∧ hH

l dhk. (14)

Therefore, the exterior product of equation (11) is

(dZ) = (2π)−n(EH
2 dE1Υ) ∧ (T )

= (2π)−n

(
n∏

k=1

υ2m−2n
k

)
n∧

k=1

m∧
l=n+1

eH
l dek

(
n∏

k=1

υk

)
n∏

k<l

(
υ2

k − υ2
l

)2 n∧
k=1

dυk

∧
n∧

k=1

n∧
l=k

eH
l dek ∧

n∧
k=1

n∧
l=k

hH
l dhk

= (2π)−n

(
n∏

k=1

υ2m−2n+1
k

)

×
n∏

k<l

(
υ2

k − υ2
l

)2
(dΥ) ∧ (EH

1 dE1) ∧ (HHdH). (15)

Note that we must divide the volume element by (2π)n to normalize the arbitrary phases of the n elements in the
first row of E1. �

The volume of the Stiefel manifold CV n,m is given by

Vol(CV n,m) =
∫
CV n,m

(EH
1 dE1) =

2nπmn

CΓn(m)
, (16)

where the complex multivariate gamma function is

CΓn(m) = πn(n−1)/2
n∏

k=1

Γ(m− k + 1), m > n− 1.

The differential form

(dE1) ,
1

Vol[CV n,m]
(EH

1 dE1) =
CΓn(m)
2nπmn

(EH
1 dE1) (17)
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has the property that ∫
CV n,m

(dE1) = 1,

and it represents the Haar invariant probability measure on CV n,m.
If m = n, then we get a special case of Stiefel manifold, the so-called unitary manifold, defined by

CV n,n ≡ U(n) = {E(n× n);EHE = In},

that is, the set of unitary n× n matrices. The volume of U(n) is given by

Vol [U(n)] =
∫

U(n)

(EH dE) =
2nπn2

CΓn(n)
. (18)

The probability distributions of random matrices are often derived in terms of hypergeometric functions of matrix
arguments. The following complex hypergeometric function of two matrix arguments is required in the sequel, i.e.,

0F
(n)
0 (X, Y ) =

∞∑
k=0

∑
κ

Cκ(X)Cκ(Y )
k!Cκ(Im)

,

where X ∈ Cm×m, Y ∈ Cn×n and 0 < n < m. Moreover, κ = (k1, . . . , kn) denotes a partition of the integer k with
k1 ≥ · · · ≥ kn ≥ 0 and k = k1 + · · ·+ kn and

∑
κ denotes summation over all partitions κ of k. The complex zonal

polynomial (also called Schur polynomial[11]) of a complex matrix Y defined in [5] is

Cκ(Y ) = χ[κ](1)χ[κ](Y ), (19)

where χ[κ](1) is the dimension of the representation [κ] of the symmetric group,

χ[κ](1) = k!

∏n
i<j(ki − kj − i + j)∏n

i=1(ki + n− i)!
, (20)

and χ[κ](Y ) is the character of the representation [κ] of the linear group given as a symmetric function of the
eigenvalues, λ1, . . . , λn, of Y by

χ[κ](Y ) =
det
[(

λ
kj+n−j
i

)]
det
[(

λn−j
i

)] . (21)

Note that both the real and complex zonal polynomials are particular cases of the (general α) Jack polynomials
C

(α)
κ (Y ), where α = 1 for complex and α = 2 for real zonal polynomials, respectively. See[12] for details. In

this paper we only consider the complex case; therefore, for notational simplicity we drop the superscript of Jack
polynomials, as was done in equation (19), i.e., Cκ(Y ) := C

(1)
κ (Y ). Finally, we have

Cκ(In) = 22kk!
[
1
2

n

]
κ

∏r
i<j(2ki − 2kj − i + j)∏r

i=1(2ki + r − i)!

where [
1
2
n

]
κ

=
r∏

i=1

(
1
2
(n− i + 1)

)
ki

for a partition κ of k with r nonzero parts and (a)k = a(a + 1) · · · (a + k − 1).

3 Complex Singular Wishart Matrices

In this section, we derive the complex singular Wishart density and the joint eigenvalue density of the complex
singular Wishart matrix.

