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These lecture notes were written to accompany a minicourse given

at the School and Workshop on Dynamical Systems at IMPA (Rio de

Janeiro), January 2006.

1. Lecture I: Introduction

Let f : M → M be a (pointwise) partially hyperbolic diffeomor-

phism. Recall what partially hyperbolic means. At every point in M ,

there exist tangent vectors that are uniformly contracted by the deriv-

ative Tf and tangent vectors that are uniformly expanded by Tf . The

contracted vectors lie in an invariant subbundle Es of TM , called the

stable subbundle, and the expanded vectors lie in an invariant subbun-

dle Eu, called the unstable subbundle. The sum of these subbundles

Eu ⊕ Es is the hyperbolic part of TM . The rest of TM is also under

control: there is a Tf -invariant complement Ec to Eu ⊕ Es in TM ,

called the center bundle. Tangent vectors in Ec may be expanded or

contracted under the action of Tf , but they are neither expanded as

sharply as vectors in Eu, nor contracted as sharply as vectors in Es.

As you learned last week, the stable subbundle is uniquely integrable

and tangent to a foliation Ws, and the unstable subbundle is uniquely

integrable and tangent to a foliation Wu. The center bundle Ec is

sometimes, but not always, tangent to a foliation. The stable and

unstable foliations are absolutely continuous, while the center foliation

(when it exists) can fail to be absolutely continuous.

We will assume throughout these lectures that f is C2 and preserves a

fixed volume m (or a measure equivalent to volume) on M , normalized

so that m(M) = 1. The most basic property of a measure-preserving

dynamical system is ergodicity. We will investigate which partially

hyperbolic diffeomorphisms are ergodic.

As Flavio explained to you, if f is an Anosov diffeomorphism, mean-

ing that Ec = 0, then f is ergodic:
1
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All Anosov diffeomorphisms are ergodic.

The proof of this fact (due to Anosov and Sinai [A, AS]) uses the

Hopf argument. We will revisit the Hopf argument in Lecture II, but

we recall here the basic idea. Ergodicity of f is equivalent to showing

that the forward and backward Birkoff average a of any continuous

function are almost everywhere constant. The forward and backward

averages are almost everywhere equal. The forward Birkhoff averages

of a continuous function are constant along leaves of the stable foliation

Ws, and the backward Birkhoff averages are constant along leaves of

the unstable foliationWu. If f is Anosov, then these two foliations are

transverse and absolutely continuous. Fubini’s Theorem implies that

the Birkhoff averages of a continuous are almost everywhere constant.

Hence f is ergodic.

Let’s now begin our investigation of the ergodicity of partially hy-

perbolic diffeomorphisms. We will be primarily concerned with what

Flavio calls strong partial hyperbolicity. That is, the case where both,

and not just one, of Eu and Es are nontrivial. (For important devel-

opments in the weak case, see [BonVi, AlBonVi]).

We will continue to keep the Hopf argument in mind. We still have

stable and unstable foliationsWs andWu, they are still absolutely con-

tinuous. They are no longer transverse, but they are quasi transverse:

the tangent spaces of their leaves intersect trivially. Forward Birkhoff

averages of continuous functions are constant along leaves of Ws, and

the backward Birkhoff averages are constant along leaves of Wu. It is

so close to the Anosov case that you might expect that the Hopf ar-

gument can be tweaked a little to show that every partially hyperbolic

diffeomorphism is ergodic. Of course if this were the case, I wouldn’t

be lecturing on this topic:

Not all partially hyperbolic diffeomorphisms are ergodic.

We can see this via a very simple example.

Example 1. Let g : N → N be a volume-preserving Anosov diffeo-

morphism. For concreteness, assume that N = R2/Z2 is the 2-torus,

and g is a linear Anosov automorphism, such as the map given by the

matrix

L =

(
2 1

1 1

)
.
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Let V = R/Z be the circle, and consider the product map

f0 = g × id : N × V → N × V ; g × id(x, θ) = (g(x), θ).

This map preserves volume on the 3-torus N × V , and is partially

hyperbolic, with Es
f0

= Es
g⊕{0}, Eu

f0
= Eu

g ⊕{0}, and Ec
f0

= {0}⊕TV .

Clearly, f0 is not ergodic; any set of the form N ×A is f -invariant, and

if A has measure between 0 and 1, then so does N × A.

It is instructive to examine where the Hopf argument goes wrong for

this example. Consider the forward and backward Birkhoff averages

of a fixed continuous function. As remarked above, these averages are

m-a.e. equal, are m-a.e. constant along stable manifolds and m-a.e.

constant along unstable manifolds.

We’ll be very ambitious for now and drop the “m.-a.e.” from these

statements. Where do we get? Starting at a point (x, θ) ∈ N ×V , and

considering all points we can get to from (x, θ) along leaves of either

the stable or unstable foliations, we arrive at the following set:

N × {θ}.

So our Birkhoff averages appear to be constant along sets of the form

N × {θ}. These are 0-sets in N × V , and we need constant almost

everywhere, so we have not gotten very far with the Hopf argument.

This argument can be made precise — see Exercise 1.8 below.

Now let’s alter our example slightly.

Example 2. Let g,N, V be as above, and let hα : V → V be a rotation

by α ∈ T/Z. Let fα = g × hα : N × V → N × V . As before, fα is

volume-preserving and partially hyperbolic, with the same partially

hyperbolic splitting as f0 (see Exercise 1.7 below). If α is rational,

then, as with f0, it is easy to see that fα is not ergodic. On the other

hand,

if α is irrational, then fα is ergodic.

We can see this using the Hopf argument as follows. Let ϕ+ be the

(forward) Birkhoff average of a continuous function ϕ. Then (Exer-

cise 1.8) ϕ+ is m-a.e. constant along sets of the form N × {y}, y ∈ V .

Let ϕ̂+(y) be the (m-a.e.) value of the function ϕ+ on N × {y}. The

function ϕ̂+ : V → R is (m-a.e.) invariant under the irrational rotation

hα. Ergodicity of hα implies that ϕ̂+, and so ϕ+ is m-a.e. constant.

Hence fα is ergodic.
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In our family of examples {fα |α ∈ R/Z} we have seen both ergod-

icity and nonergodicity. Each ergodic example can be approximated

by a nonergodic example, and vice versa. Suppose we pick an fα from

this family and attempt to simulate its behavior with an approximate

computation. If our computation is not exact we might confuse an

ergodic example for a nonergodic one.

For this reason, it is valuable to consider dynamical properties that

are stable under perturbation.

Definition: Let P be a property of a m-preserving diffeomorphism

f ∈ Diffrm(M), r ≥ 2, such as ergodicity. We say that f is stably P
if there is a Cr-open neighborhood U of f in f ∈ Diffr(M) such that

every g ∈ U has property P .

Introducing the regularity r into this defintion produces all sorts

of expositional headaches, and indeed, this is not quite the standard

definition of stably P . Let’s live with it for now, and I’ll explain how

it should be modified later. For the rest of this lecture, assume that r

is at least 3.

You have already seen examples of (Cr, r ≥ 2) of stably ergodic

diffeomorphisms. Since all Anosov diffeomorphisms are ergodic, and

Anosov diffeomorphisms are stably Anosov, we have:

Anosov diffeomorphisms are stably ergodic.

There are also examples of stably nonergodic diffeomorphisms. KAM

(Kolmogorov-Arnol’d-Moser) theory shows that if a (C3) area-preserving

diffeomorphism f of a surface has an elliptic periodic point with the

right amount of twist, then f will have elliptic islands in M , preventing

ergodicity. Since this twist condition is C3 open, we obtain:

KAM diffeomorphisms are stably nonergodic.

The partially hyperbolic diffeomorphisms fα in Examples 1 and 2

are neither stably ergodic nor stably nonergodic. Let’s see what hap-

pens when we combine a stably ergodic diffeomorphism with a stably

nonergodic one in a single partially hyperbolic example. We will use

the same product-type construction, this time on the 4-torus.

Example 3. Let g : N → N be as above, let V = R2/Z2 be the

2-torus, and let h : V → V be a C3 diffeomorphism with an elliptic

fixed point (a KAM diffeomorphism). See Exercise 1.9 for a specific
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example. Let k > 0 be an integer. If k is sufficiently large, then the

diffeomorphism f = gk × h is partially hyperbolic. Because h is KAM,

f is not ergodic, and any perturbation of f of the form g′ × h′ (where

g′ is a perturbation of gk and h′ is a perturbation of h) is not ergodic.

But is f stably nonergodic? That is, does every perturbation of f ,

including those not of the form g′ × h′ fail to be ergodic?

