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École en Systèmes Dynamiques Contemporains, 2017.
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Examples of infinite-type
translation surfaces.
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Example: polygonal billiards

Consider the dynamical system defined by the frictionless motion
of a point inside an Euclidean polygon P where collisions with the
boundary are elastic, that is, each time a point hits a side of the
polygon its angle of incidence is equal to its angle of reflection.

Convention: the motion of a point ends when reaching a corner.

Conjecture: every triangular billiard has a closed
trajectory.

“It is fair to say that this 200-year-old problem is widely regarded as impenetrable.” R.E. Schwartz
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The unfolding trick

Idea: construct a surface SP out of P on which billiard trayectories
become “straight lines”.

1 Reflect P w.r.t each of its sides & glue along these sides.
Iterate on each new copy.

2 Identify any two copies on P that differ by a translation (using
the corresponding translation) .

Remark. By construction, change of coordinates in SP are
translations.
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Example: polygonal billiards
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Example:polygonal billiards

Thm. Let F t
θ be the translation flow on T 2 = R2/Z2.

1 F t
θ is periodic iff tan(θ) = p

q
2 F t

θ is uniquely ergodic iff tan(θ) is irrational.

A similar statement is valid for the 2-torus arising from the triangle
(π2 ,

π
8 ). (Key word: Veech’s dychotomy.)
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Example:polygonal billiards

Exercise. Let P be a polygon whose interior angles are of
the form pi

qi
π, i = 1, . . . , n and N = lcm(q1, . . . , qn). Then

SP is a closed oriented surface whose genus g(SP) is given
by:

g(SP) = 1 + N
2

(
n − 2−

n∑
1

1
qi

)

These kind of polygons are called rational polygons. All other poly-
gons are said to be irrational.

Natural question: what can be said about the topology of SP when
P is irrational?

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .



Example:polygonal billiards

Exercise. Let P be a polygon whose interior angles are of
the form pi

qi
π, i = 1, . . . , n and N = lcm(q1, . . . , qn). Then

SP is a closed oriented surface whose genus g(SP) is given
by:

g(SP) = 1 + N
2

(
n − 2−

n∑
1

1
qi

)

These kind of polygons are called rational polygons. All other poly-
gons are said to be irrational.

Natural question: what can be said about the topology of SP when
P is irrational?

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .



Example:polygonal billiards

Exercise. Let P be a polygon whose interior angles are of
the form pi

qi
π, i = 1, . . . , n and N = lcm(q1, . . . , qn). Then

SP is a closed oriented surface whose genus g(SP) is given
by:

g(SP) = 1 + N
2

(
n − 2−

n∑
1

1
qi

)

These kind of polygons are called rational polygons. All other poly-
gons are said to be irrational.

Natural question: what can be said about the topology of SP when
P is irrational?

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .



Example:polygonal billiards, irrational case

Theorem. Let P be an irrational polygon. Then SP has
infinite genus and only one end.

Up to homeo. there is only one orientable surface of infinite
genus and one end. It is called the Loch Ness monster (Phillips-
Sullivan/Ghys).
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Back to periodic orbits

Conjecture. Let P be an irrational polygon and SP the
corresponding Loch Ness monster obtained by the unfolding-
trick. There exists a direction θ for which F t

θ has a periodic
orbit.
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Example:The Ehrenfest2 Wind-tree model (1912)
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Example: Hardy-Weber’s periodic wind-tree model (1980)
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Example: Hardy-Weber’s periodic wind-tree model is a
covering of this genus 5 surface
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Example: the infinite staircase
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Example: baker’s surface
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Example: Thurston-Veech-McMullen-Hooper’s
construction of pseudo-Anosovs

INPUT: (1) G bipartite graph with a ribbon structure. V (G) =
HtV . (2) A posivite eigenfunction f : V (G)→ R+ of the adjacency
operator.

OUTPUT: a very symmetric infinite type translation surface with
a“pseudo-Anosov” homeomorphism. We have two natural maps:

Hor : E (G)→ H, Vert : E (G)→ V

These and the ribbon structure define two permutations on the set
of edges of G :

E(e) = pHor(e)(e), N (e) = pVert(e)(e).

For each edge e let

Re = [0, f ◦ Vert(e)]× [0, f ◦ Hor(e)]
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Example: T-V-McM-H’s construction of p.Anosovs

We have two natural maps:

Hor : E (G)→ H, Vert : E (G)→ V

These and the ribbon structure define two permutations on the set
of edges of G :

E(e) = pHor(e)(e), N (e) = pVert(e)(e).