Theorem 3 Let m and n be two positive integers such that 0 < n < m. The density of W ∼ CWm(n, Σ) on the
space CSm,n of m×m positive semidefinite Hermitian matrices of rank n is given by

f(W ) =
πn(n−m)

CΓn(n)(detΣ)n
etr
(
−Σ−1W

)
(detΛ)n−m, (22)

where W = E1ΛEH
1 , E1 ∈ CV n,m, Λ = diag(λ1, . . . , λn), and etr denotes the exponential of the trace, etr(·) =

exp(tr(·)).
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Proof. Let W = AHA, where the n×m matrix A is distributed as A ∼ CN(0, In⊗Σ) and Σ is an m×m positive
definite Hermitian matrix. The density of A is

f(A) = π−nm(detΣ)−n etr
(
−AΣ−1AH

)
(dA)

= π−nm(detΣ)−n etr
(
−Σ−1AHA

)
(dA), (23)

where the volume element (dA) ≡
∧n

k=1

∧m
l=1 dakl is included to facilitate the calculation of Jacobians when we

transform A. Transforming AH = E1ΥH as in Theorem 2 results in the desired parameterization W = E1ΛEH
1 ,

where Λ = Υ2 and detΛ = det Υ2. Thus we have

(dΛ) =
n∧

k=1

dλk = 2n

(
n∏

k=1

υk

)
n∧

k=1

dυk = 2n

(
n∏

k=1

υk

)
(dΥ). (24)

From Theorems 1 and 2 and equation (24) we can write (dA) as

(dA) = 2−n

(
n∏

k=1

λn−m
k

)
(dW )(HHdH).

Since
∏n

k=1 λk = det Λ, the joint density of W and H is

π−nm(detΣ)−n etr
(
−Σ−1W

)
2−n(detΛ)n−m(dW )(HHdH).

Integrating with respect to H over the Stiefel manifold CV n,m and using equation (16), we obtain the marginal
density function of W, given by equation (22). �

The following theorem gives the joint density of the eigenvalues of a complex singular Wishart matrix.

Theorem 4 Let m and n be two positive integers such that 0 < n < m and consider the m×m positive semidefinite
Hermitian matrix W ∼ CWm(n, Σ). The joint density of the positive eigenvalues, λ1, . . . , λn, of W is

f(Λ) =
πn(n−1)(detΣ)−n

CΓn(n)CΓn(m)

(
n∏

k=1

λm−n
k

)
n∏

k<l

(λk − λl)2

×
∫

E1∈CV n,m

etr
(
−Σ−1E1ΛEH

1

)
(dE1), (25)

where W = E1ΛEH
1 , E1 ∈ CV n,m, and Λ = diag(λ1, . . . , λn). Moreover∫

E1∈CV n,m

etr
(
−Σ−1E1ΛEH

1

)
(dE1) = 0F

(n)
0 (−Σ−1,Λ). (26)

Proof. Substituting (2) into the Wishart density (22) and integrating with respect to E1 over the Stiefel manifold
CV n,m, we have

f(Λ) =
πn(n−1)(2π)−n

CΓn(n)(detΣ)n

(
n∏

k=1

λm−n
k

)
n∏

k<l

(λk − λl)2

×
∫

E1∈CV n,m

etr
(
−Σ−1E1ΛEH

1

)
(EH

1 dE1). (27)

Now using (17) we obtain the desired results (25). �

Note that, if Σ = σ2Im, then the joint density of the eigenvalues λ1, . . . , λn has a simple form which does not
require a complex hypergeometric function representation.

Corollary 1 Let W ∼ CWm(n, σ2Im) with 0 < n < m. Then the joint density of the eigenvalues, λ1, . . . , λn, of W
is

g(Λ) =
πn(n−1)(σ2)−nm

CΓn(n)CΓn(m)

(
n∏

k=1

λm−n
k

)
n∏

k<l

(λk − λl)2 exp

(
− 1

σ2

n∑
k=1

λk

)
, (28)

where W = E1ΛEH
1 , E1 ∈ CV n,m, and Λ = diag(λ1, . . . , λn).
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Proof. Putting Σ = σ2Im in Theorem 4 and noting that∫
E1∈CV n,m

etr
(
− 1

σ2
E1ΛEH

1

)
(dE1) = etr

(
− 1

σ2
Λ
)∫

E1∈CV n,m

(dE1)