In all of our examples so far, this one included, the stable and un-

stable foliations have been jointly integrable, with Eu
f ⊕Es

f tangent to

the foliation of N × V by compact sets of the form N × {y}, y ∈ V .

Thus, when we try to use the Hopf argument starting at a point (x, y)

and following hte leaves of Ws and Wu, we never get further than the

0-set N ×{y}. This situation seems very special — one foliation (Wu)

is determined by the infinite past, and the other (Ws) by the infinite

future. Why should these foliations want to cooperate with each other?

In a later lecture we’ll see why this vague intuition is correct. For now,

I will give a concrete example to illustrate why this intuition might be

justified.

Example 4. (where things start to get interesting) For our next

example, we’ll consider a skew product. Let g,N, h and V be as in

Example 3. To every ψ : N → V we can associate a skew perturbation

fψ of g × h as follows:

fψ(x, y) = (g(x), h(y) + ψ(x)).

Because translation in the torus V is an isometry, it is not hard to

see that if g × h is partially hyperbolic (with respect to the standard

Euclidean Riemann structure on the 4-torus N×V ), then so is fψ. The

C1 distance between fψ and g × h is comparable to the C1 distance

from ψ to the 0-function in V .

The map fψ preserves the vertical foliation {{x} × V |x ∈ N}, per-

muting its leaves by the action of g. Unless ψ is a constant function,

the horizontal foliation {N × {y} | y ∈ V } is not preserved. It is then

perhaps not surprising that a skew perturbation can break the integra-

bility of Eu ⊕Es. In fact, a skew pertubation can do more than break

joint integrability; it can create accessibility.

Definition: A partially hyperbolic diffeomorphism f : M → M is

accessible if any point in M can be reached from any other along an
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su-path, which is a concatenation of finitely many subpaths, each of

which lies entirely in a single leaf of Ws or a single leaf of Wu.

While I will not prove it in these lectures, we have the following

result:

Theorem 1.1 (Shub-W.). [SW1] Let g × h be partially hyperbolic.

There exists a function ψ : N → V such that, for all ε 6= 0 sufficiently

small, the map fεψ is accessible, and in fact, stably accessible.

Consider now a map fεψ given by Theorem 1.1. Let’s try the Hopf

argument again on this example. As before, consider the Birkhoff av-

erages ϕ+ of a continuous function. We’ll again be ambitious and drop

the m-a.e. considerations from the argument for now; thus we assume

that ϕ+ is actually constant along leaves of Ws and leaves of Wu. In

this case, if two points are connected by an su-path, then ϕ+ must take

the same values at those points. Since fεψ is accessible, ϕ+ must take

the same value at all points; that is, ϕ+ must be constant. Hence fεψ
must be ergodic.

Notice that the only property of fεψ we used in this “argument” was

acccessibility. The “argument” actually shows that every accessible

partially hyperbolic diffeomorphism is ergodic. This heuristic argument

is simple, but at this time, no one has been able to turn the heuristic

into an actual proof that accessibility implies ergodicity. The problem

is that a lot is “swept under the rug” when we ignore sets of measure

0 in the Hopf argument.

Despite these difficulties, in 1995, Grayson, Pugh and Shub [GPS]

showed that accessibility implies ergdocity for partially hyperbolic maps

that satisfy some additional technical hypotheses. Based on this break-

through, and on later results of Pugh and Shub that further weaken

the technical hypotheses [PS2, PS3], Pugh and Shub conjectured:

Conjecture 1.2 (Pugh-Shub). Let f be a C2, volume-preserving, par-

tially hyperbolic diffeomorphism. If f is accessible, then f is ergodic.

In these lectures, I will present the “state of the art” in progress

toward proving this conjecture. In particular, I will prove:

Theorem 1.3 (Burns-W.). [BW2] Let f be C2, volume-preserving,

partially hyperbolic, and center bunched. If f is essentially accessible,

then f is ergodic.
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“Center bunched” is a relatively mild technical condition that can be

verified in a given example. I will define it in Lecture IV. If dim(Ec) =

1, then this condition is always satisfied. For our examples 3. and 4.,

this condition is satisfied if k is large enough. “Essentially accessible”

is a weakening of acccessibility that I will define in Lecture II.

As an immediate corollary, we have:

Corollary 1.4. Let f be C2, volume-preserving, partially hyperbolic,

and center bunched. If f is stably essentially accessible, then f is stably

ergodic.

Returning to the issue of accessibility, notice that accessibility is a

relatively coarse, topological property of the pair of foliations Ws and

Wu. Motivated in part by considerations in cotrol theory, Pugh and

Shub also conjectured that accessibility is a “typical” property among

partially hyperbolic diffeomorphisms.

Conjecture 1.5 (Pugh-Shub). Among the partially hyperbolic diffeo-

morphisms, stable accessibility is an open-dense property.

Combining Conjecture 1.2 and Conjecture 1.5, we get:

Conjecture 1.6 (Pugh-Shub). Among the partially hyperbolic diffeo-

morphisms, stable ergodicity is an open-dense property.

This third conjecture I will refer to as the Stable Ergodicity Con-

jecture. Conjecture 1.5 has recently been proved under the hypothesis

that the center bundle is 1-dimensional [HHU]. Combining this fact

with our main result, we obtain a proof of Conjecture 1.6 under the

hypothesis that the center bundle is 1-dimensional [HHU]. A C1 version

of Conjecture 1.5, with no restriction on the dimension of the center

bundle, was proved in [DW].

Before finishing, let’s return to our f in Example 3., the product of

an Anosov with a KAM. We asked the question: “Is f stably noner-

godic?” Putting together the results I’ve just discussed, we come to

the following answer:

If k is sufficiently large, then f can be approximated arbitrarily well

by a stably ergodic diffeomorphism.

Far from being stably nonergodic, the f in Example 3 is on the

boundary of the stably ergodic diffeomorphisms!
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Exercise 1.7. Let f = g × h : M × V → M × V , where g is Anosov.

Find conditions on h that guarantee that f is partially hyperbolic. Show

that, in this case, Es = Es
g⊕{0}, Eu = Eu

g ⊕{0}, and Ec = {0}⊕TV .

Thus the subbundle Eu ⊕ Ec is integrable, tangent to the foliation:

{N × {y} | y ∈ V }.

Exercise 1.8. Show that if f = g × h is partially hyperbolic, where g

is Anosov, and ϕ : N × V → R is any continuous function, then the

forward and backward Birkhoff averages of ϕ are almost everywhere

constant along sets of the form N ×{y}, y ∈ V . (hint: Fubini, Fubini)

Exercise 1.9. Consider a diffeomorphism fλ : T2 ×T2 → T2 ×T2 of

the form:

fλ(x, y) = (A(x), gλ(y)),

where A : T2 → T2 is the linear Anosov diffeomorphism given by

A =

(
2 1

1 1

)2

,

and gλ : T2 → T2 is a standard map of the form:

gλ(z, w) = (z + w,w +
λ

2π
sin(2π(z + w))).

Show that there is an interval Λ ⊂ R containing (−4, 4) and con-

tained in (−6, 6) such that, if λ ∈ Λ, then fλ is partially hyperbolic with

respect to the standard (flat) metric on T2 ×T2.

Exercise 1.10. Define Erµ(M) to be the set of f ∈ Diffrm(M) that are

ergodic. Show that for any r, Erµ(M) is a Gδ (in the Cr topology on

Diffrµ(M)).

Problem: Classify the partially hyperbolic diffeomorphisms of a given

manifoldM , or inside a fixed homotopy class. Which manifolds support

partially hyperbolic diffeomorphisms?

2. Lecture II: The Hopf Argument

In the 1930’s Eberhard Hopf [H] proved that the geodesic flow for

a compact, negatively-curved surface is ergodic. His method was to

study the Birkhoff averages of continuous functions along leaves of the

stable and unstable foliations of the flow. This type of argument has

been used since then in increasingly general contexts, and has come to
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be known as the Hopf Argument. In this lecture, I will describe this

argument in some detail.

We say a set A is saturated by a foliation F , or F-saturated if A

consists of whole leaves of F . The Hopf Argument for ergodicity of

a partially hyperbolic diffeomorphism can be rephrased in terms of

Ws-saturated and Wu-saturated sets. As I mentioned in Lecture I,

the Hopf argument necessarily involves sets of measure 0. Thus in

order to formulate the Hopf argument properly, it is necessary to define

saturation modulo a zero set, a property we call essential saturation.