For each edge e let

R = [0, f ◦ Vert(e)]× [0, f ◦ Hor(e)]

GLUEING RULES (using translations). For each edge e ∈ E (G):
1 Glue the right side of Re to the left side of RE(e) and
2 the top side of Re to the bottom side of RN (e).

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .



Example: T-V-McM-H’s construction of p.Anosovs

Exercise.
1 Suppose that S = S(G , f ) is a

Thurston-Veech-McMullen-Hooper surface. Show that:

Area(S) = λ

2
∑

v∈V(G)
f(v)2

2 Perform the construction for:
√
2
3

√
2
3

√
2
3

1
√
2
2

1
2
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Main definitions and general
aspects.
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Three definitions: constructive

Definition. Let P be an at most countable set of Euclidean
polygons and f : E (P)→ E (P) a pairing of edges. Let M be⊔

P∈P P/ ∼ deprived of all vertices of infinite degree. If M
is connected we call it the translation surface obtained from
the family of polygons P.

For each vertex v ∈ P ∈ P we denote by αv ∈ (0, 2π) the interior
angle of P at v . For each finite degre vertex v ∈ P there exists
positive integer kv so that∑

w∈π−1(π(v))
αw = 2kvπ. (1)

If kv > 1, the point π(v) ∈ M is called a (finite) conical singularity
of angle 2πkv while if k = 1 it is called a regular point.
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Three definitions: geometric

Remark that by construction M deprived from all conical singularities
admits an atlas whose transition functions are translations.

Definition. A translation surface is a pair (S, T ) made of
a connected topological surface S and a maximal translation
atlas T on S \ Σ, where:

1 Σ is a discrete subset of S and
2 every z ∈ Σ is a finite conical singularity*.

The maximal translation atlas T is called a translation surface
structure on S and its charts are called the flat charts or flat
coordinates.
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Translation atlases provide structure

At any point x of M \ Σ we can pull-back using flat charts the
Euclidean metric of C. This gives rise to a globally well-defined flat
metric µ on M \ Σ.

This metric provides a notion of distance and
area. If z = x + iy is a flat chart on M \Σ then µ is given in these
coordinates by dx2 + dy2 and the area by dx ∧ dy = i

2 dz ∧ dz̄ .We
denote by M̂ the metric completion of M \ Σ w.r.t. (the intrinsic
metric induced by) µ. We also have a well defined Lebegue measure
λ on M.
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Conical and wild singularities

Definition. A point p ∈ M̂ is called a conical singularity if
there exists a neighborhood U of p in M̂ such that U \ p is
isometric to a flat cyclic covering Ũk of degree k over the
punctured disc {z ∈ C | 0 < |z | < ε}, for some ε > 0 and
k ∈ {2, 3, . . . ,∞}. If the degre k of the covering is finite we
say that p is a conical singularity of finite angle 2πk and if
k =∞ we say that p is an infinite angle singularity.

Definition. A point p ∈ M̂ \M which is not a conical singu-
larity is called a wild singularity. The subset of M̂ formed by
all conic and wild singularities is called the set of singularities
of M and will be denoted by Sing(M).
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Translation atlases provide symmetries

Definition. A homeomorphism f : M → M which in flat
charts is an R-affine map is called an affine automorphism.
Let Aff+(M) be the group of affine automorphisms of M
which preserve orientation.

The image of the derivative map:

D : Aff+(M)→ GL+
2 (R)

is called the Veech group of M. We denoted it by Γ(M).
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Translation atlases provide dynamics

Definition. For each direction θ ∈ R/2πZ the vector
field dz

zt = eiθ in C is translation invariant. The pull-back
of this vector field through flat charts is well-defined on
M \Sing(M) and the associated “flow” F t

θ is called the trans-
lation/straightline/geodesic in direction θ.
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Veech’s dychotomy

Thm.(Veech ’89). Let M be a compact translation surface
such that Γ(M) is a lattice. Then F t

θ is either periodic* or
uniquely ergodic.
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Three definitions:analytic

Definition. A translation surface is a pair (X , ω) formed by a
Riemann surface X and a holomorphic 1–form ω on X which
is not identically zero.
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Infinite type

A translation surface M = (X , ω) is said to be of finite type if
X is of finite type* (as a Riemann surface) and M has finite
area. If M is not of finite type we say it is of infinite type.

A translation surface whose fundamental group is not finitely gen-
erated is of infinite type. We will focus on this kind of infinite type
surfaces.

