Geometry and dynamics on infinite-type flat surfaces.

Ferrán Valdez

ferran@matmor.unam.mx UNAM

École en Systèmes Dynamiques Contemporains, 2017. Université de Montréal

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .

- **1** Examples of infinite-type translation surfaces.
- **2** Main definitions and general aspects.
- **③** Affine symmetries and Veech groups.
- Oynamical properties of the translation flow (recurrence and ergodicity).

Examples of infinite-type translation surfaces.

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .

Consider the dynamical system defined by the frictionless motion of a point inside an Euclidean polygon P where collisions with the boundary are elastic, that is, **each time a point hits a side of the polygon its angle of incidence is equal to its angle of reflection**.

Consider the dynamical system defined by the frictionless motion of a point inside an Euclidean polygon P where collisions with the boundary are elastic, that is, **each time a point hits a side of the polygon its angle of incidence is equal to its angle of reflection**.

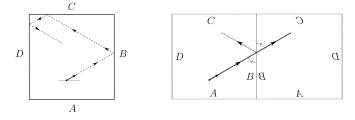
<u>Convention</u>: the motion of a point ends when reaching a corner.

Consider the dynamical system defined by the frictionless motion of a point inside an Euclidean polygon P where collisions with the boundary are elastic, that is, **each time a point hits a side of the polygon its angle of incidence is equal to its angle of reflection**.

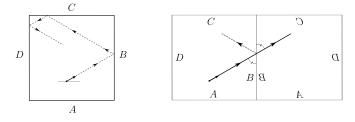
<u>Convention</u>: the motion of a point ends when reaching a corner.

Conjecture: every **triangular** billiard has a closed trajectory.

"It is fair to say that this 200-year-old problem is widely regarded as impenetrable." R.E. Schwartz

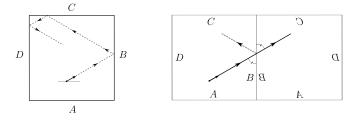


Idea: construct a surface S_P out of P on which billiard trayectories become "straight lines".



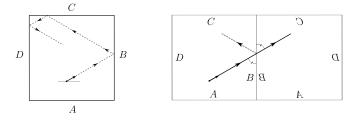
Idea: construct a surface S_P out of P on which billiard trayectories become "straight lines".

 Reflect P w.r.t each of its sides & glue along these sides. Iterate on each new copy.



Idea: construct a surface S_P out of P on which billiard trayectories become "straight lines".

- Reflect P w.r.t each of its sides & glue along these sides. Iterate on each new copy.
- Identify any two copies on P that differ by a translation (using the corresponding translation).



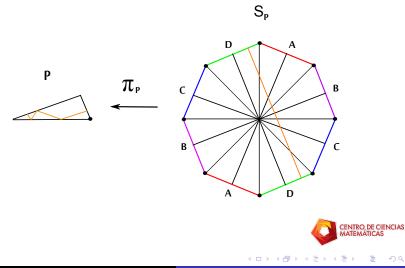
Idea: construct a surface S_P out of P on which billiard trayectories become "straight lines".

- Reflect P w.r.t each of its sides & glue along these sides. Iterate on each new copy.
- Identify any two copies on P that differ by a translation (using the corresponding translation).

Remark. By construction, change of coordinates in S_P are **translations**.

IENCIAS

Example: polygonal billiards



Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .

Thm. Let F_{θ}^{t} be the translation flow on $T^{2} = \mathbb{R}^{2}/\mathbb{Z}^{2}$. **9** F_{θ}^{t} is periodic iff $\tan(\theta) = \frac{p}{q}$ **9** F_{θ}^{t} is uniquely ergodic iff $\tan(\theta)$ is irrational.

Thm. Let F_{θ}^{t} be the translation flow on $T^{2} = \mathbb{R}^{2}/\mathbb{Z}^{2}$. **1** F_{θ}^{t} is periodic iff $\tan(\theta) = \frac{p}{q}$ **2** F_{θ}^{t} is uniquely ergodic iff $\tan(\theta)$ is irrational.

A similar statement is valid for the 2-torus arising from the triangle $(\frac{\pi}{2}, \frac{\pi}{8})$. (Key word: Veech's dychotomy.)

Exercise. Let *P* be a polygon whose interior angles are of the form $\frac{p_i}{q_i}\pi$, i = 1, ..., n and $N = lcm(q_1, ..., q_n)$. Then S_P is a closed oriented surface whose genus $g(S_P)$ is given by:

$$g(S_P) = 1 + \frac{N}{2}\left(n - 2 - \sum_{i=1}^{n} \frac{1}{q_i}\right)$$

Exercise. Let *P* be a polygon whose interior angles are of the form $\frac{p_i}{q_i}\pi$, i = 1, ..., n and $N = lcm(q_1, ..., q_n)$. Then S_P is a closed oriented surface whose genus $g(S_P)$ is given by:

$$g(S_P) = 1 + \frac{N}{2} \left(n - 2 - \sum_{i=1}^{n} \frac{1}{q_i} \right)$$

These kind of polygons are called *rational polygons*. All other polygons are said to be irrational.

Exercise. Let *P* be a polygon whose interior angles are of the form $\frac{p_i}{q_i}\pi$, i = 1, ..., n and $N = lcm(q_1, ..., q_n)$. Then S_P is a closed oriented surface whose genus $g(S_P)$ is given by: $N \left(\begin{array}{c} n \\ -n \end{array} \right)$

$$g(S_P) = 1 + \frac{N}{2} \left(n - 2 - \sum_{i=1}^{n} \frac{1}{q_i} \right)$$

These kind of polygons are called *rational polygons*. All other polygons are said to be irrational.