Let P be a property of a measurable set, such as Ws-saturation or

Wu-saturation, or f -invariance. We say that a measurable set A is

essentially P if there exists a set B, with m(A∆B) = 0 so that B has

property P . An essential property is really a property of a measure

class. Similarly, a measurable function f is “essentially P” if there

is a function g that coincides with f off of a zero set and which has

property P . Thus an essentially constant function is one that can be

made constant by modifying its values on a zero set, and an essentially

invariant function is a function that can be made invariant by modifying

its values on a zero set.

Theorem 2.1 (The Hopf Argument). Let f be partially hyperbolic and

volume-preserving. Then f is ergodic if and only if every f -invariant

set A that is both essentiallyWs-saturated and essentiallyWu-saturated

is trivial, meaning:

m(A) = 0 or 1.

Proof. If f is ergodic, then every f -invariant set is essentially trivial,

so one implication of the theorem is immediate.

The other direction of the theorem is the heart of Hopf’s argument.

Hopf used Birkhoff’s Pointwise Ergodic Theorem in his original argu-

ment; we present a more elementary proof that requires a little less

machinery, though the basic idea of the proof is the same. [Remark:

the proof as presented here is incorrect. A correct version along these

lines appears in the article: Coudene, Y, The Hopf argument, J. Mod.

Dyn. v. 1, no 1. 147-153.]

We will use von Neumann’s Mean Ergodic Theorem, whose proof

is a fairly straightforward exercise in Hilbert space operator theory.

Recall that any volume-preserving transformation f : M →M defines
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an operator on the Hilbert space L2(M):

Uf : L2(M)→ L2(M)

by:

Uf (ϕ) = ϕ ◦ f.
The operator Uf is unitary, meaning that U is continuous and invert-

ible, and for all ϕ1, ϕ2 ∈ L2(M), we have

< Uf (ϕ1), Uf (ϕ2) >2=< ϕ1, ϕ2 >2 .

Theorem 2.2 (von Neumann’s Ergodic Theorem). Let U : H → H be

a unitary operator on a Hilbert space H. Then, for every ϕ ∈ H, we

have:

lim
n→∞

∥∥∥∥∥ 1

n

n∑
i=1

Un(ϕ)− P (ϕ)

∥∥∥∥∥ = 0,

where P : H → I is the orthogonal projection onto the space of U-

invariant elements of H:

I = {ϕ ∈ H |U(ϕ) = ϕ}.

The proof of Theorem 2.2 is outlined in Exercise 2.5 below.

Applying Theorem 2.2 to the operator Uf : L2(M) → L2(M), we

obtain that

lim
n→∞

1

n

n∑
i=1

Un
f = P,

(in the strong topology) where P is the projection onto the Uf -invariant

(i.e., f -invariant) functions:

If = {ϕ ∈ L2(M) | ϕ ◦ f = ϕ (a.e.)}.

Since f is invertible, and f−1 is volume-preserving, we can also apply

Theorem 2.2 to the operator Uf−1 : L2(M)→ L2(M). Notice that the

spaces If of Uf -invariant functions and If−1 of Uf−1-invariant functions

coincide, since:

ϕ ◦ f = ϕ (a.e.) ⇐⇒ ϕ ◦ f−1 = ϕ (a.e.).

Thus, the projections onto If and If−1 coincide, and we have:

lim
n→∞

1

n

n∑
i=1

Un
f = P = lim

n→∞

1

n

n∑
i=1

Un
f−1 .

Now suppose that f is not ergodic. Then the space If =

P (L2(M)) is nontrivial — it contains more than just the essentially
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constant functions. The space of continuous functions C0(M) is dense

in L2(M), and P is continuous, so there exists ϕ ∈ C0(M) such that

P (ϕ) is not essentially constant. Fix such a ϕ, and for n ≥ 0, let

ϕn =
1

n

n∑
i=1

Un
f (ϕ) =

1

n

n∑
i=1

ϕ ◦ fn.

Theorem 2.2 implies that ϕn → P (ϕ) in L2. We now use the basic fact

that a convergent sequence in L2 converges almost everywhere along a

subsequence. Thus there exists a subsequence nj →∞ such that

ϕnj
→ P (ϕ)

almost everywhere in M .1 Let

ϕ+ = lim sup
nj→∞

ϕnj

(the limsup guarantees that ϕ+ is defined everywhere).

Lemma 2.3. ϕ+ has the following properties:

(a) ϕ+ = P (ϕ) (a.e.); in particular, ϕ+ is essentially f -invariant,

(b) for all x, y ∈M ,

y ∈ Ws(x) =⇒ ϕ+(x) = ϕ+(y).

Proof of Lemma 2.3. Part (a) follows immediately from the fact

that ϕnj
→ P (ϕ) almost everywhere in M . Part (b) is the key step in

Hopf’s argument. Suppose that y ∈ Ws(x). Because ϕ is continuous,

and d(f i(x), f i(y))→ 0 as i→∞, we have

lim
i→∞
|ϕ(f i(x))− ϕ(f i(y))| = 0.

From this it is easy to see that ϕ+(x) = ϕ+(y). The details are left to

Exercise 2.6 below. �

By exactly the same argument that produced ϕ+, this time using

f−1, we obtain a function ϕ− such that ϕ− = P (ϕ) (a.e.), and

y ∈ Wu(x) =⇒ ϕ−(x) = ϕ−(y).

To summarize our argument to this point, we have:

Proposition 2.4. If f is not ergodic, then there exist essentially in-

variant functions ϕ+, ϕ− such that:

1Although we don’t need it, Birkhoff’s Ergodic Theorem implies that in fact it

is not necessary to take a subsequence; limϕn exists almost everywhere.
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(1) ϕ+, ϕ− are not essentially constant functions,

(2) ϕ+ = ϕ−, almost everywhere,

(3) for all x, y ∈M ,

y ∈ Ws(x) =⇒ ϕ+(x) = ϕ+(y), and

y ∈ Ws(x) =⇒ ϕ−(x) = ϕ−(y).

To complete the proof of Theorem 2.1, assuming f is not ergodic,

we exhibit an essentially invariant set A that is both essentially Ws-

saturated and essentially Wu-saturated, with

0 < m(A) < 1.

We find A as a sublevel set of P (ϕ). For a ∈ R, let

A+(a) = ϕ−1+ (−∞, a), and A−(a) = ϕ−1− (−∞, a).

Proposition 2.4 implies that A+(a) and A−(a) are essentially invariant,

A+(a) is Ws-saturated, A−(a) is Wu-saturated, and

m(A+(a) ∆A−(a)) = 0.

Furthermore, there exists an a ∈ R such that

0 < m(A+(a)) = m(A−(a)) < 1.

Fix such an a, and let

A = A+(a) ∩ A−(a).

Then A is essentially invariant, essentially Ws-saturated, essentially

Wu-saturated, and

0 < m(A) < 1.

This completes the proof.�

Exercise 2.5. Prove von Neumann’s Ergodic Theorem, as follows.

(1) Let I = {ϕ ∈ H |U(ϕ) = ϕ} be the eigenspace of U-invariant

elements. Prove that

lim
n→∞

1

n

n∑
i=1

Un(ϕ) = ϕ = P (ϕ),

for all ϕ ∈ I.
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(2) Let B = {ψ−U(ψ) | ψ ∈ H} be the set of coboundaries for U .

Prove that

lim
n→∞

1

n

n∑
i=1

Un(ϕ) = 0 = P (ϕ),

for all ϕ ∈ B.

(3) Show that the orthogonal complement of I in H is B, the closure

of B.

(4) Conclude that

lim
n→∞

1

n

n∑
i=1

Un = P,

in the strong topology.

Exercise 2.6. Show that if x ∈ Ws(y), and ϕ ∈ C0(M), then, for any

subsequence nj →∞,

lim sup
nj→∞

1

nj

nj−1∑
i=0

ϕ(f i(x)) = lim sup
nj→∞

1

nj

nj−1∑
i=0

ϕ(f i(y)).

2.0.1. Application: ergodicity of Anosov diffeomorphisms. Recall how

the Hopf argument can be used to prove that every C2, volume-preserving

Anosov diffeomorphism is ergodic. An Anosov diffeomorphism is a par-

tially hyperbolic diffeomorphism for which Ec is trivial. The stable and

unstable foliations Ws and Wu are therefore:

(a) absolutely continuous, and

(b) transverse.

This means that in local volume-preserving (not necessarily smooth)

coordinates on M , the leaves ofWs are horizontal, s-dimensional planes

in Rn, and the leaves of Wu are vertical, u-dimensional planes in Rn,

where n = u+ s. In these coordinates, volume is Lebesgue measure in

Rn.

Suppose that A is any measurable set in M that is both essentially

Ws-saturated and essentiallyWu-saturated. In these local coordinates,

this translates into essential saturation of A with respect to both the

foliation by horizontal planes and the foliation by vertical planes.

