Sergei Tabachnikov
Pennsylvania State University
February 8, 2013 from 16:00 to 18:00 (Montreal/EST time) On location
Colloquium presented by Sergei Tabachnikov (Pennsylvania State University)
Introduced by R. Schwartz about 20 years ago, the pentagram map acts on plane n-gons, considered up to projective equivalence, by drawing the diagonals that connect second-nearest vertices and taking the new n-gon formed by their intersections. The pentagram map is a discrete completely integrable system whose continuous limit is the Boussinesq equation, a completely integrable PDE of soliton type. In this talk I shall survey recent work on the pentagram map and its generalizations, emphasizing its close ties with the theory of cluster algebras, a new and rapidly developing field with numerous connections to diverse areas of mathematics.
Address
UQAM, Pav. Sherbrooke, 200, rue Sherbrooke O., room SH-3420