Natural question: what can be said about the topology of S_P when P is irrational?

Example:polygonal billiards, irrational case

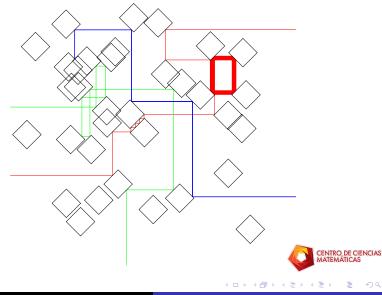
Theorem. Let P be an irrational polygon. Then S_P has infinite genus and only one end.

Theorem. Let P be an irrational polygon. Then S_P has infinite genus and only one end.

Up to homeo. **there is only one** orientable surface of infinite genus and one end. It is called the **Loch Ness monster** (Phillips-Sullivan/Ghys).

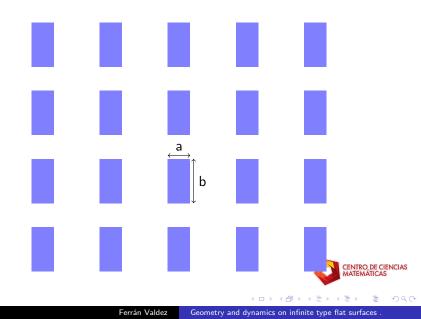
Conjecture. Let *P* be an irrational polygon and *S*_{*P*} the corresponding Loch Ness monster obtained by the unfolding-trick. There exists a direction θ for which F_{θ}^{t} has a periodic orbit.

Example: The *Ehrenfest*² Wind-tree model (1912)



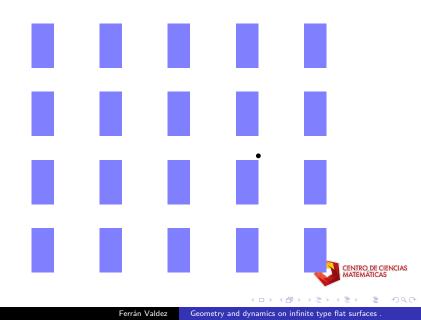
Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .

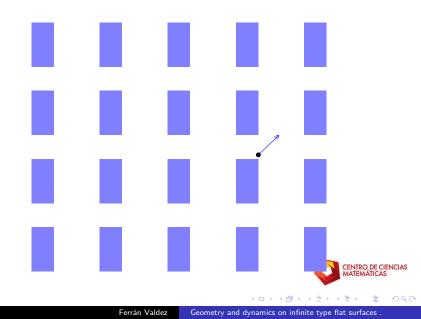


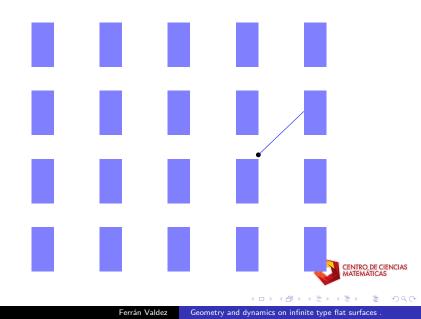


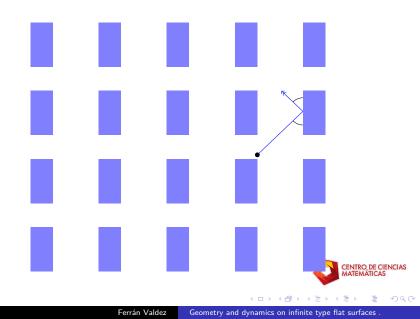


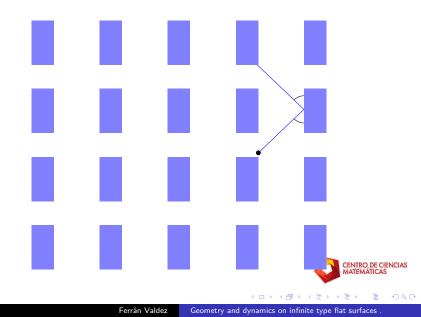


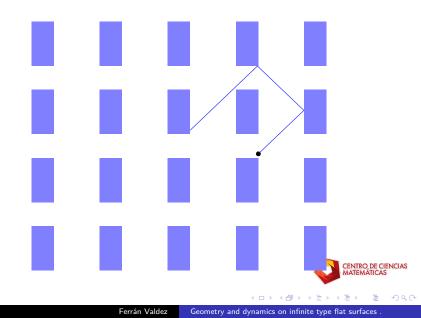


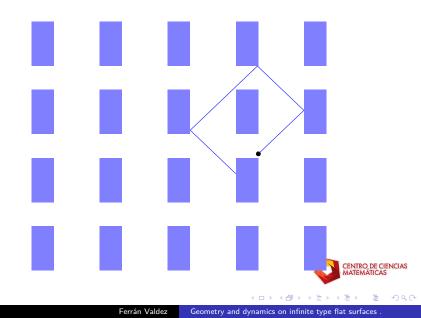


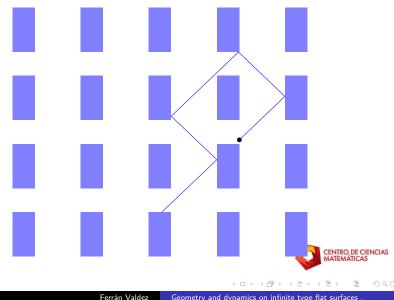


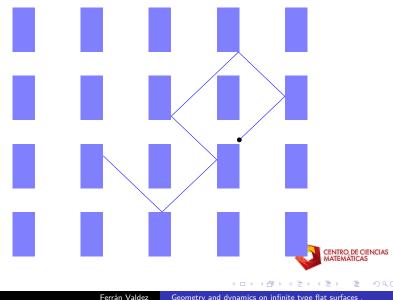


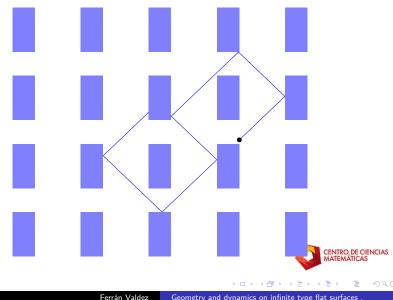


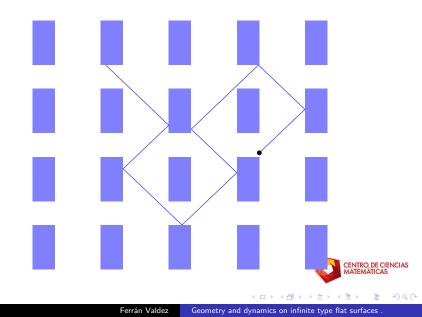


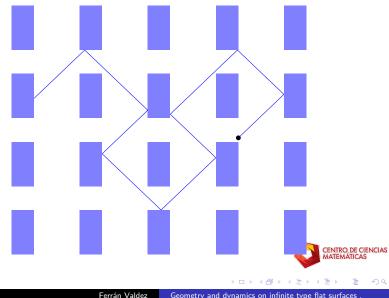


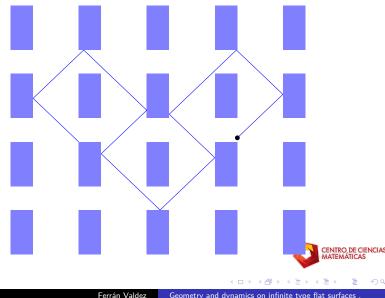




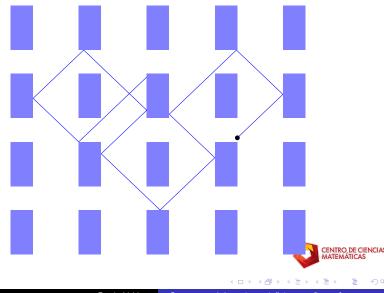


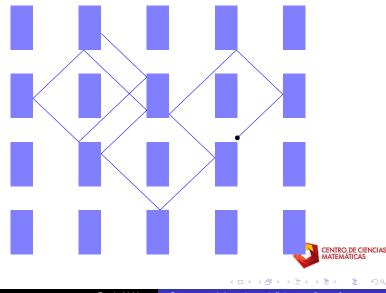


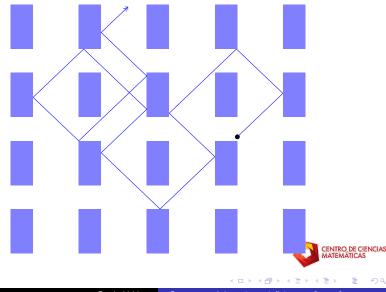


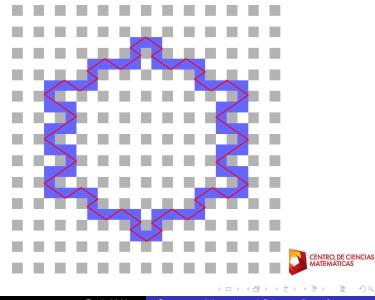


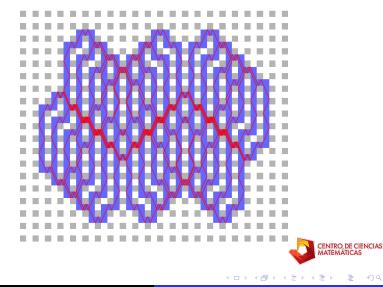
Geometry and dynamics on infinite type flat surfaces .

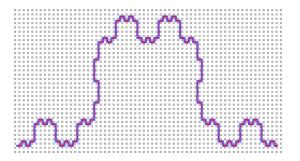










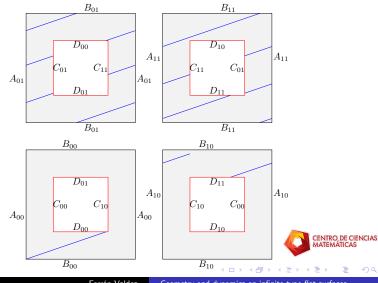


э

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .

< ロ > < 回 > < 回 > < 回 > < 回 >

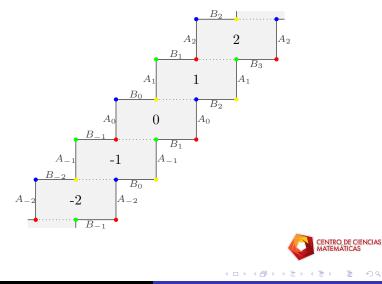
Example: Hardy-Weber's periodic wind-tree model is a covering of this genus 5 surface



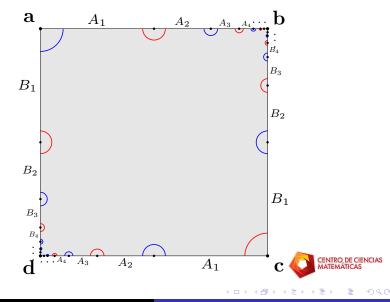
Ferrán Valdez

Geometry and dynamics on infinite type flat surfaces .