Fubini’s theorem implies that A has full measure or measure 0 in this

coordinate system. (The details are left as an exercise). Since M is

connected, A has full measure or measure 0 in M . Theorem 2.1 implies

that f is ergodic.
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2.1. Ergodicity of partially hyperbolic diffeomorphisms. Sup-

pose that f : M → M is partially hyperbolic and volume-preserving.

The Hopf argument (Theorem 2.1) tells us that f is ergodic if and

only if every set A that is essentially Ws-saturated and essentially

Wu-saturated is trivial. Let us call a set that is both essentially Ws-

saturated and essentially Wu-saturated bi-essentially saturated. The

“bi” refers to the two foliations Ws and Wu.

The property of accessibility can also be rephrased in terms of Ws

and Wu saturated sets. We call a set that is both Ws-saturated and

Wu-saturated bi-saturated. It is easy to see that f is accessible if and

only if the only bi-saturated subsets of M are the empty set and M

itself. As mentioned in the previous lecture, there is a property slightly

weaker than accessibility, called essential accessibility.

Definition: f is essentially accessible if every measurable set that is

essentially bi-saturated is trivial.

If it seems difficult to visualize the difference between accessibility

and essential accessibility, it might be helpful to keep in mind the

following two examples.

• The time-1 map of a geodesic flow ϕt : T 1S → T 1S for a neg-

atively curved surface S is accessible. In fact, starting at any

point (vector) v ∈ T 1S, we can reach any point in a neighbor-

hood of v by a su-path with 4 short legs (subpaths of Wu and

Ws).

• An ergodic automorphism of a torus is essentially accessible,

but not accessible (unless it is Anosov). The stable and unstable

foliations are jointly integrable, so there is a foliationWus whose

leaves are tangent to Eu ⊕ Es. The leaves of Wus are cosets

of a dense Lie subgroup of the torus. The only measurable

Wus-saturated sets are trivial.

Recall the main result I am discussing:

Theorem 2.7 (Burns-Wilkinson). Let f be C2, volume-preserving,

partially hyperbolic, and center bunched. If f is essentially accessible,

then f is ergodic.
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The Hopf Argument says that if all bi-essentially saturated sets are

trivial, then f is ergodic. Essential accessibility means that all es-

sentially bi-saturated sets are trivial. To prove this theorem, it thus

suffices to show:

If f is center bunched, then every bi-essentially saturated set is

essentially bi-saturated.

How might we proceed in trying to prove this? Suppose we are given

a set A that is bi-essentially saturated. We would like to modify it on a

zero set to produce a set that is bi-saturated. We know we can modify

A on a zero set to produce a new set, As, that isWs-saturated (We call

such a set As aWs-saturate of A). We now would like to modify As on a

zero-set to make itWu-saturated, still preservingWs-saturation. How?

We know that Wu (and Ws) are absolutely continuous. Since As is

essentially Wu-saturated, this means that for almost every p ∈ As, the

leaf Wu(p) intersects As in a set of full leaf measure (i.e. Riemannian

volume in Wu(p)). We might try to discard those points in As whose

Wu- leaves don’t meet As in a set of full leaf measure and throw into As

all thoseWu-leaves that meet As in a set of full leaf measure. In doing

so, we have modified As on a zero set and produced a Wu-saturated

set Au (a Wu-saturate of A) . But there is no guarantee that this new

set Au is Ws-saturated.

The problem is that there are many ways to modify an essentially

Ws-saturated set on a zero-set to produce an essential Ws-saturate,

and there are many ways to modify an essentiallyWu-saturated set on

a zero-set to produce an essential Wu-saturate. All of these methods

consist of throwing in some leaves and removing others. We need to find

a method that throws away the right leaves to produce a bi-saturated

set from an bi-essentially saturated set.

2.2. Density points. The Lebesgue Density Theorem gives a way to

assign a canonical representative to every equivalence class of Lebesgue

measurable set. If µ is a measure and A and B are µ-measurable sets

with µ(B) > 0, we define the density of A in B by:

µ(A : B) =
µ(A ∩B)

µ(B)
.

Now suppose that M is a Riemannian manifold, and m is normalized

volume. A point x ∈M is a Lebesgue density point of a measurable set
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A ⊆M if

lim
r→0

m(A : B(x, r)) = 1,

where B(x, r) is the geodesic ball of radius r centered about x. Recall

the Lebesgue Density Theorem:

Theorem 2.8 (Lebesgue Density Theorem). If A is a measurable set,

and DP (A) is the set of Lebesgue density points of A, then

m(A∆DP (A)) = 0.

Denote by DP (A) the set of Lebesgue density points of a measurable

set A. If A and B differ by a 0-set, then DP (A) = DP (B).

Theorem 1.3 follows from the following:

Theorem 2.9. Let f be C2, partially hyperbolic, and center bunched. If

A is bi-essentially saturated, then DP (A) is bi-saturated. Thus, every

bi-essentially saturated set is essentially bi-saturated.

Consequently, if f is essentially accessible and preserves volume, then

f is ergodic.

3. Lecture III

We are now at the heart of the proof of Theorem 1.3. We are given

a partially hyperbolic diffeomorphism f : M → M . To prove that

f is ergodic, we will show that if A is a bi-essentially saturated set,

then the set of density points DP (A) is bi-saturated. To do so, we will

eventually have to assume that the center bunching condition holds

(which we have still not defined). We will define this condition when

it arises naturally in the argument (in Lecture V.)

There are two steps to the argument:

Step 1. Show that every Lebesgue density point of a bi-

essentially saturated set is a julienne density point. To define

julienne density points, we construct, for each x ∈ M , a special kind

of sequence of sets Jn(x), called juliennes. A julienne density point is

like a Lebesgue density point, except that we measure density inside

of juliennes rather than inside of balls. Juliennes are defined using

dynamical objects such as invariant foliations.

Step 2. Show that the set of julienne density points of a bi-

essentially saturated set is bi-saturated. Because juliennes are

constructed dynamically, they are not distorted excessively when we
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slide them along leaves of the stable and unstable foliations. This fact,

combined with absolute continuity of theWs andWu foliations, allows

us to show that julienne density points are not destroyed by sliding

along leaves of these foliations.

3.1. What is a julienne? A julienne is a dynamically-defined object

especially designed to measure the density of a bi-essentially saturated

set. There are two-types of juliennes: cu-juliennes and cs-juliennes.

A cu-julienne is a manifold approximately tangent to the subbundle

Ecu = Ec ⊕ Eu, and transverse to the Ws-foliation. Analogously,

a cs-julienne is a manifold approximately tangent to the subbundle

Ecs = Ec ⊕ Es, and transverse to the Wu-foliation. If there are in-

variant foliations Wcu and Wcs tangent to the subbundles Ecu and

Ecs, respectively, then we can use these foliations to define cu- and

cs-juliennes, respectively. If these foliations do not exist, then we must

do more work to construct juliennes. This is carried out in [BW2].

To simplify the discussion, let’s assume that there are foliationsWcu

and Wcs tangent to Ecu and Ecs, respectively. If such foliations ex-

ist, we say that f is dynamically coherent. There are many examples

of dynamically coherent partially hyperbolic diffeomorphisms. All of

the examples in Lecture I are dynamically coherent, for example (see

Exercise 3.1). If f is dynamically coherent, then:

• There is an invariant foliation Wc, called a center foliation,

tangent to Ec, whose leaves are found by intersecting the leaves

of Wcu with the leaves of Wcs.

• The leaves of Wcs are subfoliated by the leaves of Wc (this is

by construction of Wc). That is, each leaf of Wcs is the union

of leaves of Wc. Similarly, the leaves of Wcu are subfoliated by

the leaves of Wc.

• The leaves ofWcs are also subfoliated by the leaves ofWs (this

is a consequence of the unique integrability of Ws). Similarly,

the leaves of Wcu are subfoliated by the leaves of Wu

As Flavio mentioned, not every partially hyperbolic diffeomorphism

is dynamically coherent: the center subbundle can fail to be integrable.

Assuming now that f is dynamically coherent, let’s construct some

juliennes. We introduce some convenient notation. If x ∈M , and n is

an integer, then xn denotes the point fn(x). If F is a foliation, and d is

a metric on M . then Fd(x, r) will denote the connected component of



18 AMIE WILKINSON

x in the intersection of the ball B(x, r) with the leaf F(x) containing x.

When the metric d is the standard (background) Riemannian metric

we will drop the d subscript and write F(x, r).