= exp

(
− 1

σ2

n∑
i=1

λi

)
(29)

complete the proof. �

4 The MIMO Channel Capacity

Recently, in response to the demand for higher bit rates in wireless communications, industrial researchers have
exploited the use of multiple input, multiple output systems, as shown in Fig. 1 below. These studies show that
MIMO systems increase capacity significantly over single input, single output (SISO) systems. For example, if
n = min{nt, nr}, a MIMO uncorrelated Rayleigh distributed channel achieves almost n more bits per hertz for every
3-dB increase in signal-to-noise ratio (SNR) compared to a SISO system, which achieves only one additional bit per
hertz for every 3-dB increase in SNR [2]. But the channel coefficients from different transmitter antennas to a single
receiver antenna can be correlated. This channel correlation, which degrades the channel capacity [13], depends on
the physical parameters of a MIMO system and the scatterer characteristics. The physical parameters include the
antenna arrangement and spacing, the angle spread, the angle of arrival, etc. One of the objectives of this paper is
to evaluate this capacity degradation for the channel matrix H ∼ CN(0, Inr ⊗Σ) with nt > nr. This will be done by
deriving closed form ergodic capacity formulas for correlated channels and their numerical evaluation.

The complex signal received at the jth output can be written as

yj =
nt∑

i=1

hijxi + vj , (30)

where hij is the complex channel coefficient between input i and output j, xi is the complex signal at the ith input
and vj is complex Gaussian noise. The signal vector received at the output can be written as y1

...
ynr

 =

 h11 · · · hnt1

...
...

...
h1nr

· · · hntnr


 x1

...
xnt

+

 v1

...
vnr

 ,

i.e., in vector notation,
y = Hx + v, (31)

where y, v ∈ Cnr , H ∈ Cnr×nt , and x ∈ Cnt (see Fig. 1).
The total power of the input is constrained to ρ,

E{xHx} ≤ ρ or tr E{xxH} ≤ ρ.

In this section, we shall deal exclusively with the linear model (31) and compute the capacity of MIMO channel
models for nt > nr.

We assume that H is a complex Gaussian random matrix whose realization is known to the receiver, or equivalently,
the channel output consists of the pair (y, H). Note that the transmitter does not know the channel and the input
power is distributed equally over all transmitting antennas. Moreover, if we assume a block-fading model and coding
over many independent fading intervals, then the Shannon or ergodic capacity of the random MIMO channel [2] is
given by

C = EH

{
log det

(
Int

+ (ρ/nt)HHH
)}

, (32)

where the expectation is evaluated using a complex Gaussian density. If H ∼ CN(0, Inr
⊗ Σ) then the channel

is Rayleigh distributed and correlated at the transmitter end. This is typical of fixed or mobile communication
environments. Here the covariance matrix of the rows of H is denoted by Σ, which is an nt × nt positive definite
Hermitian matrix. Let W = HHH ∼ CWnt(nr,Σ) and nt > nr. Then the channel capacity can be written as

C = EW {log det (Int
+ (ρ/nt)W)} , (33)
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Figure 1: A MIMO communication system.

where the expectation is evaluated using a complex singular Wishart density given in Theorem 3. Let λ1 > · · · > λnr

be the eigenvalues of W and Λ = diag(λ1, . . . , λnr ). Then the capacity can also be computed using a joint eigenvalue
density, f(Λ), or the single unordered eigenvalue density, f(λ), i.e.,

C = EΛ

{
log

(
nr∏

k=1

[1 + (ρ/nt)λk]

)}

=
nr∑

k=1

Eλk
{log(1 + (ρ/nt)λk)}

= nrEλ {log(1 + (ρ/nt)λ)} . (34)

The joint eigenvalue density of a complex singular Wishart matrix is given in Theorem 4. From this joint eigenvalue
density we can obtain a single unordered eigenvalue density, f(λ), by dividing f(Λ) by nr! and integrating with
respect to λ2, . . . , λnr .