Example: the infinite staircase



Example: baker's surface



INPUT: (1) *G* bipartite graph with a ribbon structure. $V(G) = H \sqcup V$. (2) A posivite eigenfunction $f : V(G) \to \mathbb{R}^+$ of the adjacency operator.

OUTPUT: a *very symmetric* infinite type translation surface with a "pseudo-Anosov" homeomorphism.

INPUT: (1) *G* bipartite graph with a ribbon structure. $V(G) = H \sqcup V$. (2) A posivite eigenfunction $f : V(G) \to \mathbb{R}^+$ of the adjacency operator.

OUTPUT: a *very symmetric* infinite type translation surface with a "pseudo-Anosov" homeomorphism. We have two natural maps:

Hor :
$$E(G) \rightarrow H$$
, Vert : $E(G) \rightarrow V$

These and the ribbon structure define two permutations on the set of edges of G:

$$\mathcal{E}(e) = p_{Hor(e)}(e), \quad \mathcal{N}(e) = p_{Vert(e)}(e).$$

INPUT: (1) *G* bipartite graph with a ribbon structure. $V(G) = H \sqcup V$. (2) A posivite eigenfunction $f : V(G) \to \mathbb{R}^+$ of the adjacency operator.

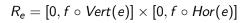
OUTPUT: a *very symmetric* infinite type translation surface with a "pseudo-Anosov" homeomorphism. We have two natural maps:

Hor :
$$E(G) \rightarrow H$$
, Vert : $E(G) \rightarrow V$

These and the ribbon structure define two permutations on the set of edges of G:

$$\mathcal{E}(e) = p_{Hor(e)}(e), \quad \mathcal{N}(e) = p_{Vert(e)}(e).$$

For each edge e let



Example: T-V-McM-H's construction of p.Anosovs

We have two natural maps:

Hor :
$$E(G) \rightarrow H$$
, Vert : $E(G) \rightarrow V$

These and the ribbon structure define two permutations on the set of edges of G:

$$\mathcal{E}(e) = p_{Hor(e)}(e), \quad \mathcal{N}(e) = p_{Vert(e)}(e).$$

For each edge *e* let

$$R = [0, f \circ Vert(e)] \times [0, f \circ Hor(e)]$$

GLUEING RULES (using translations). For each edge $e \in E(G)$:

- **1** Glue the right side of R_e to the left side of $R_{\mathcal{E}(e)}$ and
- 2 the top side of R_e to the bottom side of $R_{\mathcal{N}(e)}$.

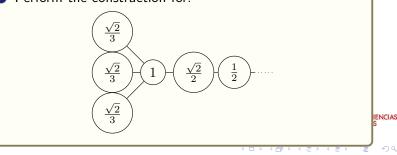
Example: T-V-McM-H's construction of p.Anosovs

Exercise.

 Suppose that S = S(G, f) is a Thurston-Veech-McMullen-Hooper surface. Show that:

Area(S) =
$$\frac{\lambda}{2} \sum_{v \in V(G)} f(v)^2$$

Perform the construction for:



Main definitions and general aspects.

Definition. Let \mathcal{P} be an at most countable set of Euclidean polygons and $f : E(\mathcal{P}) \to E(\mathcal{P})$ a pairing of edges. Let M be $\bigsqcup_{P \in \mathcal{P}} P / \sim$ deprived of all vertices of infinite degree. If M is connected we call it *the translation surface obtained from the family of polygons* \mathcal{P} .

Definition. Let \mathcal{P} be an at most countable set of Euclidean polygons and $f : E(\mathcal{P}) \to E(\mathcal{P})$ a pairing of edges. Let M be $\bigsqcup_{P \in \mathcal{P}} P / \sim$ deprived of all vertices of infinite degree. If M is connected we call it *the translation surface obtained from the family of polygons* \mathcal{P} .

For each vertex $v \in P \in \mathcal{P}$ we denote by $\alpha_v \in (0, 2\pi)$ the interior angle of P at v. For each finite degre vertex $v \in P$ there exists positive integer k_v so that

$$\sum_{\mathbf{w}\in\pi^{-1}(\pi(\mathbf{v}))}\alpha_{\mathbf{w}} = 2k_{\mathbf{v}}\pi.$$
 (1)

Definition. Let \mathcal{P} be an at most countable set of Euclidean polygons and $f : E(\mathcal{P}) \to E(\mathcal{P})$ a pairing of edges. Let M be $\bigsqcup_{P \in \mathcal{P}} P / \sim$ deprived of all vertices of infinite degree. If M is connected we call it *the translation surface obtained from the family of polygons* \mathcal{P} .

For each vertex $v \in P \in \mathcal{P}$ we denote by $\alpha_v \in (0, 2\pi)$ the interior angle of P at v. For each finite degre vertex $v \in P$ there exists positive integer k_v so that

$$\sum_{\mathbf{w}\in\pi^{-1}(\pi(\mathbf{v}))}\alpha_{\mathbf{w}} = 2k_{\mathbf{v}}\pi.$$
 (1)

If $k_v > 1$, the point $\pi(v) \in M$ is called a (finite) conical singularity of angle $2\pi k_v$ while if k = 1 it is called a *regular point*. Remark that by construction M deprived from all conical singularities admits an atlas whose transition functions are translations.