Recall from Flavio’s lectures the definition of (pointwise) partial hy-

perbolicity. We have a Riemannian metric for which we can choose

continuous positive functions ν, ν̂, γ and γ̂ with

ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1(1)

such that, for any unit vector v ∈ TpM ,

‖Tfv‖ < ν(p), if v ∈ Es(p),(2)

γ(p) < ‖Tfv‖ < γ̂(p)−1, if v ∈ Ec(p),(3)

ν̂(p)−1 < ‖Tfv‖, if v ∈ Eu(p).(4)

We will assume for simplicity that ν, ν̂, γ and γ̂ are constant func-

tions. These constants give bounds on the growth rates of vectors in

the subbundles in the partially hyperbolic splitting. After integration,

growth rates of vectors translate into growth rates of curves. Thus, by

rescaling our Riemannian metric if necessary (the details are in [BW]),

we may assume that, for all n ≥ 0, and all p ∈M :

• if x, y ∈ Ws(p, 2), then

d(xn, yn) ≤ νnd(x, y),

• if xi, yi ∈ Wcs(pi, 2) for i = 0, . . . , n− 1, then

d(xn, yn) ≤ γnd(x, y),

• if x, y ∈ Wu(p, 2), then

d(x−n, y−n) ≤ ν̂nd(x, y),

• if x−i, y−i ∈ Wcu(pi, 2) for i = 0, . . . , n− 1, then

d(x−n, y−n) ≤ γ̂nd(x, y).

We will sometimes refer to F(x, 2) as a local leaf of F . We may also

assume that inside any d-ball of radius 2, the foliations have no topology

(any two local leaves from any pair of transverse foliations intersect in

at most one point).

Fix x ∈ M . We are now ready to descibe the juliennes through x.

To construct the biggest julienne J cu0 (x) through x, we start with a

ball Wc(x, 1) in the center manifold of x. Through each y ∈ Wc(x, 1),

we attach the ball Wu(y, 1). We obtain a subset of Wcu(x) that looks
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crudely like a cube. The next julienne J cu1 (x) will be contained in the

first. To construct J cu1 (x), we start with a ballWc(x, σ) of radius σ < 1.

Through each point y ∈ Wc(x, σ) we attach the set f−1Wu(x1, τ),

where τ < 1. Since τ < 1, and f−1 contracts distances in Wu, the

diameter of the set f−1Wu(x1, τ) is strictly less than 1 — it is not hard

to see that J cu1 (x) ( J cu0 (x). More generally, for n ≥ 0, we define:

J cun (x) =
⋃

y∈Wc(x,σn)

f−n (Wu(xn, τ
n)) .

The juliennes we have constructed depend on the choice of σ, τ . We

will specify later how to choose these constants. The point x is called

the center of the julienne J cun (x), and n is called its rank.

What does the set J cun (x) look like? The juliennes become expo-

nentially small as n tends to ∞; in particular,
⋂
n≥0 J

cu
n (x) = {x}, and

this intersection is nested. While the first julienne J cu0 (x) looks roughly

like a cube, as n increases, J cun (x) becomes increasingly elongated in

some directions relative to others, depending on our choice of σ, τ . If,

for example, τ < σ, then J cun (x) will be exponentially thinner in the

unstable direction than in the center direction. This is the origin of

the term “julienne,” a term in French cooking (see [GPS]).

The julienne J cun (x) looks like a ball or radius σn in the center direc-

tion. In the unstable direction, J cun (x) is also ball-like, but in a diferent

metric than the standard Riemannian metric, called the dn-metric.

Definition: Let n be an integer. For x, y ∈M , let

dn(x, y) = sup
i=0,...,n

d(xi, yi).

Note that d0 = d.

It is easy to see that dn defines a metric on M , for each n. These

metrics are used in the definition of topological entropy of f . See, e.g.,

[Ma]. It is an easy exercise (Exercise 3.2) to show that

J cun (x) =
⋃

y∈Wc(x,σn)

Wu
dn(y, τn).

To conclude:

A cu-julienne is the union of dn-balls in Wu of radius τn passing

through a d0-ball in Wc of radius σn.
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Similarly, though I’ll leave the details of the definition to the reader,

we have:

A cs-julienne is the union of d−n-balls in Ws of radius τn passing

through a d0-ball in Wc of radius σn.

Finally, we explain what it means for x to be a julienne density point.

We define cu-julienne density points; cs-density points are defined anal-

ogously (replacing s for u).

Definition: Let A be a bi-essentially saturated set. Then x is a

julienne density point of A if, for every stable saturate As of A, we

have:

lim
n→∞

mcu(As : Jn(x)) = 1,

where mcu is the induced Riemannian measure on Wcu.

Exercise 3.1. Verify that if f : N×V →M×V is a partially hyperbolic

skew product of the form:

f(x, y) = (g(x), h(x, y)),

where g is Anosov and h : N×V → V , then f is dynamically coherent.

Exercise 3.2. Prove that dn is a metric. Show that

J cun (x) =
⋃

y∈Wc(x,σn)

Wu
dn(y, τn).

Exercise 3.3. Let A be a bi-essentially saturated set. Show that x is a

julienne density point of A if and only if, for some stable saturate As

of A, we have:

lim
n→∞

mcu(As : Jn(x)) = 1.

(Hint: Ws is absolutely continuous.)

4. Lecture IV

In this lecture, we begin to describe to the proof of:

Step 1. Show that every Lebesgue density point of a bi-

essentially saturated set is a julienne density point.

We will show this for cu-juliennes. The proof for cs-juliennes is

completely analogous. Recall that we are using xi to denote fi(x). If

an and bn are sequences of real numbers, the notation an � bn means
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that there exists a constant C ≥ 1 such that an
bn
∈ [C−1, C], for all

n ≥ 0, and an - bn means that there exists a constant C ≥ 1 such that

an ≤ Cbn, for all n ≥ 0.

4.1. Density sequences. We examine first what it means for a point

x to be a Lebesgue density point of a bi-essentially saturated set A.

Our goal is to weaken and reformulate this condition until we can use

cu-juliennes to define Lebesgue density.

Let X0 ⊃ X1 ⊃ X2 ⊃ · · · be a nested sequence of sets such that⋂
nXn = {x}. We use the notation Xn ↘ x to denote this, and

sometimes we will write Xn(x) for Xn to make transparent the role of

x.

We say that Xn ↘ x is a Lebesgue density sequence if, for every

measurable set A,

x is a Lebesgue density point of A ⇔ lim
n→∞

m(A : Xn) = 1.

Similarly, we say that Xn ↘ x is an su-density sequence at x if, for

every measurable bi-essentially saturated set A,

x is a Lebesgue density point of A ⇔ lim
n→∞

m(A : Xn(x)) = 1.

Every Lebesgue density sequence is (obviously) an su-density sequence,

but there is no reason to expect the converse implication to hold.

Suppose x is a Lebesgue density point for a measurable set A. Recall

this means that

lim
r→0

m(A : B(x, r)) = 1.(5)

Clearly, if (5) holds, then for any subsequence rn → 0, we have

lim
n→∞

m(A : B(x, rn)) = 1,(6)

but for which subsequences rn does (6) imply (5)? An elementary

argument (Exercise 4.8) shows that rn cannot approach 0 too quickly.

In terms of the volumes of the balls used in calculating the density

m(A : B(x, rn)), we need that there is a constant δ > 0 such that:

m(B(x, rn+1)) ≥ δm(B(x, rn)),(7)

for all n, which translates into a similar condition on the radii rn.

Condition (7) is satisfied, for example, if we choose rn = σn, for some

σ < 1. We formulate this property (7) of the sequences B(x, σn) as a

general definition.
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Definition: Xn ↘ x is volumetrically regular, or v-regular for short,

if there exists δ > 0 such that, for all n ≥ 0, we have:

m(Xn+1)

m(Xn)
≥ δ.

We have just seen:

the balls B(x, σn)↘ x form a v-regular Lebesgue density sequence.

It is well-known that the round balls B(x, r) used in computing

Lebesgue density points can be replaced by cubes, or by any shape

invariant under conformal dilation. Denoting the cube in M centered

at x of side radius r by Q(x, r), we have, for example, that for any

measurable set A,

lim
n→∞

m(A : B(x, σn)) ⇔ lim
n→∞

m(A : Q(x, σn)) = 1.

Thus the cubes Q(x, σn) ↘ x are a Lebesgue density sequence. The

reason why is a simple geometric fact: cubes and balls internest:

Definition: Two sequences Xn ↘ x and Yn ↘ x are internested if

there exists a k > 0 such that

Xn+k ⊂ Yn and Yn+k ⊂ Xn,

for all n ≥ 0.