As a numerical example, we compute the channel capacity of a correlated 2 × 4 channel matrix (nr = 2 and
nt = 4), i.e., H ∼ CN(0, I2 ⊗ Σ), where we assume the eigenvalues of the positive definite Hermitian matrix Σ are

1.8090, 1.3090, 0.6910, 0.1910.

In this case W is 4×4 complex singular Wishart matrix with two nonzero eigenvalues λ1 and λ2. The joint eigenvalue
distribution is given by

f(λ1, λ2) =
1

12(detΣ)2
(λ1λ2)2(λ1 − λ2)20F

(2)
0 (−Σ−1,Λ), (35)

where Λ = diag(λ1, λ2). The capacity of the correlated channel, H ∼ CN(0, I2 ⊗ Σ), is given by

Cc =
∫ ∞

0

∫ λ1

0

[log(1 + (ρ/4)λ1) + log(1 + (ρ/4)λ2)] f(λ1, λ2) dλ2 dλ1. (36)

For comparison purpose we also compute the capacity of the uncorrelated 2× 4 channel matrix, i.e., H ∼ CN(0, I2⊗
σ2I4). In this case, the joint eigenvalue density of the complex singular Wishart matrix is given by

g(λ1, λ2) =
1

12σ16
(λ1λ2)2(λ1 − λ2)2e−(λ1+λ2)/σ2

. (37)

From equation (37), we can evaluate the single unordered eigenvalue density, f(λ), which is given by

g(λ) =
λ2e−λ/σ2

12σ6

(
λ2

σ4
− 6

λ

σ2
+ 12

)
. (38)
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The capacity of this uncorrelated channel H ∼ CN(0, I2 ⊗ σ2I4) is given by

Cu = 2
∫ ∞

0

log(1 + (ρ/4)λ) g(λ) dλ. (39)

Figure 2 shows the capacity in nats5 vs signal-to-noise ratio for a 2× 4 correlated/uncorrelated Rayleigh fading
channel matrix. From this figure we note the following: (i) the capacity is decreasing with channel correlation, (ii)
the capacity is increasing with SNR.

0 5 10 15 20 25
0

2

4

6

8

10

12

Signal to noise ratio (SNR)

Ca
pa

ci
ty

 (i
n 

na
ts)

Cu 

Cc 

Figure 2: Capacity vs SNR for nt = 4 and nr = 2, i.e., 2 × 4 channel matrix. Cu and Cc denote the capacity of
uncorrelated and correlated Rayleigh channels, respectively.

5 Conclusion

In this paper, we studied the complex singular Wishart distribution and its application. In particular, we derived
the complex singular Wishart density and joint eigenvalue density of a complex singular Wishart matrix. Using
these distributions, both correlated and uncorrelated MIMO Rayleigh channel capacity formulas were obtained. The
capacities of 2 × 4 MIMO Rayleigh channel matrices were computed for b correlated and uncorrelated channels. It
was also shown how channel correlation degrades the capacity of the communication systems.

Appendix

The real singular Wishart density is derived in [7, Theorem 6]. In this appendix we give the joint eigenvalue density
of a real singular Wishart matrix. Note that we follow the notation of [7] and [9].

Theorem 5 Let m and n be two positive integers such that 0 < n < m and consider an m×m positive semidefinite
symmetric Wishart matrix W ∼ Wm(n, Σ). Then the joint density of the positive eigenvalues, λ1, . . . , λn, of W is

πn2/22−mn/2(detΣ)−n/2

Γn(n/2)Γn(m/2)

(
n∏

k=1

λ
(m−n−1)/2
k

)
n∏

k<l

(λk − λl)

×
∫

E1∈Vn,m

etr
(
−1

2
Σ−1E1ΛEH

1

)
(dE1),

5In equation (34), if we use loge then the capacity is measured in nats. If we use log2 then the capacity is measured in bits. Thus,
one nat is equal to e bits/sec/Hz (e = 2.718 . . .).
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where W = E1ΛEH
1 , E1 ∈ Vn,m and Λ = diag(λ1, . . . , λn). Moreover∫

E1∈Vn,m

etr
(
−1

2
Σ−1E1ΛEH

1

)
(dE1) = 0F

(n)
0

(
−1

2
Σ−1,Λ

)
.
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