Remark that by construction M deprived from all conical singularities admits an atlas whose transition functions are translations.

Definition. A *translation surface* is a pair (S, \mathcal{T}) made of a connected topological surface S and a maximal translation atlas \mathcal{T} on $S \setminus \Sigma$, where:

- $\textcircled{0} \Sigma \text{ is a discrete subset of } S \text{ and}$
- **2** every $z \in \Sigma$ is a finite conical singularity*.

The maximal translation atlas T is called a *translation surface* structure on S and its charts are called the *flat charts* or *flat* coordinates.

At any point x of $M \setminus \Sigma$ we can pull-back using flat charts the Euclidean metric of \mathbb{C} . This gives rise to a globally well-defined *flat* metric μ on $M \setminus \Sigma$.

At any point x of $M \setminus \Sigma$ we can pull-back using flat charts the Euclidean metric of \mathbb{C} . This gives rise to a globally well-defined *flat* metric μ on $M \setminus \Sigma$. This metric provides a notion of distance and area. If z = x + iy is a flat chart on $M \setminus \Sigma$ then μ is given in these coordinates by $dx^2 + dy^2$ and the area by $dx \wedge dy = \frac{i}{2}dz \wedge d\overline{z}$.

At any point x of $M \setminus \Sigma$ we can pull-back using flat charts the Euclidean metric of \mathbb{C} . This gives rise to a globally well-defined *flat* metric μ on $M \setminus \Sigma$. This metric provides a notion of distance and area. If z = x + iy is a flat chart on $M \setminus \Sigma$ then μ is given in these coordinates by $dx^2 + dy^2$ and the area by $dx \wedge dy = \frac{i}{2}dz \wedge d\overline{z}$. We denote by \widehat{M} the metric completion of $M \setminus \Sigma$ w.r.t. (the intrinsic metric induced by) μ .

At any point x of $M \setminus \Sigma$ we can pull-back using flat charts the Euclidean metric of \mathbb{C} . This gives rise to a globally well-defined *flat* metric μ on $M \setminus \Sigma$. This metric provides a notion of distance and area. If z = x + iy is a flat chart on $M \setminus \Sigma$ then μ is given in these coordinates by $dx^2 + dy^2$ and the area by $dx \wedge dy = \frac{i}{2}dz \wedge d\overline{z}$. We denote by \widehat{M} the metric completion of $M \setminus \Sigma$ w.r.t. (the intrinsic metric induced by) μ . We also have a well defined Lebegue measure λ on M.

Definition. A point $p \in \widehat{M}$ is called a *conical singularity* if there exists a neighborhood U of p in \widehat{M} such that $U \setminus p$ is isometric to a flat cyclic covering \widetilde{U}_k of degree k over the punctured disc $\{z \in \mathbb{C} \mid 0 < |z| < \varepsilon\}$, for some $\varepsilon > 0$ and $k \in \{2, 3, \ldots, \infty\}$. If the degre k of the covering is finite we say that p is a *conical singularity of finite angle* $2\pi k$ and if $k = \infty$ we say that p is an infinite angle singularity.

Definition. A point $p \in \widehat{M}$ is called a *conical singularity* if there exists a neighborhood U of p in \widehat{M} such that $U \setminus p$ is isometric to a flat cyclic covering \widetilde{U}_k of degree k over the punctured disc $\{z \in \mathbb{C} \mid 0 < |z| < \varepsilon\}$, for some $\varepsilon > 0$ and $k \in \{2, 3, \ldots, \infty\}$. If the degre k of the covering is finite we say that p is a *conical singularity of finite angle* $2\pi k$ and if $k = \infty$ we say that p is an infinite angle singularity.

Definition. A point $p \in \widehat{M} \setminus M$ which is not a conical singularity is called a *wild singularity*. The subset of \widehat{M} formed by all conic and wild singularities is called *the set of singularities of M* and will be denoted by Sing(M).

ENCIAS

Definition. A homeomorphism $f : M \to M$ which in flat charts is an \mathbb{R} -affine map is called *an affine automorphism*. Let $Aff_+(M)$ be the group of affine automorphisms of M which preserve orientation.

Definition. A homeomorphism $f : M \to M$ which in flat charts is an \mathbb{R} -affine map is called *an affine automorphism*. Let $Aff_+(M)$ be the group of affine automorphisms of M which preserve orientation. The image of the derivative map:

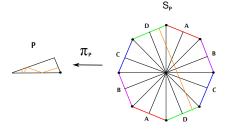
 $D: \operatorname{Aff}_+(M) \to GL_2^+(\mathbb{R})$

is called the Veech group of M. We denoted it by $\Gamma(M)$.

Definition. For each direction $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ the vector field $\frac{dz}{zt} = e^{i\theta}$ in \mathbb{C} is translation invariant. The pull-back of this vector field through flat charts is well-defined on $M \setminus Sing(M)$ and the associated "flow" F_{θ}^{t} is called the *translation/straightline/geodesic in direction* θ .

Thm.(Veech '89). Let M be a compact translation surface such that $\Gamma(M)$ is a lattice. Then F_{θ}^{t} is either *periodic*^{*} or uniquely ergodic.

Thm.(Veech '89). Let M be a compact translation surface such that $\Gamma(M)$ is a lattice. Then F_{θ}^{t} is either *periodic*^{*} or uniquely ergodic.



Definition. A translation surface is a pair (X, ω) formed by a Riemann surface X and a holomorphic 1-form ω on X which is not identically zero.