Internested sequences are important to us for the following reason:

Proposition 4.1. If Xn ↘ x is v-regular and Xn ↘ x and Yn ↘ x

are internested, then Yn ↘ x is v-regular and, for every A, we have:

lim
n→∞

m(A : Xn) = 1 ⇐⇒ lim
n→∞

m(A : Yn) = 1.

The proof is an exercise, more or less in chasing definitions. We’ll

use this proposition to construct density sequences. An immediate

corollary is:

Corollary 4.2. If Xn ↘ x is a v-regular Lebesgue (resp. su) density

sequence, and Xn ↘ x and Yn ↘ x are internested, then Yn ↘ x is a

v-regular Lebesgue (resp. su) density sequence.
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We now give the background material necessary for constructing su-

density sequences at x. Recall the constants σ, τ used in the construc-

tion of juliennes. We now put an additional constraint on the choices

of σ, τ < 1:

σν < τ < σν̂−1, σ < γ̂.

Notice that it is always possible to choose σ, τ satisfying these defini-

tions, for any partially hyperbolic system, since ν < 1 < ν̂−1. Fix a

number κ close to 1, greater than both σ and σγ̂−1. All sequences will

be constructed inside a fixed environment around x, using a fixed set

of building blocks, and one fixed construction tool.

Environment. Each set Xn in any su-density seqeunce Xn ↘ x we

construct will be contained inside the dn-ball:

Bdn(x, κn) = {y | dn(x, y) < κn}.

These balls have the important feature that

Hölder-continuous fn-cocycles have bounded distortion inside Bdn(x, κn).

I’ll discuss this property in Lemma 4.6 below. It is used to show that

our building blocks are nicely behaved.

Building blocks. All of the sequences Xn ↘ x we construct will be

built out of two basic types of building blocks. For each n ≥ 0 and

y ∈ Bdn(x, κn), we will use:

• d-balls: Wu(y, σn), Wc(y, σn), and Ws(y, σn),

• dn-balls: Wu
dn

(y, τn).

Recall, for example, that cu-juliennes are constructed by taking a

union of dn-balls Wu
dn

(y, τn) through each point y in the central d-ball

Wc(y, σn).

Our choice of σ, τ gives these sets two important properties:

(1) The diameter of the first n iterates of any set taken Zn from

this list is exponentially small, less than a constant times κn:

diam (f i(Zn)) - κn, i = 0, . . . , n− 1.

(Exercise: Verify this.)
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(2) If Zn and Z ′n are two sets of the same type, constructed in-

side leaves of the foliation F (e.g. two dn-balls Wu
dn

(y, τn) and

Wu
dn

(y′, τn) in the foliation Wu), then

mF(Zn) � mF(Z ′n),

where mF is the induced Riemannian metric on the leaves of

F .

I’ll discuss the second property in more detail below (see Corollary 4.7).

Construction tool. Every set Xn(x) in the sequences Xn ↘ x we

consider will be a local fibration of the form:

Xn(x) =
⋃

y∈Bn(x)

Fn(y),

where Bn ↘ x is called the base of Xn ↘ x, and Fn(y) is the fiber of

Xn over y ∈ Xn(x). We call Xn ↘ x a fibered sequence. The fibers in

our constructions will always consist of building blocks taken from a

fixed foliation, usually either Wu or Ws.

For example, the cu-juliennes J cun (x) ↘ x have base Wc(x, σn) and

fiber Wu
dn

(y, τn) over each y ∈ Wc(x, σn).

I’ll now discuss the key property of these fibered sequences. To do

so, we need to revisit the property of absolute continuity.

4.2. Absolute continuity revisited. There is some subtlety in defin-

ing absolute continuity of a foliation, which I will ignore. See [BW2] for

a careful discussion. There are two consequences of absolute continuity

I’ll use, both of which hold for the foliations Wu and Ws. The first

consequence, discussed by Flavio, involves holonomy maps:

Proposition 4.3. Let p, p′ be two points on the same leaf of the folia-

tion Ws, chosen so that the leaf distance between p and p′ is ≤ 1 (or

any other fixed constant). Then the Ws-holonomy map

hs :Wcu(p, 1)→Wcu(p′)

(defined by sliding along leaves of Ws from Wcu(p) to Wcu(p′)) is uni-

formly absolutely continuous: for every measurable set A ⊂ Wcs(p, 1),

mcu(h(A)) � mcu(A).

Similarly, the Wu-holonomy map between Wcs-transversals is uni-

formly absolutely continuous.
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The proof of Proposition 4.3 goes back to Anosov and Sinai, and can

be found, in varying levels of generality in [A, AS, PS1, BP] and (in

the pointwise partially hyperbolic setting) in the forthcoming preprint

[AV].

The second consequence of absolute continuity ofWu andWs allows

us to estimate volumes of fibered sequences with absolutely continuous

fibers. We need a definition first.

Definition: Let Xn ↘ x be a fibered sequence with base Bn ↘ x

and fibers Fn. Suppose that the fibers of Fn lie entirely in leaves of the

foliationWu (respectively, entirely in leaves ofWs). Then Xn ↘ x has

volumetrically uniform fibers, or v-uniform fibers for short, if, for every

y, y′ ∈ Xn(x),

mu(Fn(y)) � mu(Fn(y′)),

where mu is induced Riemannian volume on the leaves of Wu (respec-

tively,

ms(Fn(y)) � ms(Fn(y′)),

where mu is induced Riemannian volume on the leaves ofWs). Notice

that the v-uniform fibers property makes no claim about the geometry

of the fibers of Xn ↘ x. While the volumes of two fibers must be

comparable, one fiber could be shaped like a ball, and the other like a

long, thin and winding snake.

The following proposition is a corollary of Proposition 4.3. A proof

can be found in [BW2], following ideas in [BS].

Proposition 4.4. Let Xn ↘ x be a fibered sequence with base Bn ↘ x

lying in Wcu(x) and fibers Fn lying in leaves of Ws. Assume that the

fibers are v-uniform. Then

m(Xn) � mcu(Bn)ms(Fn),

where ms(Fn) is the volume of any fiber of Xn, which is well-defined

up to a uniform multiplicative constant.

Similarly, if the base of Xn ↘ x lies in Wcs(x) and the fibers lie in

leaves of Wu, then

m(Xn) � mcs(Bn)mu(Fn).

Proposition 4.4 brings to mind the grade-school refrain: “volume

equals base times height” — provided that “height” is measured in an

absolutely continuous direction. More accurately, Proposition 4.4 is
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reminscent of Cavalieri’s Principle, which states that the volume of a

3-dimensional solid may computed by taking two-dimensional slices of

the solid. If the areas of these slices are equal, then volume of the solid

is equal to the product of the slice area and the total height of the the

slices.

4.3. The key property of fibered sequences. Using Proposition 4.4

we can now state:

Proposition 4.5. Let Xn ↘ x be a fibered sequence with base Bn ↘ x

contained in Wcu(x) and fibers Fn lying in leaves of Ws. Assume that

the fibers of Fn are v-uniform. Let A be an essentially Ws saturated

set (e.g. a bi-essentially saturated set). Then, for any Ws-saturate As

of A, we have:

lim
n→∞

m(A : Xn) = 1 ⇔ lim
n→∞

mcu(As : Bn) = 1.

Similarly, if the base Bn ↘ x lies in Wcs(x) and the fibers Fn lie in

leaves of Wu and are v-uniform, then for any essentially Wu-saturated

set A and any esential Wu-saturate Au of A, we have:

lim
n→∞

m(A : Xn) = 1 ⇔ lim
n→∞

mcs(Au : Bn) = 1.

Proof. Let A′ = M \A be the complement of A, and let (As)′ = M \As
be the complement of aWs-saturate As of A. Note that (As)′ is aWs-

saturate of A′. We’ll show that

m(A′ : Xn) � mcu((As)′ : Bn),(8)

which implies that

lim
n→∞

m(A′ : Xn) = 0 ⇔ lim
n→∞

mcu((As)′ : Bn) = 0.

This in turn implies the proposition.

Since (As)′ isWs-saturated, the sequence (As)′∩Xn ↘ x is a fibered

sequence with base Bn∩(As)′ ↘ x and v-uniform fibers Fn. By Propo-

sition 4.4,

m((As)′ ∩Xn) � mcu((As)′ ∩Bn)ms(Fn)
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Since m(Xn) � mcu(Bn)ms(Fn), we obtain:

m(A′ : Xn) = m((As)′ : Xn)

=
m((As)′ ∩Xn)

m(Xn)

� mcu((As)′ ∩Bn)ms(Fn)

mcu(Bn)ms(Fn)

=
mcu((As)′ ∩Bn)

mcu(Bn)

= mcu((As)′ : Bn),

establishing (8).�

4.4. The dn metric and distortion. Recall that we are trying con-

structing density sequences in a fixed environment Bdn(x, σn) out of

building blocks consisting of balls and dn-balls, using the fibered se-

quence construction. We will use Proposition 4.4 to go from one nested

sequence to another. To do this, we need our fibers to be v-uniform.