How do we classify them topologically?
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Ends of a topological space

Definition. Let U1 ⊇ U2 ⊇ . . . be an infinite sequence of
non-empty connected open subsets of X such that for each
i ∈ N the boundary ∂Ui of Ui is compact and

⋂
i∈N

Ui = ∅.

Two such sequences U1 ⊇ U2 ⊇ . . . and U ′
1 ⊇ U ′

2 ⊇ . . . are
said to be equivalent if for every i ∈ N there exist j such
that Ui ⊇ U ′

j and viceversa. The corresponding equivalence
classes are also called topological ends of X and we will de-
note it by Ends(X ).
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Ends of a surface

An end [U1 ⊇ U2 ⊇ . . .] is called planar if there exists Ui of genus
zero.

Definition.We define Ends∞(S) ⊂ Ends(S) as the set of all
ends which are not planar.

Thm.(Kerékjártó-Richards, ’63). Two non-compact ori-
entable surfaces S and S ′ of the same genus are homeomor-
phic if and only if they have the same genus g ∈ N∪{0,∞},
and both Ends∞(S) ⊂ Ends(S) and Ends∞(S ′) ⊂ Ends(S ′)
are homeomorphic as nested topological spaces, that is, there
exists a homeomorphism h : Ends(S)→ Ends(S)′ such that
h(Ends∞(S)) = Ends∞(S ′)
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Ends of a surface

Thm.(Kerékjártó-Richards’63). Two non-compact orientable
surfaces S and S ′ of the same genus are homeomorphic if and
only if Ends∞(S) ⊂ Ends(S) and Ends∞(S ′) ⊂ Ends(S ′)
are homeomorphic as nested topological spaces, that is, there
exists a homeomorphism h : Ends(S)→ Ends(S)′ such that
h(Ends∞(S)) = Ends∞(S ′)

Thm.(Kerékjártó-Richards’63). Let C ′ ⊂ C be a nested pair
of closed subset of the Cantor set. Then there exist a surface
S such that Ends∞(S) ⊂ Ends(S) is homeomorphic to C ′ ⊂
C as nested pair of topological spaces.
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Affine symmetries and Veech
groups.
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Veech groups: compact case

Let M be a compact translation surface and Γ(M) its Veech group.
Then:

1 Γ(M) is Fuchsian (but generically trivial).
2 Γ(M) is never co-compact.

Open questions:
1 Does there exist Γ(M) of the second kind?
2 Does there exist Γ(M) cyclic and hyperbolic?
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Veech groups and billiards

Thm. Let P be an irrational polygon whose interior angles
are λjπ, j = 1, . . . , n. Then the group of rotations z →
e2πλj i z has finite index Γ(SP).

Question. Can any countable subgroup of GL+
2 (R) be the

Veech group of an infinite type translation surface?
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Veech groups of LNM

Thm.(Przytycki-Schmithüsen-V.) Every countable subgroup
G < GL+

2 (R) is the Veech group of a translation surface MG
homeomorphic to the Loch Ness monster.

Remarks
The translation surface MG has infinite area.
The dynamic of the translation flow F t

θ in MG is uninteresting.
The Veech group of the infinite staircase is a lattice and, as we will
see later, in this particular example we have an analog of Veech’s
dychotomy.
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2 (R) is the Veech group of a translation surface MG
homeomorphic to the Loch Ness monster.

Remarks
The translation surface MG has infinite area.
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Open questions

Question. Let C∞ ⊂ C be a nested couple of closed sub-
spaces of the Cantor set and G any countable subgroup of
GL+

2 (R). Is it possible to find a translation surface M such
that Ends∞(S) = C∞, Ends(S) = C and whose Veech group
is G?

Question. Does there exist a translation surface M homeo-
morphic to Jacob’s ladder and whose Veech group is SL2(Z)?
a lattice?
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Veech groups in finite area

Thm.(Hooper,2015) Let M be a Thurston-Veech translation
surface constructed from a bipartite graph G and a positive
eigenfunction f with eigenvalue λ. Then the group Hλ gen-
erated by the matrices(

1 λ
0 1

) (
1 0
λ 1

)

is a subgroup of Γ(M).

Proposition. The Veech group of Baker’s surface is a non-
elementary Fuchsian group of the second kind.
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Veech groups in finite area and dynamics

Thm.(Treviño,2013). Let M be a translation surface of in-
finite genus and finite area whose Veech group is a lattice.
Then for a.e. direction F t

θ is ergodic.