A translation surface $M = (X, \omega)$ is said to be of *finite type* if X is of finite type* (as a Riemann surface) and M has finite area. If M is not of finite type we say it is of infinite type.

A translation surface $M = (X, \omega)$ is said to be of *finite type* if X is of finite type* (as a Riemann surface) and M has finite area. If M is not of finite type we say it is of infinite type.

A translation surface whose fundamental group is not finitely generated is of infinite type. We will focus on this kind of infinite type surfaces.

How do we classify them topologically?

Definition. Let $U_1 \supseteq U_2 \supseteq \ldots$ be an infinite sequence of non-empty connected open subsets of X such that for each $i \in \mathbb{N}$ the boundary ∂U_i of U_i is compact and $\bigcap_{i \in \mathbb{N}} \overline{U_i} = \emptyset$. Two such sequences $U_1 \supseteq U_2 \supseteq \ldots$ and $U'_1 \supseteq U'_2 \supseteq \ldots$ are said to be equivalent if for every $i \in \mathbb{N}$ there exist j such that $U_i \supseteq U'_j$ and viceversa. The corresponding equivalence classes are also called *topological ends* of X and we will denote it by Ends(X).

An end $[U_1 \supseteq U_2 \supseteq ...]$ is called planar if there exists U_i of genus zero.

Definition. We define $\operatorname{Ends}_{\infty}(S) \subset \operatorname{Ends}(S)$ as the set of all ends which are not planar.

Thm.(Kerékjártó-Richards, '63). Two non-compact orientable surfaces S and S' of the same genus are homeomorphic if and only if they have the same genus $g \in \mathbb{N} \cup \{0, \infty\}$, and both $\operatorname{Ends}_{\infty}(S) \subset \operatorname{Ends}(S)$ and $\operatorname{Ends}_{\infty}(S') \subset \operatorname{Ends}(S')$ are homeomorphic as nested topological spaces, that is, there exists a homeomorphism $h : \operatorname{Ends}(S) \to \operatorname{Ends}(S)'$ such that $h(\operatorname{Ends}_{\infty}(S)) = \operatorname{Ends}_{\infty}(S')$

ENCIA:

MATEMATI

Thm.(Kerékjártó-Richards'63). Two non-compact orientable surfaces S and S' of the same genus are homeomorphic if and only if $\operatorname{Ends}_{\infty}(S) \subset \operatorname{Ends}(S)$ and $\operatorname{Ends}_{\infty}(S') \subset \operatorname{Ends}(S')$ are homeomorphic as nested topological spaces, that is, there exists a homeomorphism $h : \operatorname{Ends}(S) \to \operatorname{Ends}(S)'$ such that $h(\operatorname{Ends}_{\infty}(S)) = \operatorname{Ends}_{\infty}(S')$

Thm.(Kerékjártó-Richards'63). Let $C' \subset C$ be a nested pair of closed subset of the Cantor set. Then there exist a surface S such that $\operatorname{Ends}_{\infty}(S) \subset \operatorname{Ends}(S)$ is homeomorphic to $C' \subset C$ as nested pair of topological spaces.

CENTRO DE CIENCIAS

Affine symmetries and Veech groups.

э

-

4 3 b

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .

< ∃ >

• $\Gamma(M)$ is Fuchsian (but *generically* trivial).

- $\Gamma(M)$ is Fuchsian (but *generically* trivial).
- **2** $\Gamma(M)$ is never co-compact.

- $\Gamma(M)$ is Fuchsian (but *generically* trivial).
- **2** $\Gamma(M)$ is never co-compact.

- $\Gamma(M)$ is Fuchsian (but *generically* trivial).
- **2** $\Gamma(M)$ is never co-compact.

Open questions:

- Does there exist $\Gamma(M)$ of the second kind?
- 2 Does there exist $\Gamma(M)$ cyclic and hyperbolic?

Thm. Let *P* be an irrational polygon whose interior angles are $\lambda_j \pi$, j = 1, ..., n. Then the group of rotations $z \rightarrow e^{2\pi\lambda_j i} z$ has finite index $\Gamma(S_P)$.

Thm. Let *P* be an irrational polygon whose interior angles are $\lambda_j \pi$, j = 1, ..., n. Then the group of rotations $z \rightarrow e^{2\pi\lambda_j i} z$ has finite index $\Gamma(S_P)$.

Question. Can any *countable* subgroup of $GL_2^+(\mathbb{R})$ be the Veech group of an infinite type translation surface?

Thm.(Przytycki-Schmithüsen-V.) Every countable subgroup $G < \operatorname{GL}_2^+(\mathbb{R})$ is the Veech group of a translation surface M_G homeomorphic to the Loch Ness monster.

Thm.(Przytycki-Schmithüsen-V.) Every countable subgroup $G < \operatorname{GL}_2^+(\mathbb{R})$ is the Veech group of a translation surface M_G homeomorphic to the Loch Ness monster.

Remarks

- The translation surface M_G has infinite area.
- The dynamic of the translation flow F_{θ}^{t} in M_{G} is uninteresting.

Thm.(Przytycki-Schmithüsen-V.) Every countable subgroup $G < \operatorname{GL}_2^+(\mathbb{R})$ is the Veech group of a translation surface M_G homeomorphic to the Loch Ness monster.

Remarks

• The translation surface M_G has infinite area.

• The dynamic of the translation flow F_{θ}^{t} in M_{G} is uninteresting. The Veech group of the infinite staircase is a lattice and, as we will see later, in this particular example we have an analog of Veech's dychotomy.