The technique we use here is fundamental in measurable smooth dy-

namics, and you’ve already seen it in the proof of absolute continuity

of Wu and Ws. See [Ma], for example, for many other applications of

this type of argument.

There are two types of fibers we might use: balls in Ws or Wu ,

and dn-balls in Wu. It is easy to see that two balls of the same radius

have comparable volumes: this follows from compactness of M and the

continuity of the foliations Ws and Wu. Thus for any y, y′ ∈ M , we

have

mu(Wu(y, σn)) � mu(Wu(y′, σn)) and ms(Ws(y, σn)) � ms(Ws(y′, σn)).

The situation with dn-balls is considerably more delicate. The dn-

ball Wu
dn

(y, τn) is really the iterate under f−n of the ball Wu(yn, τ
n).

The volume of Wu
dn

(y, τn) is thus given by the formula:

mu(Wu
dn(y, τn)) =

∫
Wu(yn,τn)

Jacu(f−n) dmu,(9)

where, for k ∈ Z, the function Jacu(fk) is the “unstable Jacobian” of

fk — the Jacobian of the restriction of fk to the leaves of Wu:

Jacu(fk)(p) = det(Tpf
k|Eu).
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Suppose for a minute we knew that:

Jacu(f−n)(p) � Jacu(f−n)(p′),(10)

for all p, p′ ∈M . Combining (9) with (10), we would then get:

mu(Wu
dn

(y, τn))

mu(Wu
dn

(y′, τn))
� mu(Wu(yn, τ

n))

mu(Wu(y′n, τ
n))

.

for all y, y′ ∈M , as n→∞. Since (as we saw above)

mu(Wu(yn, τ
n))

mu(Wu(y′n, τ
n))
� 1,

for any y, y′, we could then obtain:

mu(Wu
dn(y, τn)) � mu(Wu

dn(y, τn)),(11)

for any y, y′, which is the type of estimate we need for v-uniformity.

There is no hope in general, however, that (10) can hold for all

y, y′ ∈ M . The Chain Rule implies that the unstable Jacobian is a

multiplicative cocycle, i.e., for all k ≥ 0,

Jacu(fk)(x) = Jacu(f)(x) · Jacu(f)(x1) · · · Jacu(f)(xk−1),

and for all k < 0,

Jacu(fk)(x) =
1

Jacu(f−k)(x−k)
.

Thus, unless Jacu(f) is identically equal to a constant, the values of

Jac(fn) will fluctuate on M , and this fluctuation (also called distortion)

will be unbounded as a function of n.

Fortunately, proving (11) for all y, y′ ∈M is not only more than we

can do, it is more than we need to do. Since the environment in which

we construct our density sequences is the sequence of dn-balls:

Bdn(x, κn) = {y | dn(x, y) < κn),

we need only establish (11) for all y, y′ ∈ Bdn(x, σn). Here we indicate

how this is done.

If α : M → R is a positive real-valued function, and n ≥ 0 is an

integer, then we denote by αn the function:

αn(p) = α(p)α(p1) · · ·α(pn−1).

As observed above, if α = Jacu(f), then αn = Jacu(fn).
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Lemma 4.6. Let α be a Hölder continuous function, let p ∈ M , and

let κ < 1. Then, for all p, p′ ∈ Bn(p, κn),

αn(p) � αn(p′).

Proof. The function logα is also Hölder continuous; ket θ ∈ (0, 1) be

its Hölder exponent. Let H > 0 be the Hölder constant of logα, so

that for all x, y ∈M :

|logα(x)− logα(y)| ≤ Hd(x, y)θ.

Then αn(p) � αn(p′) if:

|logαn(p)− logαn(q)| ≤ c,

for some c > 0. Expanding logαn as a series, we obtain:

|logαn(p)− logαn(q)| ≤
n−1∑
i=0

|logα(pi)− logα(qi)|

≤ H
n−1∑
j=0

d(pj, qj)
θ.

≤ Hnκnθ.

Since Hnκnθ → 0 as n→∞, this establishes the result. �

Corollary 4.7. dn-balls in Wu of radius τn lying inside of dn(x, κn)

form a v-uniform family.

Proof. Since Eu is a Hölder continuous bundle (as Flavio explained)

and f is C2, the function α = Jacu(f) is Hölder continuous. The

corollary follows from (9) and Lemma 4.6. The details are left as an

exercise.

Exercise 4.8. Show that (6) implies (5) for every measurable set A if

and only if there exists a constant δ > 0 such that rn+1 ≥ δrn.

Exercise 4.9. Prove Proposition 4.1.

Exercise 4.10. Show that cu-juliennes J cun (x)↘ x form a v-regular se-

quence (with respect to the induced Riemannian volume mcu onWcu(x)).

Hint: the restriction of Wu to Wcu(x) is an absolutely continuous fo-

liation.
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5. Lecture V

We now finish the proof of our Main Theorem (reformulated). Hav-

ing set everything up in the previous lecture, the proof of Step 1 is now

fairly direct. Recall we have chosen σ, τ < 1 such that:

σν < τ < σν̂−1, σ < γ̂.

Suppose that x is a Lebesgue density point of a bi-essentially saturated

set A. We want to show that x is a julienne density point of A.

Let Xn ↘ x be the v-regular Lebesgue density sequence

Xn = Bd(x, σ
n).

We use the foliations Wu,Wc,Ws to build up a cube-like sequence

Yn ↘ x that is comparable to Xn. We first construct its base Bn ↘ x,

setting

Bn =
⋃

y∈Ws(x,σn)

Wc(y, σn).

It is not hard to see (from the continuity and transversality of the

foliations Ws,Wc) that Bn is comparable to the ball Wcs(x, σn). Now

define Yn ↘ x by:

Yn =
⋃
y∈Bn

Wu(y, σn).

Now it is a straightforward exercise to show that Xn ↘ x and Yn ↘
x are comparable. Hence Yn ↘ x is a v-regular Lebesgue density

sequence. Since x is a Lebesgue density point of A, we have:

lim
n→∞

m(A : Yn) = 1.(12)

Next, we define Zn ↘ x using the same base as Yn ↘ x, but different

fibers:

Zn =
⋃
y∈Bn

Wc
dn(y, τn).

Because we have chosen σ < γ̂, the sequence Zn ↘ x lies in our

environment Bdn(x,� κn): the dn-distance from a point z ∈ Zn to x is

less than or equal to the dn-distance from z to Bn, which is less than

τn plus the radius of Bn in the dn-metric, which, as we saw in the

previous lecture, is less than κn. The dn-distance from z to x is - κn,

since τn + κn - κn.
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Since Zn ↘ x lies in our environment, Corollary 4.7 implies that its

fibers Wc
dn

(y, τn) are v-uniform. Since A is essentially W u-saturated,

Proposition 4.5 implies that

lim
n→∞

m(A : Zn) = 1 ⇔ lim
n→∞

mcs(Au : Bn) = 1,(13)

where Au is anyWu-saturate of A. Going back to the sequence Yn ↘ x,

we note that it has v-uniform fibers, too: the ballsWu(y, σn). Applying

Proposition 4.5 to Yn ↘ x, we have for any Wu saturate Au of A,

lim
n→∞

m(A : Yn) = 1 ⇔ lim
n→∞

mcs(Au : Bn) = 1.(14)

Now (13) and (14) imply that

lim
n→∞

m(A : Yn) = 1 ⇔ lim
n→∞

m(A : Zn) = 1,(15)

and so (12) implies that

lim
n→∞

m(A : Zn) = 1.(16)

We construct one more nested sequence, this time using cu-juliennes

for the base sequence. Define Wn ↘ x by:

Wn =
⋃

y∈Jcu
n (x)

Ws(x, σn).

The fibers of Wn, being balls in Ws, are v-uniform, and so Proposi-

tion 4.5 implies that if A is any bi-essentially saturated set, then, for

any Ws-saturate As of A, we have the equivalence:

m(A : Wn)→ 1 ⇔ mcu(As : J cun (x)) = 1.(17)

If we can show that

lim
n→∞

m(A : Zn) = 1 ⇔ lim
n→∞

m(A : Wn) = 1,(18)

then we are done, since (16) and (17) then imply that x is a julienne

density point, which is the desired conclusion.

The sequence Wn ↘ x is v-regular (Exercise 5.5). By Proposi-

tion 4.1, (18) holds if Zn ↘ x and Wn ↘ x are internested.