Question Does there exist an infinite type and finite area
translation surface whose Veech group is SL2(Z)? a lattice?
of the first kind?
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finite genus and finite area whose Veech group is a lattice.
Then for a.e. direction F t

θ is ergodic.

Question Does there exist an infinite type and finite area
translation surface whose Veech group is SL2(Z)? a lattice?
of the first kind?

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .



Dynamical properties of the
translation flow (recurrence and

ergodicity).
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Z-covers

A (connected) cover π : M̃ → M \Σ with deck transf. group
isomorphic to Z is called a Z-cover. These are determined by
non-primitive classes in H1(M,Σ;Z).

Every translation surface has a holonomy map:

hol : H1(M,Σ;Z)→ R2

It is defined by developing a representative of the class in the
plane and then taking the difference of the starting and end
points.
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Recurrence in Z-covers

Thm.(Hooper-Weiss.’12) Let M̃ → M be a Z-cover defined
by a class c ∈ H1(M,Σ;Z) such that hol(c) = 0. If θ is a
direction for which F t

θ is ergodic, then F̃ t
θ is recurrent.

A classical theorem by Kerckhoff-Masur-Smillie implies:

Cor. Let M̃ → M be a Z-cover defined by a class c ∈
H1(M,Σ;Z) such that hol(c) = 0.Then F̃ t

θ is recurrent for
a.e. direction θ.
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Skew-products over IET’s

Let T : I → I be a IET and f : I → Z a measurable function. The
dyn. system on I × Z defined by:

Tf (x , n) = (T (x), n + f (x))

is called a skew-product.

Thm.(Atkinson-Krygin) Suppose that f is integrable and T is
ergodic. If

∫
I f dλ = 0 then the skew product Tf is recurrent.
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Recurrence in the staircase

γA

γA

γB

γB

γC

γC

A B C

C B A
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Recurrence in general Abelian coverings

Atkinson’s theorem cannot be generalized to skew products whose
fiber is Zd , d ≥ 2.

However, Avila and Hubert developed a ge-
ometric criterion that guarantees recurrence of certain Zd -covers
(existence of tunneling curves).

Thm.(Avila-Hubert) Let Pa,b be a periodic wind-tree model.
Then for a.e. direction θ the billiard flow on Pa,b is recurrent.

Question. Does there existe M̃ → M a Zd -cover, d ≥
2, defined by a cycle c ∈ H1(M,Σ;Zd ) such that M is a
square-tiled surface, Re(hol(c)) = 0 and the translation flow
is dissipative in almost every direction?
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Ergodicity. Case study: the infinite staircase

Thm.(Hopper-Hubert-Weiss) Let F̃ t
θ be the translation flow

on the infinite staircase M.
1 If θ = p

q with p or q EVEN, then F̃ t
θ decomposes M

into infinitely many cylinders,
2 If θ = p

q with p and q ODD, then F̃ t
θ decomposes M

into two infinite strips, and
3 If θ is irrational, then F̃ t

θ is ergodic w.r.t. Lebesgue.

4 For every irrational direction θ, the locally finite Borel
ergodic measures for the flow in direction of slope θ are
precisely the Maharam measures.
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Ergodicity: Z-covers

Thm.(Hubert-Weiss) Let M̃ → M be a Z-cover for which
Γ(M̃) is a lattice and has an infinite strip. Then for a.e.
direction θ, the flow F̃ t

θ is ergodic.

Definition. Let Tf be a Z-valued skew-product over an IET.
An element N ∈ Z is called an essential value if for every
A ⊂ I of positive measure, there exists n ∈ Z such that
T n

f (A× 1) ∩ A× N has positive measure.

Proposition. With the aforementioned hypothesis, if there
exist an essential value different from zero then Tf is ergodic.
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Ergodicity: Z2-covers and beyond

Thm.(Fraczek-Ulcigrai) For all parameteres (a, b) and for a.e.
direction θ the translation flow F t

θ on the periodic wind-tree
model is not ergodic.

Thm.(Málaga-Troubetzkoy) There are families of
non-periodic wind-tree models for which for a.e. direc-
tion θ the translation flow F t

θ is ergodic.
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Ergodicity: Z2-covers and beyond

Thm.(Hooper) Let M be a Thurston-Veech surface con-
structed from a bipartite infinite graph which has no vertices
of valance one. Then for a “small” set of directions θ ∈ Θ it
is possible to classify all locally finite ergodic invariant mea-
sures.
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