Question. Let $C_{\infty} \subset C$ be a nested couple of closed subspaces of the Cantor set and G any countable subgroup of $\operatorname{GL}_2^+(\mathbb{R})$. Is it possible to find a translation surface M such that $\operatorname{Ends}_{\infty}(S) = C_{\infty}$, $\operatorname{Ends}(S) = C$ and whose Veech group is G?

Question. Let $C_{\infty} \subset C$ be a nested couple of closed subspaces of the Cantor set and G any countable subgroup of $\operatorname{GL}_2^+(\mathbb{R})$. Is it possible to find a translation surface M such that $\operatorname{Ends}_{\infty}(S) = C_{\infty}$, $\operatorname{Ends}(S) = C$ and whose Veech group is G?

Question. Does there exist a translation surface *M* homeomorphic to Jacob's ladder and whose Veech group is $SL_2(\mathbb{Z})$?

Question. Let $C_{\infty} \subset C$ be a nested couple of closed subspaces of the Cantor set and G any countable subgroup of $\operatorname{GL}_2^+(\mathbb{R})$. Is it possible to find a translation surface M such that $\operatorname{Ends}_{\infty}(S) = C_{\infty}$, $\operatorname{Ends}(S) = C$ and whose Veech group is G?

Question. Does there exist a translation surface *M* homeomorphic to Jacob's ladder and whose Veech group is $SL_2(\mathbb{Z})$? a lattice?

Thm.(Hooper,2015) Let *M* be a Thurston-Veech translation surface constructed from a bipartite graph *G* and a positive eigenfunction *f* with eigenvalue λ . Then the group H_{λ} generated by the matrices

$$\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$$

is a subgroup of $\Gamma(M)$.

Thm.(Hooper,2015) Let M be a Thurston-Veech translation surface constructed from a bipartite graph G and a positive eigenfunction f with eigenvalue λ . Then the group H_{λ} generated by the matrices

$$\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$$

is a subgroup of $\Gamma(M)$.

Proposition. The Veech group of Baker's surface is a nonelementary Fuchsian group of the second kind.

MATEMÁTICA

Thm.(Treviño,2013). Let *M* be a translation surface of infinite genus and finite area whose Veech group is a lattice. Then for a.e. direction F_{θ}^{t} is ergodic.

Thm.(Treviño,2013). Let M be a translation surface of infinite genus and finite area whose Veech group is a lattice. Then for a.e. direction F_{θ}^{t} is ergodic.

Question Does there exist an infinite type and finite area translation surface whose Veech group is $SL_2(\mathbb{Z})$? a lattice? of the first kind?

Dynamical properties of the translation flow (recurrence and ergodicity).

Ferrán Valdez Geometry and dynamics on infinite type flat surfaces .

A (connected) cover $\pi : \tilde{M} \to M \setminus \Sigma$ with deck transf. group isomorphic to \mathbb{Z} is called a \mathbb{Z} -cover. These are determined by non-primitive classes in $H_1(M, \Sigma; \mathbb{Z})$.

A (connected) cover $\pi : \tilde{M} \to M \setminus \Sigma$ with deck transf. group isomorphic to \mathbb{Z} is called a \mathbb{Z} -cover. These are determined by non-primitive classes in $H_1(M, \Sigma; \mathbb{Z})$.

Every translation surface has a holonomy map:

hol : $H_1(M, \Sigma; \mathbb{Z}) \to \mathbb{R}^2$

It is defined by developing a representative of the class in the plane and then taking the difference of the starting and end points.

Thm.(Hooper-Weiss.'12) Let $\tilde{M} \to M$ be a \mathbb{Z} -cover defined by a class $c \in H_1(M, \Sigma; \mathbb{Z})$ such that $\mathbf{hol}(c) = 0$. If θ is a direction for which F_{θ}^t is ergodic, then \tilde{F}_{θ}^t is recurrent.

Thm.(Hooper-Weiss.'12) Let $\tilde{M} \to M$ be a \mathbb{Z} -cover defined by a class $c \in H_1(M, \Sigma; \mathbb{Z})$ such that $\mathbf{hol}(c) = 0$. If θ is a direction for which F_{θ}^t is ergodic, then \tilde{F}_{θ}^t is recurrent.

A classical theorem by Kerckhoff-Masur-Smillie implies:

Cor. Let $\tilde{M} \to M$ be a \mathbb{Z} -cover defined by a class $c \in H_1(M, \Sigma; \mathbb{Z})$ such that hol(c) = 0. Then \tilde{F}^t_{θ} is recurrent for a.e. direction θ .

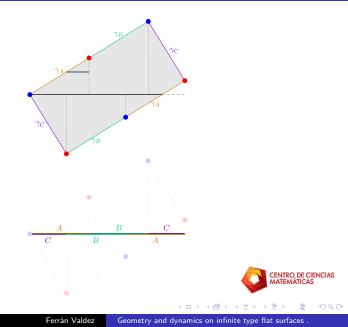
Let $T : I \to I$ be a IET and $f : I \to \mathbb{Z}$ a measurable function. The dyn. system on $I \times \mathbb{Z}$ defined by:

$$T_f(x,n) = (T(x), n+f(x))$$

is called a *skew-product*.

Thm.(Atkinson-Krygin) Suppose that f is integrable and T is ergodic. If $\int_{I} f d\lambda = 0$ then the skew product T_{f} is recurrent.