To get to a point z ∈ Zn from x, we first go out a distance - σn

in Wcs(x) (to get to a point y ∈ Bn), and then we move a dn-distance

- τn in Wu(y) to get to z.

On the other hand, to get to a point w ∈ Wn, we first go a distance

- σn in Wc(x), we then move a dn-distance - τn in the Wu-direction,

and then we move a distance - σn in the Ws-direction.



32 AMIE WILKINSON

We would like to show that z and w are roughly in the same place.

There are three components to their locations: central, stable, and

unstable. The first two components are measured using the ordinary

d metric, and the third, using the dn metric. The order in which these

components are measured can in theory make a difference; we need to

show that in fact, it does not make a difference.

Since the d0-radius of the dn ball in the unstable direction is less

than ν̂nτn, and ν̂τ < σ, all d-distances under consideration are - σn.

We can therefore ignore the central and stable components of the two

points z and w — they are both - σn. The real question, then, is

whether the Wu components of z and w are the same, and this must

be measured in the dn metric.

By drawing a picture, you should convince yourself that the following

lemma is the essence of what we need to prove:

Lemma 5.1. Consider three points p, p′, q, with p ∈ Wc(x, σn), p′ ∈
Wu

dn
(p, τn), q′ ∈ Ws(p′, σn). Let q be the unique point of intersection:

{q} =Wu(q, 1) ∩Wcu(x, 1).

Then

dn(q, q′) - τn.

Proof of Lemma 5.1. Apply fn to the four points p, p′, q′, q to obtain

pn, p
′
n, q
′
n, qn. Then d(pn, p

′
n) - τn, and d(p′n, q

′
n) - νnd(p, q′) - νnσn.

Both the distance d(pn, p
′
n) from pn to p′n and the distance d(qn, q

′
n)

from qn to q′n measure the distance between the manifolds Wcs(pn)

(=Wcs(xn)) and Wcs(p′n). These manifolds are drawn from a uniform

family of manifolds – the foliation Wcs. Therefore, if d(pn, q
′
n) - τn

and either d(pn, qn) - τn or d(p′n, q
′
n) - τn then both d(pn, qn) and

d(p′n, q
′
n) are - τn. (This can be proved rigorously, but probably the

best way to convince yourself is to draw a picture). But we know that

d(p′n, q
′
n) - νnσn � τn,

and

d(pn, p
′
n) - τn,

and so

d(qn, q
′
n) - τn.

This implies the conclusion.�
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5.1. Proof of Step 2. We now turn to the proof of:

Step 2. Show that the set of julienne density points of a bi-

essentially saturated set is bi-saturated.

Let x be a julienne density point of a bi-essentially saturated set A.

Let x′ ∈ Ws(x, 1). Let hs : Wcu(x, 1) → Wcu(x′) be the stable holo-

nomy map. It is absolutely continuous (Proposition 4.3). In general it

is not smooth, or even Lipschitz continuous.

Let Vn = hs(J cun (x)), so Vn ↘ x′. Absolute continuity of hs and

Ws-saturation of As imply (exercise): that

lim
n→∞

mcu(As : Vn) = 1.

We would like to show that

lim
n→∞

mcu(As : J cun (x′)) = 1.

By reasoning similar to that in Lecture IV, it suffices to show:

(1) J cun (x′)↘ x′ is v-regular, and

(2) Vn ↘ x′ and J cun (x′)↘ x′ are internested.

To prove 1., we apply Cavalieri’s principle to juliennes (Exercise 4.10).

To prove 2., we need to restrict our choice of σ, τ . In order to be able

to choose a σ, τ satisfying these restrictions, we will need to impose a

center bunching condition. Let’s explore what this center bunching

condition has to be.

To prove 2., it is really necessary to draw a picture. On the one

hand, we have a point p′ in the julienne J cun (x). The point p′ lies at a

dn-distance - τn from a point p ∈ Wc(x, σn). On the other hand, we

have the holonomy image q = hs(p′) ∈ Vn. The (ordinary, d) distance

from p′ to q is - 1. To show that q lies in a julienne J cuk (x′), with

k � n, we need to prove:

Lemma 5.2. Consider three points p, p′, q, with p ∈ Wc(x, σn), p′ ∈
Wu

dn
(p, τn), q′ ∈ Ws(p′, 1). Let q be the unique point of intersection:

{q} =Wu(q, 1) ∩Wcu(x, 1).

Then

dn(q, q′) - τn.
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Notice the similarity between Lemma 5.2 and Lemma 5.1. The num-

ber “σn” in Lemma 5.1 is replaced by “1” in Lemma 5.2. The proof of

Lemma 5.2 is in fact the same as the proof of Lemma 5.1, but instead

of requiring that

νσ < τ,

we must require:

ν < τ.(19)

Lemma 5.2 is however not all we need to show 2.: we must also show

that the point q in Lemma 5.2 lies at a distance - σn from x′. (We

did not have to worry about this fact in our previous proof because we

were considering holonomy at a very small scale, - σn. This time the

holonomy is at a relatively huge scale — - 1.) Re-examining the proof

of Lemma 5.1, it becomes clear that we need to be able to choose σ, τ

so that

τγ−1 < σ.(20)

Combining (19) and (20) with the previous constraints on σ, τ , we find

that it is necessary to assume:

ν < γγ̂.

This is (one half) of the center bunching condition. The other half,

which arises in proving that cs-density points are preserved underWu-

holonomy, is:

ν̂ < γγ̂.

5.2. The role of center bunching. Finally we define the center

bunching condition. Recall the functions ν < γ < γ̂−1 < ν̂−1 used

to define partial hyperbolicity. At each point p ∈ M , ν(p) is an upper

bound on the contraction of vectors in Es(p), γ(p) and γ̂−1(p) bound

the contraction/expansion of vectors in Ec(p), from below and above,

respectively, and ν̂−1(p) is a lower bound on the expansion of vectors

in Eu(p).

Definition: f is center bunched if the functions ν, ν̂, γ, and γ̂ can be

chosen so that:

ν < γγ̂ and ν̂ < γγ̂.(21)
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What does this condition mean? Center bunching is automatically

satisfied when the action of Tf on Ec is conformal. In that case, we

can pick γ, and γ̂−1 to be as close to each other as we like, so that γγ̂

is nearly 1. Then center bunching is just a restatement of the partial

hyperbolicity condition:

ν < 1 and ν̂ < 1.

For example, in the case where dim(Ec) = 1, the action of Tf the

center bundle is conformal, and so center bunching is always satisfied.

If the action of Tf on Ec is not conformal, then center bunching

condition requires that the action of Tf on Ec be close enough to

conformal that the hyperbolicity of f dominates the nonconformality

of Tf on Ec.

We have already seen how the center bunching condition is needed

in the proof of 2.: Vn ↘ x and J cun (x) ↘ x are internested. There is

one more role it plays in the proof this fact, which is summarized in

the following theorem:

Theorem 5.3. [PSW, PSWc] If ν < γγ̂, then the Ws-holonomy map

hs : Wcu(x, 1) → Wcu(x′) is Lipschitz when restricted to the center

manifold Wc(x, 1).

Similarly, If ν̂ < γγ̂, then the Wu-holonomy map hu : Wcs(x, 1) →
Wcu(x′) is Lipschitz when restricted to the center manifold Wc(x, 1).

As a corollary, we obtain the proof of 2., which completes the proof

of Theorem 1.3:

Proposition 5.4. Let f be center bunched, and suppose σ, τ are chosen

so that:

ν < τ < σγ, σ < min{1, γ̂}.

Then hs(Wc(x, σn)) ↘ x′ and Wc(x′, σn) ↘ x′ are internested, as are

Vn = hs(Jn(x))↘ x′ and J cun (x′)↘ x′.

Proof. Combine Lemma 5.2 with Theorem 5.3. The details are left

to an energetic reader!�

Exercise 5.5. Show that the sequence Wn ↘ x is v-regular. Hint: use

exercise 4.10
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Exercise 5.6. Let fλ : T4 → T4 be the example given in Exercise 1.9.

Let

fλ,ε(x, y) = (A(x), gλ(y) + εϕ(x)),

where ϕ : T4 → T4. Show that fλ,ε is center bunched if |λ| < 1.

Hence, if fλ,ε is stably accessible (cf. Theorem 1.1 in Lecture 1), then

it is stable ergodic.

Problem: Is it possible to remove the center bunching hypothesis in

Theorem 1.3? Can it be removed even in a special case, such as fλ,ε in

Exercise 1.9, with λ� 1 (where we have dynamical coherence, smooth

center bundle, etc.)
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