Recurrence in the staircase



Atkinson's theorem cannot be generalized to skew products whose fiber is \mathbb{Z}^d , $d \geq 2$.

Atkinson's theorem cannot be generalized to skew products whose fiber is \mathbb{Z}^d , $d \ge 2$. However, Avila and Hubert developed a geometric criterion that guarantees recurrence of certain \mathbb{Z}^d -covers (existence of tunneling curves).

Atkinson's theorem cannot be generalized to skew products whose fiber is \mathbb{Z}^d , $d \ge 2$. However, Avila and Hubert developed a geometric criterion that guarantees recurrence of certain \mathbb{Z}^d -covers (existence of tunneling curves).

Thm.(Avila-Hubert) Let $P_{a,b}$ be a periodic wind-tree model. Then for a.e. direction θ the billiard flow on $P_{a,b}$ is recurrent.

Atkinson's theorem cannot be generalized to skew products whose fiber is \mathbb{Z}^d , $d \ge 2$. However, Avila and Hubert developed a geometric criterion that guarantees recurrence of certain \mathbb{Z}^d -covers (existence of tunneling curves).

Thm.(Avila-Hubert) Let $P_{a,b}$ be a periodic wind-tree model. Then for a.e. direction θ the billiard flow on $P_{a,b}$ is recurrent.

Question. Does there existe $\tilde{M} \to M$ a \mathbb{Z}^d -cover, $d \ge 2$, defined by a cycle $c \in H_1(M, \Sigma; \mathbb{Z}^d)$ such that M is a square-tiled surface, $Re(\mathbf{hol}(c)) = 0$ and the translation flow is dissipative in almost every direction?

Ergodicity. Case study: the infinite staircase

Thm.(Hopper-Hubert-Weiss) Let \tilde{F}_{θ}^{t} be the translation flow on the infinite staircase M.

- If $\theta = \frac{p}{q}$ with p or q EVEN, then \tilde{F}_{θ}^{t} decomposes M into infinitely many cylinders,
- **2** If $\theta = \frac{p}{q}$ with p and q ODD, then \tilde{F}_{θ}^{t} decomposes M into two infinite strips, and
- **③** If θ is irrational, then $\widetilde{F}_{\theta}^{t}$ is ergodic w.r.t. Lebesgue.

イロト イボト イヨト イヨト

Ergodicity. Case study: the infinite staircase

Thm.(Hopper-Hubert-Weiss) Let \tilde{F}_{θ}^{t} be the translation flow on the infinite staircase M.

- If $\theta = \frac{p}{q}$ with p or q EVEN, then \tilde{F}_{θ}^{t} decomposes M into infinitely many cylinders,
- 3 If $\theta = \frac{p}{q}$ with p and q ODD, then \tilde{F}_{θ}^{t} decomposes M into two infinite strips, and
- **③** If θ is irrational, then $\widetilde{F}_{\theta}^{t}$ is ergodic w.r.t. Lebesgue.
- For every irrational direction θ, the locally finite Borel ergodic measures for the flow in direction of slope θ are precisely the Maharam measures.

Thm.(Hubert-Weiss) Let $\widetilde{M} \to M$ be a \mathbb{Z} -cover for which $\Gamma(\widetilde{M})$ is a lattice and has an infinite strip. Then for a.e. direction θ , the flow $\widetilde{F}_{\theta}^{t}$ is ergodic.

Thm.(Hubert-Weiss) Let $\widetilde{M} \to M$ be a \mathbb{Z} -cover for which $\Gamma(\widetilde{M})$ is a lattice and has an infinite strip. Then for a.e. direction θ , the flow $\widetilde{F}_{\theta}^{t}$ is ergodic.

Definition. Let T_f be a \mathbb{Z} -valued skew-product over an IET. An element $N \in \mathbb{Z}$ is called an **essential value** if for every $A \subset I$ of positive measure, there exists $n \in \mathbb{Z}$ such that $T_f^n(A \times 1) \cap A \times N$ has positive measure.

Thm.(Hubert-Weiss) Let $\widetilde{M} \to M$ be a \mathbb{Z} -cover for which $\Gamma(\widetilde{M})$ is a lattice and has an infinite strip. Then for a.e. direction θ , the flow $\widetilde{F}_{\theta}^{t}$ is ergodic.

Definition. Let T_f be a \mathbb{Z} -valued skew-product over an IET. An element $N \in \mathbb{Z}$ is called an **essential value** if for every $A \subset I$ of positive measure, there exists $n \in \mathbb{Z}$ such that $T_f^n(A \times 1) \cap A \times N$ has positive measure.

Proposition. With the aforementioned hypothesis, if there exist an essential value different from zero then T_f is ergodic.

ENCIAS

MATEMATIC

Thm.(Fraczek-Ulcigrai) For all parameteres (a, b) and for a.e. direction θ the translation flow F_{θ}^{t} on the **periodic** wind-tree model **is not** ergodic.

Thm.(Fraczek-Ulcigrai) For all parameteres (a, b) and for a.e. direction θ the translation flow F_{θ}^{t} on the **periodic** wind-tree model **is not** ergodic.

Thm.(Málaga-Troubetzkoy) There are families of non-periodic wind-tree models for which for a.e. direction θ the translation flow F_{θ}^{t} is ergodic.

Thm.(Hooper) Let M be a Thurston-Veech surface constructed from a bipartite infinite graph which has no vertices of valance one. Then for a "small" set of directions $\theta \in \Theta$ it is possible to classify **all** locally finite ergodic invariant measures.

